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ABSTRACT. A statistical analysis has been made of the annual balances collected during 16 consecutive
years at 32 sites on the ablation area of the Glacier de Saint-Sorlin (French Alps). Only 389, of the 32 x 16
balances are known; moreover in 8 cases only the total balance for 2 consecutive years is known, and in one
case the balance for 4 consecutive years. A comprehensive study of the errors leads us to assume the following
linear model for the annual balance x;; at site j for year 1:

X7t = a5+ Betngetn' 50— 301

where «; and B are parameters depending upon the site and the year respectively, ¢ and n’j¢ are random
errors with a Gaussian distribution and standard errors o and ¢ respectively. Assuming some known value
for ¢’?fa* = p, the parameters «; and By, their variance-covariance matrix, and the variance-covariance
matrix of the residuals are estimated in the most general case. The estimators being stable against variations
in p, the value p = 0 may be assumed; this value does not conflict with the behaviour of the estimates of
the residuals. A test of the linear model derived from Tukey’s non-additivity test is positive. Although a
much more general, non-linear model
Xgt = ap+ Betyidet g

gives a better representation of 136 balances forming a complete table of data, the linear model with
¢ & 0.20 m is good enough to be used in theoretical studies or in routine work.

REsuME.  Une analyse statistique multivariale des bilans glaciaires annuels. On a fait une analyse statistique des
bilans annuels recueillis pendant 16 ans consécutifs en 32 emplacements sur la zone d’ablation du Glacier de
Saint-Sorlin (Alpes Frangaises). Seulement 389, des 32 % 16 bilans sont connus; de plus, dans 8 cas, seul
le bilan total pour 2 années consécutives est connu, et dans un cas le bilan pour 4 années consécutives. Une
¢tude détaillée des erreurs conduit & admettre le modéle linéaire suivant pour le bilan annuel x5, 4 I'emplace-
ment j et pour 'année ¢:

e = aj+Betnpetn'se— "5

ou x; et By sont des paramétres dépendant respectivement de 'emplacement et de 'année, y; et 7' j¢ des
erreurs aléatoires ayant une distribution gaussienne et des écarts-type ¢ et ¢’. En admettant une valeur
connue du rapport ¢'2[o* = p, les paramétres o; et f, leur matrice des variances et covariances, et la matrice
des variances et covariances des résidus sont estimés dans le cas le plus général. Les estimateurs étant stables
vis-a-vis des variations de p, on peut adopter p = o, valeur compatible avec le comportement des estimateurs
des résidus. Un test du modéle linéaire dérivé du test de non-additivité de Tukey est positif. Bien qu'un
modeéle bien plus général, non linéaire:
xje = agt Bet yi8it+mje

donne une meilleure représentation de 1336 bilans formant un plan d’expérience complet, le modéle
linéaire avec o & 0.20 m est sulfisamment exact pour étre utilisé dans les études théoriques ou les relevés de
routine.

ZUSAMMENFASSUNG.  Mehrdimensionale statistische Analyse von Gletscherjahresbilanzen. Jahresbilanzen, ermittelt
an 32 Stellen im Ablationsgebict des Glacier de Saint-Sorlin (Franzosische Alpen) in 16 Folgejahren, wurden
einer statistischen Analyse unterzogen., Nur 389, der 32 x 16 Bilanzen sind bekannt: ausserdam liegt in
8 Fillen nur die Gesamtbilanz iiber 2 Folgejahre und in einem Fall die Bilanz iiber 4 Folgejahre vor. Eine
sorgfiltige Fehleruntersuchung fiihrt zu der Annahme des folgenden linearen Modells fiir die Jahresbilanz
xj an der Stelle j fiir das Jahr ¢:

xje = g+ Betmge 05— 500

worin a; und f; orts- bzw. jahresabhingige Parameter, 9; und 7’5 hingegen zufillige Fehler mit einer
Gaussschen Verteilung und mittleren Fehlern ¢ und ¢’ sind. Unter der Annahme cines bekannten Wertes
fir ¢"2/o*> = p werden die Parameter o; und By, ihre Varianz-Kovarianz-Matrix und die Varianz-Kovarianz-
Matrix der Restfehler fiir den allgemeinsten Fall abgeschitzt. Da dic Schitzwerte unempfindlich gegen
Anderungen von p sind, kann p = o gesetzt werden; dieser Wert steht nicht im Widerspruch zum Verhalten
der Schitzwerte der Restfchler. Fin Test des lincaren Modells, abgeleitet aus Tukeys Test fiir Nicht-
Additivitit, ist positiv. Obwohl ein weit allgemeineres, nichlineares Modell

Xj = aj+ P+ yi8e—np

jenen 13 %6 Bilanzen, die einen vollstaindigen Datensatz bilden, besser gerecht wird, ist das lineare Modell
mit ¢ & 0,20 m ausreichend genau fiir theoretische Studien oder fiir Routinearbeiten.
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INTRODUCTION

Since the beginning of the century glaciologists have spent considerable effort to measure
emergence of ablation stakes, yet, nevertheless, no good statistical treatment seems to have been
published hitherto. This ought to be done in order to complete incomplete sets of data, to
give adequate rules for their implantation, and to know the accuracy of the total mass balances
calculated for the whole glacier. If some theory of glacier fluctuations such as Nye’s is applied
to field data, it is desirable to know the “‘noise’” which enters in the input (the yearly balances).

As we shall see a comprehensive statistical treatment needs first a better definition of the
balance, and a close examination of the sources of error in the measurement. It will appear
that these random terms in the balances are not independent. For this reason the classical
computation of marginal variances would be incorrect here. More advanced statistics and
matrix calculus are needed.

We have now at our disposal annual balances for 16 consecutive years (1956-72) on the
ablation area of Glacier de Saint-Sorlin (French Alps). The Glacier de Saint-Sorlin, at the
northern end of Grandes Rousses (lat. 45° 11° N., long. 6° 10’ E.) flows from the Pic de
I’Etendard (4 463 m) towards the north-east. Its ablation area, approximately goo m wide
and 1 400 m long today (it has receded of 700 m since the first survey by G. Flusin, in 1905),
is smooth and almost without crevasses. It can be reached with caterpillar vehicles, and a
small hut has been erected close to it by the Laboratoire de Glaciologie in 1969.

Glaciological work began in 1957, under the impulse of C.-P. Péguy. In June of that year
four ablation stakes of Kasser’s model were driven with a hot-water drill lent by P. Kasser.
In 1959, with a copy of Kasser’s hot point, the present author could increase the number to
10. Only 3 or 4 holes could be drilled at that time between sunrise and sunset!

With poor means and unpaid collaborators, the survey of stakes went on each vyear.
Among them, let us call to mind the memories of the late J. Corbel, killed in a road accident
during a speleological field trip in Spain, and of the late R. Vivet, who fell to his death when
climbing the Aiguille Verte with 14 other aspirants to the title of guide of the French moun-
taineering school in July 1964.

That year the C.N.R.S. founded its Laboratoire de Glaciologie and the glaciological
work could proceed with a permanent staff. In 1966, with a steam drill devised by I'. Gillet,
which can drill a hole 10 m deep in 20 min, the number of ablation stakes was raised from
11 to 22. Since 1968 an engineer in topography and geodesy, C. Carle, has joined the staff.
In the years 1967—70 four big missions were carried out (421 man-days and 10 tons of material
for the summer of 1969). In recent years the use of light aircraft and a snow scooter has
considerably reduced the logistic burden. This paper is the first analysing the many data
which have been collected.

This historical record explains why, in spite of considerable effort, the table of balance
values (32 different sites and 16 calendar years) is far from being complete. Moreover in
some years of unusual ablation, stakes were lost. In other years some stakes remained hidden
under fresh snow at the time of the survey; then only a balance for two or more years is
known. We have at our disposal only 194 field data to fill the 512 compartments of the table

(38%)-

F1ELD PROCEDURE

The ablation stakes used by the Laboratoire de Glaciologie are made from young stems of
chestnut, sold already painted as slalom stakes. They are cut in lengths of exactly 2 m, and
joined together by small strings nailed on the side. When driven into a bore hole, these sticks
can neither overlap nor remain slightly apart. One stake is formed by five 2 m sticks, with the
following colours, starting from the bottom: red, yellow, green, black, ringed with two colours.
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This procedure avoids errors when surveying the field of stakes. The emergence is measured
to 1 cm, taking for the level of the glacier the mean level 0.5 m from the stake.

Only the deepest stick is anchored at its lower end into the ice by two steel strips. Then,
for precise velocity measurements, the point fixed relative to the ice is well known. On the
other hand, for ablation measurements, the error coming from the vertical strain of the ice
(Vallon, 1968) may be important. A mean correction will be made adopting a standard
value of 5 m for the driven part, and a local strain equal to the one deduced from the net of
stakes. This correction is not made in the data analysed here: it will be of interest only for
mass-budget studies or for correlations with meteorological variables. A random error
remains, however.

When a stake is near its complete emergence, a new one may be driven very close to it.
Then the correspondence between both stakes is exactly known: we shall say that they are
included in the same sequence. In some cases, for instance when a supraglacial stream or a
crevasse has appeared very near the old stake, the new one is driven at some distance up-
stream. Then we shall speak of the same site, but of a distinct sequence. In the 32 sites
studied, there have been 40 sequences.

The aim is to reach the balances:

(1) in metres of ice of a standard density (0.88 Mg/m?),
(2) for a calendar year (1 October to g0 September),
(3) at points of fixed geographical coordinates,

(4) smoothed over about 1 0oo m2.

This choice of the definition depends upon the problems being ultimately investigated.

(1) In order to know the changes in altitude of the glacier surface (the summit of the
emerging stick having been exactly levelled), the height of melted ice is required. But since
we will study the total mass balance of the ablation zone and the influence of the meteoro-
logical factors it will be necessary to have the mass balances at individual points in Mg/m3, to
a constant factor.

(2) When studying correlations with meteorological variables, it is convenient to introduce
monthly averages, which are already computed. Moreover, the end of the ablation season
(viz. the period during which any snowfall has completely melted before the following one)
changes very much in the Alps according to the year (and to the altitude in larger glaciers).
Thus the only way to measure balances for a budget year in an ablation area would be to
survey the stakes at the beginning of the winter, a heavy and dangerous task. Moreover, in
this case many stakes would not be found.

(3) Balances in Eulerian variables are needed for calculating mass balances of the whole
area, for glacier dynamics calculations and for correlations with altitude. This will not be
the case for heat-balance or hydrological-balance calculations in a limited area.

(4) We are interested in the behaviour of the whole glacier, and not in very local ablation
forms.

None of these requisites is fulfilled:

(1) The density of glacier ice varies by several per cent.

(2) The surveys could be done only within 10 d of the ideal date. Even in 1958 and 1959
they were done on 7 and 8 September respectively. Moreover in 1960, 1963, 1965 and 1972
newly fallen snow covered the glacier and it was not taken into account in the measurements.
So the emergence data for these years refer to an anterior date, which is probably the end
of the ablation season. The level of the ice at the stakes was first measured in June 1957;
since the superimposed ice is negligible in June, this level refers to the end of the ablation
season 1956. (These years are marked by a star in Table 1.)
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Fig. 1. The ablation zone of Glacier de Saint-Sorlin (French Alps) in September 1972, Index j of the sites and movement of
the stakes during the period of observation (which differs according lo the sile). The numbers with two decimals are the
estimated values of oy for p = o
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(3) The stakes move down-stream. Nevertheless, the motion is slow (Fig. 1). The hori-
zontal movement of any stake during the period it has been surveyed is about 60 m at most,
and its vertical movement about 8 m at most. In Table I, mean coordinates are given. (x and
» correspond to the Lambert French coordinates, after substraction of goo ooo and 320 ooo
respectively. The x-axis points towards the east and the y-axis towards the north, approxi-
mately.) It may be noted that, as a consequence of this motion, and of big changes of the
glacier near the front, it would be in general impossible to make a good statistical analysis of
very long records.

(4) The emergence relates to a glacier surface smoothed over 1 m only. Supraglacial
streamlets, and changes in the dust cover and in the bubble content, cause local fluctuations
in the ablation which must be smoothed out.

Some smoothing actually happens not in space but with time. The accumulation is
bigger in the hollows, the ablation bigger on the hillocks. If it were not so, the smooth surface
of the glacier would be unstable: ice pinnacles, penitentes or dirt cones would appear. Thus
most of the fluctuations during successive years caused by these local processes cancel each
other.

It may be said that at one site fluctuations are observed in successive years with the same
statistical properties as the fluctuations observed a single year over 30 or 50 m.

SYMBOLS AND INDIGES

In the following, italic letters denote field data such as the p-annual balance x, or integers
such as p. Greek letters denote parameters included in the statistical models. A “hat” (~)
on such a Greek letter denotes an estimate of it.

Small letters denote single numbers: “real” such as x, o, 8, ¥, 8, p, 5, or integers such
as m, p, the indices ¢, j, n, 5, ¢, and the dummy index k.

Small capitals as ~, J, T denote numbers of dimensions, of rows or columns, of degrees of
freedom.

Full capitals such as 4, A, I, (with the exception of IV, which is a subspace, and S, X,
which are sums) denote matrices. They may reduce to a column as X, O, or to a row as B,
in order to represent vectors (also called X, ©® or B). M’ denotes the transpose of a square
matrix M. M~' denotes a matrix such that MM~ = M—'M = 1, T being the matrix unity.
When M is non-singular, M~ is the inverse of M/, When M is singular, other conditions will
be given to define M-t

Each site has been indexed from j = 1 to j = j = g2. The order is unimportant. It has
been chosen in order to have the largest possible complete block of data at the upper right
corner of the table. Each successive calendar year has been indexed fromt = 1 tot = 1 = 16.

The measured p-annual balances are given in Table I in metres of ice, with reversed sign
(the value —o0.05 corresponds to a positive balance, with superimposed ice). When p # 1,
because a stake has been missed some years, the p-annual balance has been inscribed in the
last corresponding compartment. The 40 sequences, indexed from ¢ = 1 to i = 1 = 40 are
indicated by brackets.

There are x = 194 data xy, indexed from n = 1 to n = ~ from left to right and top to
bottom. In eight cases p — 2 and in one case p — 4. Thus j, 4, i, p are known functions of n.

I'HE LINEAR MODEL WITH TWO PARAMETERS

We assume a statistical linear model with two parameters. The annual balance at site §
for the calendar year ¢ is assumed to be:

Xt = aj+Peteje (1)
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where o is a parameter peculiar to site j depending upon its altitude, aspect or other geo-
graphical factors, and f; a parameter peculiar to year [, depending upon meteorological
factors. ej is a random variable which is assumed to be Gaussian, centred (of mathematical
expectancy zero), and of standard deviation independent of j and f. Moreover we prescribe:

T

ZB;:O. (2)

Thus for a p-annual balance:
]
¥p = paj+ Z Bt en (3)
& ==k

where €, is a Gaussian centred random variable.

Within a sequence, the residuals ej of successive annual balances are not independent.
They are the sum of several random errors forming stochastic series which may be classified
according to their auto-correlation.

Class 1—No auto-correlation at all

Error 1: Fluctuations in the vertical strain of the glacier and in the length of the embedded
part of the stake.

Error 2: Fluctuations in the density of the ice.

In these cases if the variance of an annual residual is o2, the variance of the sum of p
consecutive annual residuals is ps?. The covariance of two p-annual residuals is always zero.

Class 2— Negative auto-correlation

Error 3: Inaccuracy in the measurement of the emerged part.

Error 4: Measurement not done on go September.

These errors introduce opposite errors in two consecutive balances, which cancel each
other when balances are added. If the variance for one emergence datum is ¢’, the variance
for a p-annual balance is 206’2, whatever p may be. The covariance of two consecutive p-
annual and p’-annual balances is —a'?, whatever p and p’ may be.

Error 5: Very local fluctuations of the balance.

As explained there must be a negative feed back between two successive years, but the
covariance is not so tight. We may split this error into two parts, one without any auto-
correlation, and the other with the same statistical properties as errors 3 and 4.

Class 3—Positive auto-correlation

Error 6 The stake moves with time down-stream, and then within one sequence the mean
negative balance «; increases steadily with time.

Error 7: The embedded part of the stake is not vertical. The tilt increases with time, and
the result is the same as for error 6.

These errors change progressively from negative to positive within one sequence, at a rate
which is a random variable. Thus their covariance is strongly positive for neighbour balances
at the beginning or the end of the sequence, lessens, and becomes negative for distant balances.
It would be very difficult to introduce this kind of error into the model. Fortunately we may
assume that it is negligible. When the displacement has become too large, the sequence has
been interrupted and a new stake driven up-stream. When the tilt was important, a correction
has been made. Tt has been checked that there was no systematic increase of the estimated
residuals, as an average, within the different sequences.

Since the different errors are independent, their variances and their covariances must be
added. Limiting ourselves to the errors of the first and second class, the following mathematical
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formulation holds. The variance covariance matrix of the e, is o?A, the element of the
(N % N) matrix in row n and column n’ being:

Annr = p+2p i =,
= —p if ' = n-f-1 and i(n") = i(n), (4)
=0 otherwise.

We have put ¢2/6* = p. This ratio is unknown, and it is even difficult to guess some
plausible value for it from what has been said.
A simpler way of defining our model would be to write it:

it = g+ Betnget+n'ie—n"jie-n (5)
where this time » and 7" are Gaussian independent random variables, of respective standard
deviations ¢ and o’. Nevertheless in order to handle the problem it is necessary to introduce
the variance covariance matrix.

A major hypothesis is that & and ¢’ (and hence p) are independent of n. Of course for

some sites we may expect larger fluctuations than for others, but we do not know it a priori.
Variances and covariances are mathematical expectancies a priori.

BEST LINEAR UNBIASED ESTIMATE OF THE oy AND f

It is possible to find the best linear unbiased estimate (BLUE) of the «; and By, denoted
& and By, if p is considered as a known constant. “Best” signifies that the likelihood function
is maximized; “linear” that & and f; are linear expressions of the x,; “unbiased” that
E(&) = a; and E(B:) = B

The data form a column vector X in the N-space and the parameters o, 8; a column
vector O in the (j+T)-space:

P g "]
A1 :
2 oy
XN=i| a5 |s O = . (6)
- B
XN :
L Br

Let us define a “design matrix” A4 of N rows and ]+ columns, of element ayy:
ang = p if k =_]',
=1 ifjtt—p+1 <k <J+4, (7)
=0 otherwise,
where the integers p, j, ¢ have the values corresponding to n. Then our linear model may be
written:

X=A40+A (8)
where A is a Gaussian centred random vector, the variance covariance matrix of which is
czA.

Lastly, in order to satisfy the condition given in Equation (2) we introduce the (j-1)-
dimensional row vector B, of elements:
by =0 i i e e (
=1 ify <k <j4T. 9)
Equation (2) may be written then:
B = (10)

5]
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A classical theorem (Anderson, 1958, theorem 2.3.1) says that the likelihood function of
the random vector A = X—A0 is:

—1 e oA~ — A
= \(zd:)tn(—rfz\qn) . [_(X — :az -~ AU):I' (11)
The BLUE © is then the vector which minimizes
é — (X—A6)'A-1(X—40) (12)
and which fulfills
BO —o. (13)
Taking into account that the matrices A and A" are symmetrical:
¢ = X'A1X—20'A'A1 X+ O'A'A146. (14)
Putting A’A—'4 = I', the BLUE is given by the linear set:
ré = A/'AX, (15)
BO = o. (16)

The symmetrical (j+T) X (j+ 1) matrix I' is singular: adding the first j rows (or columns)
gives the same result as adding the last T rows (or columns). We shall define T'-! by adding
the condition:

BT-1 = o. (17)
Then

0 = I14'A-1X, (18)

B® = (BI-1)(A'A-1X) = o. (19)

As demonstrated in Appendix A, I'"* may in general be found by inverting a (j+T1-41) X
% (-7 1) matrix, which is not singular:
{ Rt [ r— ¢
— . (20)
B (0] C]J C2
It remains to demonstrate that the best linear estimate given by Equation (18) is unbiased.
We shall use the following theorem (Anderson, 1958, theorem 2.4.4):
“If X is a Gaussian random vector in the N-space with mathematical expectancy X and
variance covariance matrix M, and D isa (N’ x N) matrix of rank N’ < N, then DX'isa (Gaussian

ry»

random vector with mathematical expectancy DX and variance covariance matrix DMD'.
Here D is the (j+1) %~ matrix I'~"4’A~". 'The mathematical expectancy of Xis X = A40.
Then the mathematical expectancy of DX = © is:

M~ A'A~T40 = T-1TO = 0. (21)
Moreover the variance covariance matrix of 0 is:
(T-1A'A-) 2A(T1A'AY) = T 1A' A TAAIAT T = g2

=gt~ (22)

CONFIDENGE ELLIPSOID OF ©), SUPPOSING p PERFECTLY KNOWN
From Equation (15), where I' = A"A~'4 it follows, by transposing both sides that
(46)'A-14 = X'A-'4, (23)
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whence, by multiplying to the right by O or O:

(X—A0)'A-1(40) = o, (24)
(X—A0)A-1(40) = o, (25)

and thus ) A
(X—A0)'A1(40—A40) = o. (26)

A geometrical interpretation is easy, if we define in the ~-space the scalar products of
vectors U and 17 by:
(U V5 = ATV = PA-TLL (a7)

Equations (24)—(26) mean that the vector A=X—-40 is orthogonal to vectors A6
and 46, which are both included in the (j+1— 1)-Qpacc IV corresponding to B0 = o hy
the linear transformation 4. Thus A is included in the (N—j—1 | 1)-space W orthogonal
to W. (Cf Figure 2 where (J+41—1) has been taken equal to 2 and N to 3.)

If we give to the n-space the norm:

[P = LUy PN (28)
R" X X, 1=4
/ ) %
/ JET -1 xW:Ag ]
W=

Fig. 2. Geometrical interpretation of the best lincar unbiased estimate ®. X — A is the projection of veclor X of the
N-space on subspace W, which has J-+T— 1 dimensions. Its mathematical expectancy is AB, also included in W. In the
Sigure N = 3 artd'_;-l—‘r—r = B

Pythagoras’s generalized theorem leads to:
IX—40|2 = |X—40]+ 4046, (29)
The left-hand side may be decomposed in N independent squares; the quadratic form
¢ = |[X—A@O| in N—(j4+71—1) independent squares; and the third quadratic form
= HA()ﬁA@H’- = (9—0)'A A"A(G)—G)) = (@—@) (@—@) (30)
in J+T—1 independent squares. The linear terms in all these squares are distributed accord-
ing to a Gaussian centred law. It follows then from classical statistics that:
(1) The estimate of o is:
¢ = [¢/(N—J—T+1)]L (31)
(2) ¢/e* and /52 are distributed according to the y2-distribution of Pearson with
(N—J—1-+1) and (J+71—1) degrees of freedom respectively.
(3) The ratio
6 b ¢

B JHT—1 N—]—Ta1
is distributed according to the F-distribution of Fisher-Snedecor with (j+T—1) and
(N—J—T-+1) degrees of freedom.

(32)
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This last result allows the determination of the confidence ellipsoid for ©. Let ¢ be the
upper 95%, confidence limit for an F-distribution:

de (J+T—1,N—]—T+1) = 0.05. (33)

For N = 194, ] = 32, T = 16, it is found from tables that ¢ = 1.42.
With a 959, probability (if our model is correct), ® will be found within the ellipsoid of
sub-space W:

= (0—6)T(0—0) < cp(J+T—1)/(N—]—T+1). (34)

SIMPLIFIED CALCULATION IN THE CASE p =10

When p = o matrix A is the matrix unity of rank ~, denoted In. Let us consider first the
casc of a perfect table of data, where all the compartments are filled with an annual balance.
Then N = jT. Matrix 4 becomes a column of J times T x (J+T)-submatrices 4; where the jth
column is composed of 1:

- : _
o
1 1
Aj=]0o i o ; (35)
I I
0
L I l -
Matrix I' is of the form:
TIJ : F
P [, 5
F'iglr

F being a j X T matrix the elements of which are all equal to 1.
It is finally found that

X

&y = %Z xj¢ = mean of row j, (37)
t=1
¥ N
Bt M z xjt_i S\ xn = mean of column {—mean of the table. (38)
I. 2 P
- I n=1

For an incomplete set of data, comprising some p-annual balances (p # 1) it is possible
to calculate ® by hand, using an iterative procedure. The quadratic form to minimize is:

¢ = Yi(mg—8—Bo)2+1Y 2 (xpp—285— Pe—1—Pe) 2+ ...
+§ Zp(xﬂrpﬁf*lét-pﬂ_ o —B) (39)

where Y denotes the sum for all the p-balances inscribed in the table.

Let us share any p-annual balance into p equal parts x'y; = x;/p among the corresponding
compartments of the table of data, (instead of inscribing the totality in the last compart-
ment). Let hy be then an occupancy function, equal to 1 when there is a datum in the (7, {)
compartment and to o when there is none. Equations 2¢/2d; = o then lead to

3 8y fi—x') = o (40)
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and equations 2¢/9f: = o to

ilhjr[&j+(ﬁz+i§t[+ﬁt,+ e B, [pit—%'3] =0 (41)

where t;, t,, ..., p—; are the years associated with year ¢ in the same p-annual balance. The
set of Equations (40)—(41) is equivalent to matrix Equation (15). Let us put:

T
ZhchNj
=1

-

hyelpse = N

1=

h];xﬂ' = Sj

I+ ;

J
hiePr = Z 2 hudy = X

[

i: (Bh"*“ +ﬁt,—1)fﬁ = Zu

With the modified table, S; and S; are the sums per row and per column. X involves
as many f; as there are compartments linked by a p-annual balance with the compartments
of column ¢. The set of Equations (41)—(42) becomes:

Nydy = 5;— Xy,
Ntﬁz = §—Zy—Zy. } (43)
Starting from the initial values ;'® — o for every ¢ (and then £;(® = 0), we may find a

solution of this set with the following algorithm:
Ny kD) = §;— T,k

]
pINI Y =_E &y R+,
J=1

N‘ﬂ‘(k+1) = §;— T B+ T, 0,

T
X,k — Z,«,ﬁ‘gtmn,
t=1

kD) =zj: (Be, ¥+ ... 4By, kD) [p.

j=1

A few loops are sufficient to obtain limits &, (). Until now the condition } f; = o
has not been considered. In order to fulfill it, it suffices to subtract from every f¢* and to
add to every 4;® the mean of the f;,(*

T
g, — 3,(@_%2 B,
t=1
£ -
& = @(m)_}_lZ Bi(m-
i

$=1 J

-

e (45)

COMPUTATION IN THE GENERAL CASE P # 1

When p # 1, none of the elements of the matrix A-! is zero, and a computer is needed.

It is convenient to introduce the concept of the type of a sequence. Two sequences will be
said to be of the same type if they have the same number of terms and the successive p are the
same. Our 40 sequences may be classified into 15 types.
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The data to introduce into the computer are:

1—The adopted value for p.

2—For each type of sequence (s = 1 to s = s = 15), the values of the successive p.

g3—For each sequence (1 = 1 to i = 1 = 40), its type s and its site j.

4—For n = 1 to n = N = 194, the corresponding values of 7, ¢, and the rank m within the
sequence. j and s can then be inferred from ¢, and p from m and s. The following checks are

convenient:
(a) if in=1lnr1, p=tn—tn1 (46)
(b) in-m = in—1I. (47)
(C) ln-myr = in. (48)

For each type of sequence, comprising m terms, a different M XM sub-matrix may be
defined according to Equation (4), say A, First the s = 15 sub-matrices Ag~' must be
computed and put into a memory.

Matrix A is formed by a diagonal of 1 square sub-matrices equal to the corresponding As.
Matrix A~ is formed by a diagonal of the corresponding A;—', already computed. Matrix 4
is formed by a column of 1 sub-matrices of dimensions M; x (J4T), which be denoted A;.
In the same way X is formed by a column of 1 sub-vectors Xj, one per sequence. Then we may
compute jointly:

I'=AA14 =_2 A A4y, (49)

AAX = Z A A1 X (50)

Next I'"! is computed according to Equation (20), © according to Equation (18), A =
X— A6,

¢ = (X—AB)A-1(X—40) ix,—Ai A(X—4,0), (51)

and é according to Equation (31). In this way it is never necessary to handle matrices having
more than (J+4T1) X (J+7T+1) terms.

It is convenient to check the following points as the calculation proceeds:

(d) In T, the sum of the j first rows (or columns) equals the sum of the last T rows (or

columns).
(e) T =1Ir and BI'=t =g
(f) BO =o.

In the particular case p = o (¢ = 0), the variance covariance matrix of A must be written
a'2A. The element of matrix A is then:

)\nnr = 2 e — n,
= —I if ' = n41 and i(n') = i(n), (52)
— 0 otherwise.

In this case Equation (31) gives & instead of 6.

REsuLTS

The computation has been done in the Institut de Mathematique Appliquée at Grenoble
with an IBM-360, for different values of p. The estimates & and f; are given in Table II
for p =0 and p = 1, as well as the corresponding &(I'xx ")}, which give an idea of the
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accuracy with which o; and B¢ are known. (Theoretically the likely error for a single para-
meter cannot be given, only the confidence ellipsoid for the 4T parameters has significance.)
The &; for p = o are also given in Figure 1.

.
TasLE 1. VALUES OF &;, 8i AND THE SQUARE ROOT OF THEIR VARIANCE &4/ 'y ?

(The signs + before these square roots must not be taken in a strict sense. Only a likelihood ellipsoid is well

defined)

J p=0 p=1 t p=0 p=1

1 1.291+0.088 1.302-+0.063 I 0.23540.110 0.207+0.115
2 1.620 1 0.065 1.608+0.044 2 —o0.240-L0.110 —0.26840.117
4 1.900 + 0,088 1.922-+0.063 3 1.147-+0.110 1.075-+40.116
4 1.391+0.055 1.390 4 0.040 4 0.286+0.071 0.296 4+ 0.077
5 1.505 + 0.088 1.500 +0.063 5 —0.084 1 0.082 —0.006+0.088
6 1.135 1+ 0.065 1.136+-0.044 6 0.379-+0.065 0.396+ 0.069
7 1.513-40.055 1.508+0.040 7 —0.546 +0.064 —0.519-+0.069
8 1.403+0.088 1.391+0.063 8 1.280+0.082 1.278-+0.087
9 1.759+0.059 1.750 1 0.042 9 —0.716-4-0.067 —0.685-+0.071
10 1.185-+0.088 1.195+0.063 10 —1.082-+0.065 — 1.069--0.069
11 1.001 +0.088 1.047 +0.063 11 0.209 --0.051 0.291 | 0.053
12 1.040 -+ 0.088 1.038-+0.063 12 —1.028-+0.051 —1.033-+0.053
13 1.045 4 0.088 1.043+ 0.063 13 —0.686 +0.050 —0.686-L0.052
14 2.5114+0.215 2.494 -1 0.234 14 —0.212+40.055 —0.2314+0.058
15 2.504+0.153 2.482 1 0.136 15 0.838 L 0.057 0.824+ 0.060
16 2.164+ 0.088 2.135+0.067 16 0.130 +0.052 0.132-+0.053
17 2.3614-0.097 2.319-40.072

18 1.773+0.088 1.790+0.063 a(1+2p)t 0.205 0.223

19 1.993-10.126 1.943 +0.102

20 1.958 | 0.082 1.927 4+ 0.061

21 2.411-10.064 2.998+0.046

22 1.446 +0.096 1.44%-+0.070

23 1.607 -+ 0.096 1.577 £0.079

24 1.557+0.077 1.588 1 0.053

25 1.796+0.214 1.769+40.234

26 1.5364+0.077 1.472-+0.053

27 0.710+0.138 0.7654+-0.111

28 1.133 +0.097 1.118 fo0.072

29 0.756+0.116 0.807-+-0.08q

30 0.491-f 0.109 0.437+0.084

31 0.685 +0.076 0.682-+0.053

32 0.396+0.126 0.379+0.10%

It is fortunate that the difference of the estimates for p = o and p = 1, is always smaller
than this approximate likely error. The largest differences in the &; (for j = 19, 27, 29, 30)
reach 5 cm, when the corresponding likely error is larger than 10 em. The largest difference
in the f; (for t — 5) reaches 7.8 cm, when the corresponding likely error is larger than 8 cm.
In general the & and f; for p = o0 and p = 1 differ by about 1 cm or less. As a consequence
the estimates of the residuals are very similar whichever p is being considered. They are given
in Table III for some sequences which have particularly high residuals.

TasrLe III, ESTIMATED VALUES OF THE RESIDUALS FOR THOSE SEQUENCES WHICH HAVE THE LARGEST ONES
(First value: p = 0; Second value: p = 1)

Sequence 8 Sequence 12 Sequence 15 Sequence 19 Sequence 38
0.176  0.158 0.045 0.044 —0.101 —0.137 +0.242 40.237 0.273 0.318
—0.299 —0.327 0.255 0.187 o0.126 0.086 —o0.277 —o0.262
0.225 0.226 0.443 0.434 0.084 0.039 Sequence 22 0.005 0.032

0.071 0.039 0.028 0.009 0.791  0.764 0.253 0.285

0.297 0.283 o0.171  0.182 —0.519 —0.551 —o0.287 —o0.323 Sequence 39
0.066 0.073 —0.293 —0.315 —0.382 —0.429 —0.230 —0.205 —0.354 —0.368
—0.107 —0.103 0.173 0.169 0.345 0.360 —o0.564* —o0.584*
—0.081 —0.037 0.6377 o.617f
0.281 0.284

* for 2 years; T for 4 years.
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The quantity (62-+26'2)t = (1+42p)ts, which may be considered as a standard value of
the residuals, equals 0.205 for p = o0 and 0.223 for p = 1. This rather high value shows up
to which point the linear model (o5 ;) smoothes the field data and why many stakes are
necessary to have a correct idea of the mass balance.

The estimates of the residuals are never independent random variables and thus are not
distributed according to a Gaussian law. Nevertheless it is interesting to examine their
distribution (Fig. §), and compare it with the Gaussian curve.

Fig. 3. Histogram of the estimates of the residuals é,[p for p = o and p = 1. They are not independent random variables
and do not follow a Gaussian law, although a Gaussian curve for a standard deviation (6*+ 262)3 has been drawn.

These estimates ¢, are in fact the N components of a Gaussian centred random vector A,
of which we have only one sample.

R = X—if = (In—AT-2LK0) X, (53)

X has the same variance covariance matrix as A, that is 62A. According to the already
mentioned theorem, the variance covariance matrix of the estimate ¢ is:

(In—AT-14'A-") o?A(Iy—AT—14’A1) = 2[A—2AT-14’+AT-1(A'A-14) T-14]
= 6 [A—2AT-14'+ AT TT-14"]
— o[A—AT-14". (54)

CHOICE OF p

1t is not possible to obtain an estimate of the ratio 6'2/62 = p from our table of data based
upon rigorous theory.

The BLUE © has been obtained by maximizing the likelihood function w (Equation (11)),
in which the unknown parameter o enters. Next an estimate & has been determined (Equation
(31)). Thus we have an estimate of w:

- [det (A-OTH ¢ exp [—(N—]—T+1)/2]
s (211-)1‘”26“ SR [’@] - (2w)N/2[¢/(NfJ#T+I)]NIz (det A)E° (55)

An incorrect procedure would be to maximize @ by seeking a minimum value for ¢¥ det A.
It is @ which must be maximized, and this condition involves 2®/2p and 26/2p, which have
no simple expressions.

We have nevertheless computed #¥ det A for several values of p in the range (o, 1).
As shown in Table IV, the estimate &(p) of the likelihood function has a maximum very near
zero. That we cannot have confidence in this result is proved by the fact that, starting from a
subset of (12 % 6) stake values forming a complete table (j = 1 to 10, 12 and 13;{ = 11 to 16),
&(p) has this time a minimum close to zero.
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TaBLE IV, RELATIVE VALUES OF THE ESTIMATE OF THE LIKELIHOOD FUNGTION

p== g'2[§> [} 0.01 0.08 0.1 0.2 1.0
a(p) table (32x16) 1 — 0.947 0.880 0.528 0.007
@(o) table (12 %6) I 1.061 — 1.521 — 2.095

We may perhaps explain this discrepancy as follows. The estimates of the residuals
are more strongly correlated than the true residuals. For instance if at a site j we have only
a sequence of two annual balances, éj14¢;; = 0. Then the covariance of these two estimates
is — o2, while the covariance of the true residuals €, and ¢, is zero. Thus a shortening of the
sequences (as made when taking a subset from the entire set) raises the apparent correlation
between successive residuals, and we find a higher p.

We have therefore used the longest sequences formed with annual balances alone to
guess a plausible value of p. We hope that the quantity:

Y éégiesn
e (56)

will give an idea about the value of:

E(ejeesitsn) —a? P
E(es?)  o24202 1+42p (57)

We have done this computation for the two sequences of 11 annual balances, the four
sequences of seven annual balances and the eleven sequences of six annual balances contained
in the table of data, using the estimates for p = 0. For ten sequences Y éj:éjr.,) is negative,
for the seven others it is positive. For the 116 residuals, the ratio found is 0.0093, which seems
not to differ significantly from zero.

A possibility would be that ¢’ is important, but that the errors of class 3, giving strong
positive covariances, are not negligible. Nevertheless for the three sequences giving large
positive correlations the residuals do not at all increase with time.

THE VARIATION OF THE ACTIVITY INDEX WITH THE VALUE OF ,Bg IS NOT SIGNIFICANT

Among the geographical factors which determine the «;, altitude is thought to be the most
important. Since the altitudes z; are not random variables it would be misleading to calculate
a correlation coefficient between both as erroneously done previously (Lliboutry, 1968).
We must speak of dx/@z, where « is a function of the site, adjusted to the point values o;.
The value of —08x/¢z near the equilibrium line is called the activity index.

It is known that the activity index is larger for maritime climates than continental ones.
Thus it is plausible for it to depend upon the year. A correlation between f«/dz and fB; has
been sought in the following way.

Let us consider the linear model:

xn =P“J+(1+P-€f)k Zpﬂﬁﬁ"fn (58)

i
which involves the known altitudes z; of the different sites and a new unknown parameter u,
the same for all the sites. To have a matrix formulation, let us consider the N % (74 T) matrix
H, the element of which is hyy:

hnk = 1fJ+t—P‘+'I ‘-":‘;k g]""t} ( )
= 0 otherwise 59

(7, t. and p having the values corresponding to n). The new model is:
X=A04+pHO+A with B® = o. (60)
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We must find estimates of p. and ©. If we try to minimize | X—A4©—uHO |32, the set is
insoluble. The previous estimate () will then be conserved, while a reference level for the
altitudes will be chosen such that the correction term pH® is orthogonal to A®:

(AO|HOY = O’ A'A1HO = o. (61)

In particular if p = 0 and p = 1 for any n, this condition becomes:
Y Bz =o. (62)

We can now estimate p. by minimizing
IX—AG_—pHO |2 = | X— A0 |2—2p(X—A6)

HO)+p2|HO |2 (63)

whence
<(X—A(-E)|H@> . <X|ffé> g
|HO ||2 IHO |2 ‘
The problem is to know if this value i differs significantly from zero. It has been solved
by Barra (1972). The solution is given in Appendix B in a form more accessible to non-

mathematicians. Let ¢; be the upper 959, confidence limit for an F-distribution with 1 and
(N—]—1—1) degrees of freedom:

A=

o

de (1, N—]—T—1) = 0.05. (65)

€

(For N—J—T—1 = 145, ¢;, = 3.91.)
Then, considering that events with less than 59, of probability do not happen, if p = o,

the ratio:
A S P 2
(g o
[OFIX—A406 [p—<X| D)z
where
® = (HO)yr = HO—AT-1A'A-1HO, (67)

The ratio above has been found equal to only 0.456, which is well inside the confidence
limits. (It will be positive even with a much narrower confidence interval.) It is said that
the test 1 = o against . # o is positive at the threshold of probability of 5%. Therefore
model (60) with p. = o cannot be rejected; we cannot say that p differs significantly from
zero.

VALIDITY OF THE LINEAR MODEL

In order to test the linearity of our model, it would be necessary to work out a non-linear
model, to estimate its parameters, and to demonstrate that the non-linear terms introduced
are not significant. This problem remains unsolved.

Let us consider the non-linear model

xjt = o+ Betyi8itet’ (68)

which allows a variation of the activity index according to the year (new parameters &), in a
different way for each site (new parameters y;). The ey’ are Gaussian centred random
variables, independent from cach other, with a standard deviation ¢ independent of j and 1.
In order to raise evident indeterminacies we prescribe:

YLB=o Y&=0 Fy=0 Ty=1t (69)
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The estimates of the (27-2T) parameters are easy to compute only in the case of a com-
plete table of annual balances.

The upper right block of Table I (j =1 to 13, t = 11 to 16) has been used for this
purpose.

Let us minimize

¢ = ; 2 (xst—ag—Bi—s8)% (70)
It is assumed that the estimates satisfy Equations (37) and (38). Then

a I
Gf—"— ; Xy
] = its

i

(71)
P %Z (xre—2&),

¢ o
8 = Y Pi(xp—&—P),
Z{ c§¢(x;¢—é‘j—3t) } (72)

P

=

x 8
t
&; and f; have the same values as for the linear model (1) with p = 0. A new calculation

has been done for the (13 x6) block. The &;, f; and the residuals of the linear model ej; —
xst—&;— B are given in Table V.

o7

TasrLe V. VALUEs oF ‘ngfﬁjfét = €5

o= 11 12 13 14 15 16

¥ iy Pt = 0.387 —0.935 —0.596 ~0.055 0.966 0.233 % €
1 1.183 —0.219 0.003 0.114 —0.207 0.192 0.175 0.152
2 1.508 —0.329 0.173 0.094 —0.247 0.252 0.055 0.275
3 1.793 —0.177 —0.055 0.006 0.085 0.184 —0.043 0.077
4 1.280 —0.040 —o0.118 0.043 —0.038 0.221 —o0.066 0.072
5 1.304 0.118 0.140 0.051 0.010 —0.331 0.012 0.146
6  1.024 0.166 —0.012 0.009 —o0.062 —0.023 —o0.080 0.039
7  1.329 —o0.165 —0.093 —o0.162 —0.023 0.326 0.119 0.183
8 1.289 0.220 —o0.058 —0.027 —0.098 —0.219 0.184 0.143
9  1.646 0.161 —0.137 —0.066 0.073 —0.058 0.025 0.058
10 1.076 0.038 0.010 —0.059 0.050 0.009 —0.048 0.010
11 0.892 —0.079 0.143 0.104 0.743 —0.538 —0.375 1.020
12 0.929 0.033 0.055 —0.104 —0.175 0.074 0.117 0.065
13 0.933 0.278 —0.050 —0.009 —0.110 —0.031 —0.078 0.099
e 0.418 0.123 0.083 0.729 0.727 0.258 2.339

Next Equations (72) are solved by an iterative procedure. As starting values for the gt,
the values of e for site j = 11 (which give the largest value of } €;?) have been chosen.

¢
Four loops were sufficient to obtain three exact figures, which are given in Table VL.
The new estimated residuals é';; are definitely smaller, as well as the estimated standard

deviation:
[ Y & ]’ [ Y ]*
Jof = It — 0.145.
S 0.197, o 0.145 (73)
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Whether this result is significant remains an open question. Even if it is significant, the
gain in the representation of the balance is not sufficient to reject the much simpler linear

model.
TaBLE VI. VALUES OF x;p— Gy—Pi— 18 = €nt
=11 12 13 14 15 16
7 P4 5 —o0.209 0.113 0.081 0.771 —0.776 —0.308 X ey
t
I —0.259 —o0.165 0.032 0.135 —0.007 —0.06g 0.072 0.056
2 —o0.316 —0.263 0.209 0.120 —0.003 0.007 —0.071 0.132
3 —0.071 —0.162 —0.047 0.012 0.140 0.129 —0.071 0.070
4 —o0.136 —0.012 —0.103 0.054 0.067 0.115 —0.120 0.046
5 0.213 0.073 0.116 0.034 —0.154 —o0.166 0.097 0.081
6 0.024 0.161 0.015 0.007 —o0.081 —0.004 —0.070 0.038
7 —o0.265 —0.110 -0.063 —0.141 0.181 0.120 0.014 0.083
8 0.041 0.211 —0.063 —0.030 —0.130 —0.187 0.200 0.141
9 0.072 0.146 —0.145 —0.072 0.017 —0.002 0.054 0.051
10 0.039 0.030 0.00b —0.062 0.020 0.039 —0.032 0.008
11 o.810 —0.248 0.053 0.038 0.118 0.091 —0.053 0.091
12 —o0.167 0.068 0.074 —0.090 —0.046 0.056 0.051 0.026
13 0.015 0.275 —0.052 0.010 —0.122 —o0.019 —0.072 0.0099
X eyt 0.375 0.I11 0.076 0.136 0.125 0.099 0.921
J
CONCLUSION

Annual balances, smoothed over a few tens of metres, may be represented by a simple
linear model:

X5 = ij+ﬁt+€jg with z Bt =o0 (74‘)

where ej; is a Gaussian centred random variable, of standard deviation about 0.20 m of ice.
Although several kinds of error contributing to e are correlated, it may be assumed that the
¢j; are independent from each other. Probably the negative and positive covariances more or
less cancel each other.

More dubious is the assumption that e is Gaussian. For instance the deposition of an
avalanche or the formation of a supraglacial stream change the balance consistently by terms
which are not Gaussian. Such sites must be carefully avoided when implanting stakes,
yet, nevertheless, avalanches may afford an important source of nourishment to some glaciers.

The method of estimating the «; and the B; for an incomplete set of data has been given
for the general case (ej; correlated), as well as a simpler desk procedure to be used under the
assumption of independent ¢j. The values of f; for successive years are simpler to obtain
than the mass balance of the whole glacier and must be introduced in routine work.

We do not know if this model is also valid for the accumulation area with the same f,
but in the ablation area the B; are independent of altitude. If it is so on the whole glacier,
one of the assumptions of Nye’s theory of glacier fluctuations (Lliboutry, 1971) would be
removed.
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APPENDIX A

IALCULATION OF I'-1

L e el
=L (A1)
B ollG& G

Multiplication of matrices may be done using the submatrices as elements:

Equation (20) may be written:

IT-14+B'G =1, (Az2)
D61 B = 6; (Ag)
BT — o, (Ag)

BC, =1, (As)

Equation (A4) is one of the equations which define I'-. Transposing it we obtain I'"'B’ — o. Multiplying
Equation (A2) to the left by T'-* gives:

(D-1T) -1 4 (T-1B)Cy’ = T-11 = T, (AB)
whence
(I-Ir—II-t = o (A7)
If, and only if, I'"T is non-singular we then have
=0 =1, (A8)

For a complex set of data this is always the case. It would not be so, for instance, if we had only two balances
at the same site and p = o. Then

1 1 0 2 1 I
A= 5 AAFA=T=]1 1 6]. (Ag)
I o A 1 0 1

1/2 o 0
In this case I'"T = [ 0 1/2  —1/2 | is singular and Equation (A8) is untrue;
o —1/2 1f2
1 1/2 1/2
I'MI'=|o 1f2 —1f2]. (A10)
o —1f2 1f2

APPENDIX B

GENERALIZATION OF TUKEY’S NON-ADDITIVITY TEST IN ORDER TO TEST p = O AGAINST p # 0
v EquaTion (60)
We consider the estimate of X
AB—iHG  with BO = o. (B1)
This model differs from the previous one because H® is not contained within subspace W as are A and A6,
The component of H® in sub-space W, say (H®)w does not change the model. It only changes ©, if Equation

(61) is not fulfilled, without introducing a new degree of freedom. Thus only the component of H® orthogonal

to W, (H®)w. = @ must be considered for testing this new model.
Nevertheless, the introduction of p has raised the number of dimensions of W to j+41+ 1 and then W* has
only N—j— 1 dimensions,
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Barra (1972) has demonstrated that;

(1) ® is a Gaussian centred random vector, having N—j—7 independent components of the same variance.

(2) If the component of ® in the random direction (X—A(:j) is denoted ¥, since this random direction does
not depend upon @, the ratio

12| e

1 N—]J—T—1

(B2)

follows an F-distribution with 1 and (N —j— 71— 1) degrees of freedom (if the direction of ¥ was fixed, it would be
a classical result).
Since the projection of any vector X within W is, according to Equation (18):

Xw = A8 = AT-T4’A-1X, (B3)
the projection of vector H® is
(HO)w = ATTA’'ATHE, (B4)
and then
» = (HO)wi = HO—AT-TA’A-1HO. (Bs)
The component Y of @ along (X—A@) is calculated with the scalar product:
(X—AB| @ = (X|®>—AB|HO>+AB| (HO)w). (B6)

If condition (61) is fulfilled, the second term on the right-hand side vanishes and:
(AB|(HB)w)> — G'A'ATATTA'ATH®,

Il

= @TTA'ATHO = (AG|HO> = o, (B%)
and:
(X—AB| @) = (X|®) (B8)
Even if (61) is not fulfilled,
(X—AB| D)2
Ly o s e O B
¥} X—a0: (Bg)
|[@—"¥]2 is deduced from Pythagoras’s theorem:
Ie="¥|2 = [[@|2—['¥I?, (B1o)
whence
g _wp e A6 2
[, _BO—YE (N jerenc XA B D (Bi1)

I ON—J=T1 0 X— A8 —(X— 4B 02
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