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Abstract

Motivated by the investigation of probability distributions with finite variance but heavy
tails, we study infinitely divisible laws whose Lévy measure is characterized by a radial
component of geometric (tempered) stable type. We closely investigate the univariate
case: characteristic exponents and cumulants are calculated, as well as spectral densities;
absolute continuity relations are shown, and short- and long-time scaling limits of the
associated Lévy processes analyzed. Finally, we derive some properties of the involved
probability density functions.
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1. Introduction

In physics and natural sciences, systems evolving according to Lévy stable laws have long
been observed (see [9] for a survey). Modeling these phenomena as “Lévy flights/walks”,
i.e. random processes with stationary independent stable increments, however has the serious
drawback of producing dynamic probabilistic representations with infinite variance, which is
problematic both theoretically and in practice. In the seminal works of [43] and [30], a remedy
was proposed by introducing a truncation procedure that, while inducing a minimal perturba-
tion of the central part of distribution, impacted the tails in such a way as to recover finiteness
of variance, and thus ultimately the Gaussian behavior of the process at large times. Since
the observed convergence is very slow, for most practical purposes the Lévy stable empirical
paradigm is robust to this modification. This idea proved be very successful and enjoyed a vast
range of applications even outside physics, most notably in economics and finance: see [6, 8,
58]. In particular, Koponen’s idea of using a negative exponential cutoff function, yielding to
a tractable analytic structure of the law, proved to be of consequence. Such procedure began to
be known as “tempering”.

For some applications, however, exponential tempering is not fully satisfactory. For exam-
ple, a large number of independent statistical studies from around the turn of the century (e.g.
[40, 42, 18, 19, 48]) have reported strong evidence of power-law decay (and scaling) of market
returns that survive even at long lags, and with typical Pareto exponents of about 3. Therefore,
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2 L. TORRICELLI

according to these estimates, the existence of the variance in financial data is not called into
question, while the existence of higher moments remains a more delicate issue. It would then
seem appropriate to seek a dynamic return model whose distribution is of stable type in its
central part and exhibits heavy power-law tails at longer lags, albeit with finite variance, and
hence retains Gaussian limiting properties. Bringing these features together is not easy. As
argued in [9] and [58], abrupt density truncation, or exponential tempering as proposed by [30,
43], respectively, determine too much of a sharp cutoff and do not maintain the power-law
decay for all the orders of magnitude for which it is observed in the empirical data, typically
ranging from milliseconds to several days. One possible solution is proposed in [57], where
truncation is achieved by means of a model whose density function solves a Fokker–Planck
equation of fractional order. In [59] it is instead proposed to directly choose a Lévy measure
in rational form. Neither of these approaches seem to yield full analytical tractability of the
related densities and characteristic functions.

With the aim of capturing both finite variance and heavy tails, in this work we introduce
a novel class of tempered distributions, whose radial component is given as an exponentially
dampened negative Mittag-Leffler function. The Mittag-Leffler function is defined as

Eα(z) =
∞∑

k=0

zk

�(αk + 1)
, z ∈C, α ∈ (0, 1], (1)

where � stands for Euler’s gamma function. For r> 0 we thus consider distributions whose
Lévy measures are given in polar coordinates, with radial component of the form

e−θrEα(−λrα)

r1+γ dr, r, λ, θ > 0, α ∈ (0, 1), γ ∈ [0, 1). (2)

In the above we see a combination of a stable inverse-power component, a classic exponential
tempering function and a negative Mittag-Leffler factor. The latter is a type of generalized
exponential function with rapid decay around zero and heavy tails.

The genesis of the proposed distribution can be retraced in the concept of geometric sta-
bility, introduced in [29], answering the problem of finding a class of random variables that
are infinitely divisible under random geometric summation. A geometric stable law X can be
defined as the distribution whose characteristic exponent ψX can be written as a log-transform
of a stable characteristic exponent ψZ , i.e.

ψX(z) = − log(1 −ψZ(z)) (3)

for some stable distribution Z. Such laws are naturally infinitely divisible, because the char-
acteristic exponent above corresponds to the unit time law of the Lévy process obtained by
subordinating the Lévy process stemming from Z to a unit scale and shape gamma process.
Theory and applications have been developed by, among others, [29, 32, 34, 38, 45, 52].
Known probability distributions such as the Laplace distribution [47] and Mittag-Leffler law
are included in this class. Introducing a generalizing shape parameter, symmetric geometric
strictly stable laws lead to the Linnik distribution, as discussed in [46] (see also [10, 39]), and
the Erlang/gamma distribution as special cases. Tempered versions of the positive Linnik law
(TPL) have been considered in [1, 2, 61].

Geometric stability inspires the framework we present in that for univariate distributions,
the Lévy measure of a positive geometric strictly stable law (Pillai’s) is known to be of the
form (2) with γ = 0. The presence of θ > 0 signifies that the strictly stable law can itself be
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Radially geometric stable distributions and processes 3

subject to exponential tempering. A radially geometric (tempered) strictly stable distribution
(RG(T)S) is then a probability distribution whose radial component in the polar representation
of its Lévy measure follows a geometric (tempered) stable law. Considering further, γ > 0
yields the full generalized radially geometric tempered stable (GRGTS) class we introduce.
The interest in such a generalization is that it determines the distributions belonging to the
family of tempered stable distributions studied in [51], where γ retains the interpretation of
the stability parameter of some other stable distribution. A large number of analytical tools are
then available from [51], facilitating the analysis.

We find the characteristic exponents of GRGTS laws and their RGTS and RGS sub-
cases, and discuss their analytical properties. Such exponents involve two interesting special
functions, namely Dotsenko’s 2R1 generalized hypergeometric function [14, 62] and Lerch’s
transcendent �. We determine cumulants and spectral densities, as well as short- and long-
time scaling limiting behavior. In particular, in the pure Mittag-Leffler case we observe that
the large parameter scaling can follow a classic Gaussian limit, but can also converge to stable
process, depending on the stability and Mittag-Leffler parameters. Moreover, we analyze the
absolute continuity conditions of GRGTS laws within their own class as well as with respect to
stable laws. We conclude the paper with an analysis of the probability densities of the GRGTS
distribution class. By appealing to some classic results in the theory of self-decomposable dis-
tributions, most notably [54, 63, 64], we establish regularity, unimodality, and the asymptotic
order of the tails of the probability density functions.

We review the basic notions needed and fix the notation in Section 2. In Section 3, GRGTS
distributions are introduced. Their characteristic functions and cumulants are discussed in
Section 4. In Section 5, we analyze spectral measures, short- and long-time limits, and abso-
lute continuity properties. Section 6 is devoted to the properties of the probability densities. In
Section 7 we conclude and discuss possible developments.

2. Preliminaries

We begin by establishing the notation and recalling some concepts and notions required
throughout the paper.

2.1. Infinitely divisible laws and Lévy processes

Throughout the paper we fix a filtered probability space (	,F , (Ft)t≥0, P) to which all the
processes we mention are adapted. For a random variable (r.v.) X :	→R

d on such a space
we denote by 
X : Rd →C its characteristic function


X(z) = E[ei〈z,X〉]. (4)

An infinitely divisible (i.d.) r.v. is fully characterized by its characteristic exponent ψX(z), i.e.
a function ψX : D ⊆R

d →C such that


X(z) := E[ei〈z,X〉] = eψX (z). (5)

The exponent ψX can be written in terms of a characteristic triplet (μ, �, ν), with μ ∈R
d, � a

positive definite d × d matrix, ν a measure on R
d such that ν(0) = 0,

∫
Rd (|x|2 ∧ 1)ν(dx)<∞,

with | · | indicating the Euclidean norm, and
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4 L. TORRICELLI

ψX(z) = i〈z, μ〉 − 〈z, �z〉/2 +
∫
Rd

(
ei〈z,x〉 − 1 − i〈z, x〉1{|x|<1}

)
ν(dx), (6)

where 〈·, ·〉 is the standard inner product on R
d. The measure ν is called the Lévy measure.

When ν is absolutely continuous its corresponding density is the Lévy density. The func-
tion x1{|x|<1} ensures the convergence of the integral in 0, and is called a truncation function.
Equation (6) goes under the name of Lévy–Khintchine representation. When d = 1 and X is a
positively supported i.d. r.v., one can also use the Laplace exponent φ, defined to be

LX(s) := E[e−sX] = e−φX (s), s> 0, (7)

with

φX(s) = bs +
∫
R+

(1 − e−sx)ν(dx) (8)

for a pair (b, ν), with b ≥ 0 and a positively-supported Lévy measure ν satisfying
∫
R+ (x ∧

1)ν(dx)<∞. One generic function f enjoying representation (8) is called a Bernstein function.
A completely monotone (c.m.) function on R+ is a function of class C∞ such that

(−1)nf (n)(x) ≥ 0. (9)

A classic reference for Bernstein and c.m. functions is [55].
An i.d. real-valued r.v. X is said to be self-decomposable if, for all α ∈ (0, 1), X can be

written in law as X = αX + Rα , for some r.v., Rα independent of X. Equivalently, a real-valued
self-decomposable distribution is characterized by the property that its Lévy measure is abso-
lutely continuous and its density v(x) can be expressed as v(x) = k(x)/|x|, with k(x) a positive
function increasing on R− and decreasing on R+. The function k is called the canonical density
of X.

A Lévy process X = (Xt)t≥0 on R
d is a stochastically continuous process with independent

and stationary increments. For a Lévy process X, Xt is i.d. for all t> 0. Conversely, given
an i.d. r.v. X there exists a unique (in law) Lévy process X such that X1 =X [53, Theorem
7.10]. The characteristic exponent ψX of a Lévy process X is by definition ψX1 . With abuse of
terminology we shall refer to a Lévy process by the name of its unit time law.

2.2. Stable and tempered stable laws and processes

A stable r.v. X on R is an i.d. r.v. such that there exist α ∈ (0, 2] and c ∈R for which

X(z)a =
X(a1/αz)eizc for all a> 0. If c = 0 the r.v. is said to be strictly stable. The
characteristic exponent of X depends on four parameters and has the explicit form

ψX(z) =
{−λ|z|α (1 − iβsgn(z) tan(πα/2))+ izμ for α �= 1,

−λ|z|
(

1 + iβ 2
π

sgn(z) log |z|
)

+ izμ for α = 1,
(10)

where β ∈ [−1, 1], λ> 0, α ∈ (0, 2], μ, z ∈R. The corresponding stable distribution class (or
α-stable when emphasizing the stability parameter) is denoted Sα(λ, β;μ). For β =μ= 0 the
distribution is symmetric, for β = ±1 it is totally skewed, respectively, to the right and left.
Strict stability is equivalent to μ= 0 if α �= 1 and β = 0 if α= 1. Stable laws are i.d., and a
stable Lévy process X = (Xt)t≥0 is one for which X1 is stable (equivalently, Xt is stable for
all t).
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Radially geometric stable distributions and processes 5

On R
d, d ≥ 1, it is instead easier to define a stable process by means of its Lévy triplet

(μ, 0, ν) where, for B ∈B(Rd \ {0}), we have the polar representation

ν(B) =
∫

Sd−1
σ (du)

∫
R+

1B(ru)
dr

r1+α , (11)

with Sd indicating the d-dimensional sphere. We denote the class of α-stable distributions on
R

d with Sα(σ, μ). On R, sometimes cases with different stability indices for the two distinct
points in S0 are taken into account, when the Lévy measure ν has an absolutely continuous
density v(x) of the form

v(x) = δ+
x1+α+ 1{x>0} + δ−

|x|1+α− 1{x<0}, (12)

with α+, α− ∈ (0, 2]. Under this parametrization we denote the class of the stable distributions
by Sα(δ, μ), with α = (α+, α−) ∈ (0, 2] × (0, 2], δ = (δ+, δ−) ∈R

2+, μ ∈R. For a detailed
survey on stable distributions see [53, Chapter 3].

A (classical) tempered stable distribution is an i.d. distribution with Lévy measure ν
given by

ν(dx) = δ+
e−θ+x

x1+α+ 1{x>0} + δ−
e−θ−|x|

|x|1+α− 1{x<0} (13)

for α+, α− ∈ (0, 2), δ+, δ− ≥ 0 (see e.g. [6, 8] for applications, and [36] for a theoreti-
cal analysis). We shall use the notation CTSα(θ, δ;μ) with α = (α+, α−) ∈ (0, 2) × (0, 2),
θ = (θ+, θ−) ∈R

2+, δ = (δ+, δ−) ∈R
2+, μ ∈R. The stable distributions are when θ± = 0. The

bilateral Gamma BG(θ , δ) law (e.g. [35]) is obtained as a weak limit for α+, α− → 0, and the
ordinary positively supported Gamma G(θ, δ) law by additionally setting δ− = 0.

A general approach to tempering stable laws is considered in [51]. Let σ be a finite measure
on Sd−1 and consider a function q:R+ × Sd−1 →R

d, (r, u) �→ q(r, u), c.m. in r for all u. Then
for α ∈ (0, 2), a tempered α-stable process on R

d is one with Lévy triplet (μ, 0,m) where m is
given in polar coordinates by

m(dr, du) = q(r, u)

r1+α σ (du)dr. (14)

Since q is c.m. in the first variable, by the Bernstein theorem [55, Theorem 1.4] there exists a
family of probability measures (Qu)u∈Sd−1 supported on R+ for which

q(r, u) =
∫ ∞

0
e−rsQu(ds). (15)

Therefore, for B ∈B(Rd \ {0}) we can introduce two measures Q and R, respectively, by

Q(B) =
∫

Sd−1
σ (du)

∫
R+

1B(ru)Qu(dr) (16)

and

R(B) =
∫
Rd

1B

(
x

‖x‖2

)
‖x‖αQ(dx). (17)

It turns out that R and Q are dual in the sense that

Q(B) =
∫
Rd

1B

(
x

‖x‖2

)
‖x‖αR(dx). (18)
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6 L. TORRICELLI

We call Q the spectral measure and R the Rosińsky measure. A given tempered α-stable distri-
bution is fully characterized by its measures Q or R, and a drift vectorμ ∈R

d. The measure Q is
useful for computer simulations [11], whereas R is pivotal to describe the analytical properties
of the law.

With abuse of notation, we denote the class of tempered stable distributions in the sense of
Rosińsky by TSγ (σ, q, μ), TSγ (Q, μ), or TSγ (R, μ), which covers most of the specifications
illustrated above.

2.3. Geometric stability, Linnik distributions and their tempered versions

Geometric stable (GS) laws were introduced in [29] as a solution to the problem of char-
acterizing i.d. laws whose infinite divisibility property holds true with respect to geometric
summation. A geometric (strictly) stable law X on R

d is one such that

ψX(z) = − log(1 −ψZ(z)) , (19)

where ψZ is the characteristic exponent of some (strictly) stable r.v. Z on R
d. In the case d = 1,

when Z is strictly stable and such that β = 0 and further introducing a shape parameter δ in
(10), we obtain a symmetric law with characteristic exponent

ψX(z) = δ log
(
1 + λ|z|α) , δ, λ > 0, α ∈ (0, 2], z> 0. (20)

The arising probability distribution is often called the Linnik distribution. When α = 2, δ =
λ= 1, this reduces to the well-known Laplace distribution.

Geometric stable processes and their applications have been studied in e.g. [31–34, 45, 56].
Positively-supported Linnik PL(α, λ, δ) laws can be seen as extension of the Mittag-Leffler
ML(α, λ) law introduced in [47]. We have, for the Lévy measure of a PL(α, λ, δ) r.v. X the
Lévy density

vX(x) = δα

x
Eα

(
−xα

λ

)
, δ, λ > 0 α ∈ (0, 1), x> 0, (21)

and PL(α, λ, 1) ≡ ML(α, λ) (see [3]).
In [2] a tempered version of the Linnik positive laws, denoted TPL(α, λ, θ, δ) was investi-

gated, and their associated processes later studied in [37, 61]. The resulting operation leads to
the Laplace exponent

φX(s) = δ log
(
1 + λ((θ + s)α − θα)

)
, δ, λ > 0, θ ≥ 0, α ∈ (0, 1), x> 0. (22)

Recalling that the Laplace exponent of a CTS+
α (θ, λ;0) law is λ((θ + s)α − θα), we see that

in the case δ= 1, (22) is equivalent to requiring that (19) now holds for a Laplace exponent
of some tempered strictly stable positive law Z, leading to a notion of geometric tempered
stability. The expression for the Lévy density is

vX(x) = δα
e−θx

x
Eα

(
λθα − 1

λ
xα
)
, δ, λ > 0, θ ≥ 0, α ∈ (0, 1), x> 0. (23)

TPL distributions seem to have first appeared in [44, Example 5.7] to describe the waiting
times of a Poisson process subordinated to an inverse tempered stable subordinator (an increas-
ing Lévy process). A closed form expression in terms of the three-parameter Mittag-Leffler
function is also available for the p.d.f. See Section 6 and [2, 61] for details.
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2.4. Special functions

We denote by Ec
a,b(z), z ∈C, the [50] three-parameter Mittag-Leffler function given by

Ec
a,b(z) =

∞∑
k=0

(c)kzk

k!�(ak + b)
, Re(a)> 0, Re(b)> 0, c, z ∈C, (24)

where �(·) is the Euler’s Gamma function and (c)k = �(c + k)/�(c) the Pochhammer symbol.
The standard and two-parameter Mittag-Leffler functions Ea and Ea,b coincide with E1

a,1 and

E1
a,b, respectively. All these functions are entire.

The following leading asymptotic order of the three-parameter Mittag-Leffler function (e.g.
[17]), as x ∈R, x → ∞ will be useful:

Ec
a,ac(−xa) ∼ −c

x−a(c+1)

�(−a)
, a ∈ (0, 1), c> 0, (25)

from which we can recover the well-known formula (e.g. [24])

Eα(−xα) ∼ x−α

�(1 − α)
, x → ∞, α ∈ (0, 1). (26)

From the definition it is also clear that

Eα(−xα) ∼1 − xα

�(1 + α)
∼ exp

(
− xα

�(1 + α)

)
, x → 0. (27)

See [24] or [20] for a comprehensive introduction on Mittag-Leffler functions.
The 2R1 generalized hypergeometric Wright-type function studied in [14] and [62], is given

for τ > 0, a, b, c ∈C, c �∈Z≤0 by

2R1(a, b, c, τ ;z) = �(c)

�(b)

∞∑
k=0

(a)k�(b + τk)

�(c + τk)

zk

k! . (28)

The power series expansion above converges absolutely for all a,b,c whenever |z|< 1 and
convergence can be extended to the boundary if Re(c − b − a)> 0. The 2R1 function can be
continued analytically outside the unit disc: the expression of the continuation is given by
e.g. [28, Equation (5.2)]. Notice that 2R1(a, b, c, 1; z) = 2F1(a, b, c; z), Gauss’ hypergeomet-
ric function, so that in particular 2R1(a, b, b, 1; z) = (1 − z)−a. Furthermore, the generalized
hypergeometric 2R1 can be represented in terms of the normalized Fox–Wright function p


∗
q

[66] as

2R1(a, b, c, τ ; z) = 2

∗
1

[
(a, 1) (b, τ )
(c, τ )

; z

]
. (29)

See also [7, 27] for details on the analytic continuation of the p
q function.
The Lerch transcendent function � is defined as the convergent series

�(z, s, a) =
∞∑

k=0

zk

(a + k)s
, z, s ∈C, |z|< 1, a /∈Z≤0. (30)

It relates to the Polilogarithm Lis(z) through Lis(z)/z =�(z, s, 1) and extends the
Hurwitz/Riemann Zeta functions, in that ζ (s, a) =�(1, s, a), ζ (s) =�(1, s, 0). Again, even
though the series representation above is only valid for |z|< 1, and for |z| = 1 if Re(s)> 0,
analytic continuations are available, and have recently been studied [16].
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3. Radially geometric stable distributions

We introduce here the GRGTS class by providing the polar representation [4, Lemma 2.1] of
their Lévy measure. Let d ∈N and θ, λ:Sd−1 →R+, α : Sd−1 → (0, 1] be continuous functions.
Define q(·, ·;α, λ, θ ): R+ × Sd−1 as given by

q(r, u; α, λ, θ ) = e−θ(u)rEα(u)

(
−λ(u)rα(u)

)
. (31)

In order to avoid degeneracies, the following technical assumption is needed:

(A) either θ , or both α and λ, are bounded away from zero.

We need to show that the function above naturally induces a Lévy measure on R
d.

Proposition 1. Let σ be a finite measure on Sd−1 and r> 0. For all γ ∈ [0, 2) we have that

mγ (dr, du; σ, α, λ, θ ) := q(r, u; α, λ, θ )

r1+γ σ (du)dr (32)

is a Lévy measure in polar coordinates on R
d. Moreover, if γ �= 0, the resulting distribution

belongs to TSγ (σ, q, μ).

Proof. The functions exp(−· ) and Eα(− · ) are both c.m. for positive arguments; for the
latter see [49]. Furthermore the function x → λxα , α ∈ (0, 1), is positive with a c.m. derivative,
so that its composition with Eα(− · ) is also c.m. Therefore q(·, u) is c.m., it being a product of
c.m. functions [55, Corollary 1.6] for all possible values of u. Observe also that q(0+, u) = 1,
for all u. Hence, for γ > 0 that mγ is a Lévy measure follows from [51]. To complete the proof
we thus need to show that

∫∞
0

∫
Sd−1 ((ru)2 ∧ 1)m0(dr, du)<∞. From exp(− · ), Eα(− · ) ≤ 1

we have ∫
Sd−1

∫ 1

0
r2 q(r, u; α, λ, θ )

r
drσ (du)<σ (Sd−1)

∫ 1

0
rdr<∞. (33)

Also, by assumption (A), it follows that if θ∗ = minu∈Sd−1 θ (u) = 0, then both λ∗ =
minu∈Sd−1 λ(u), and α∗ = minu∈Sd−1 α(u) are strictly positive. Then in view of (26) it holds
that ∫

Sd−1

∫ ∞

1

q(r, u; α, λ, θ )

r
drσ (du)<σ (Sd−1)

∫ ∞

1
r−1Eα∗ (−λ∗rα∗ )dr

∼ σ (Sd−1)

λ∗�(1 − α∗)

∫ ∞

1
r−1−α∗dr<∞. (34)

Similarly, if λ∗, α∗ = 0 then θ∗ > 0 whence

∫
Sd−1

∫ ∞

1

q(r, u; α, λ, θ )

r
drσ (du)<σ (Sd−1)

∫ ∞

1
r−1e−rθ∗dr<∞. (35)

Recalling (21), we can see that for fixed u ∈ Sd−1, q(r, u; α(u), λ(u), θ (u))/r is the Lévy
measure of a TPL(α(u), λ(u), θ (u), 1/α(u)) distribution, which is to say that the radial com-
ponent of the Lévy measure introduced is itself the Lévy measure of a univariate geometric
tempered stable distribution. When the generalizing parameter γ is nonzero, the radial Lévy
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measure is still well defined, and the complete monotonicity of q in r takes us into the territory
of [51]. We then define a general d-dimensional GRGTS variable as follows.

Definition 1. Let d ≥ 1, γ ∈ [0, 2), σ be a finite measure on Sd−1, and μ ∈R
d. A gen-

eralized radially geometric tempered stable distribution GRGTSγ (σ, α, λ, θ ;μ) on R
d is

the i.d. distribution class determined by the Lévy triplet (μ, 0,mγ (dr, du; σ, α, λ, θ )). The
classes of the generalized radially geometric stable distribution GRGSγ (σ, α, λ;μ), radially
geometric tempered stable distribution RGTS(σ, α, λ, θ ;μ), and radially geometric stable dis-
tribution RGS(σ, α, λ;μ) correspond to GRGTSγ (σ, α, λ, 0;μ), GRGTS0(σ, α, λ, θ ;μ), and
GRGTS0(σ, α, λ, 0;μ), respectively.

There are thus two “stability” parameters associated with GRGTS distributions when γ �= 0.
One is the parameter α of the underlying geometric stable law, the other is the stability index
γ of the stable law in [51] with respect to which we apply the tempering q.

In this paper we will explore in detail the case d = 1, which is easier as S0 = {−1, 1}, and
a great deal can be said about the analytic structure of the distributions. In such cases the
spherical measure reduces to

σ (du) = δ+δ1(du) + δ−δ−1(du) (36)

for δ+, δ− ≥ 0, and δx is the Dirac delta measure concentrated in x ∈R. We have the following
expression for the Lévy density, with α(u) = α±, θ (u) = θ±, λ(u) = λ±, α±, θ±, λ± ∈R:

mγ (dr, du; σ, α, λ, θ ) = δ+
e−θ+r

r1+γ Eα+ (−λ+ rα+ )drδ1(du)

+ δ−
e−θ−r

r1+γ Eα− (−λ− rα− )drδ−1(du). (37)

One can easily extend this definition by assuming the stability indices for the negative and
positive parts are not necessarily equal, i.e. if γ+ �=, γ− ∈ [0, 2), using the vector notation

α = (α+, α−) ∈ (0, 1] × (0, 1],

λ = (λ+, λ−) ∈ (0,∞) × (0,∞),

θ = (θ+, θ−) ∈ [0,∞) × [0,∞), (38)

δ = (δ+, δ−) ∈ [0,∞) × [0,∞) \ {(0, 0)},
γ = (γ+, γ−), ∈ [0, 2) × [0, 2),

in Cartesian coordinates we have the expression for the Lévy density

mγ (x; α, λ, θ , δ) = δ+
e−θ+x

x1+γ+ Eα+ (−λ+ xα+ )1{x>0} + δ−
e−θ−|x|

|x|1+γ− Eα− (−λ− |x|α− )1{x<0}. (39)

When α+ = α−, λ+ = λ−, γ+ = γ−, θ+ = θ−, δ+ = δ−, then mγ (B) = mγ (−B), for all B ∈
B(R), i.e. mγ is symmetric. If δ− = 0 or δ− = 0, then it has positive/negative support. In such
cases we write, respectively, ms

γ (x; α, λ, θ, δ), m+
γ (x; α, λ, θ, δ), m−

γ (x; α, λ, θ, δ), where the
constants denote the only surviving or relevant value for each parameter vector. In these two
latter instances the corresponding GRGTS laws are said to be spectrally positive (respectively,
negative). It is important to recall the spectral positive/negativity is not the same as the cor-
responding probability laws being positively/negatively supported, although this equivalence
holds true when γ ∈ [0, 1) and μ= ∫

{|x|<1} m±
γ (x; α, λ, θ, δ) (see [53, Theorem 24.10]). Again,∫

R
(x2 ∧ 1)mγ (x; α, λ, θ , δ)dx<∞, so we can introduce the main definition on the real line.

Definition 2. Let μ ∈R and mγ (x; α, λ, θ, δ) be given by (39). A generalized radially geo-
metric tempered stable distribution GRGTSγ (α, λ, θ , δ;μ) on R is an i.d. distribution
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10 L. TORRICELLI

whose Lévy triplet is given by (μ, 0,mγ (x; α, λ, θ , δ)dx). Generalized radially geometric
stable GRGSγ (α, λ, δ;μ), radially geometric tempered stable RGTSα(λ, θ, δ;μ), and
radially geometric stable RGSα(λ, δ;μ) distributions are defined correspondingly as
GRGTSγ (α, λ, (0, 0), δ;μ), GRGTS(0,0)(α, λ, θ , δ;μ), and GRGTS(0,0)(α, λ, (0, 0), δ;μ)
laws. Symmetric, spectrally positive, and spectrally negative versions of these classes are
denoted, respectively, with the superscripts s,+, and −.

Remark 1. It is clear from (39) that distributions in the GRGTSγ (α, λ, θ , δ;μ) class are self-
decomposable with canonical density

kγ (x; α, λ, θ , δ) = δ+
e−θ+x

xγ+
Eα+ ( − λ+ xα+ )1{x>0} + δ−

e−θ−|x|

|x|γ− Eα− (−λ− |x|α− )1{x<0}. (40)

Remark 2. With the numerical constants denoting the corresponding constant functions, we
have the following particular cases.

(i) Let αn → 0 be any positive sequence of real numbers; then Xn ∼
GRGTSγ (σ, αn, λ, θ, μ) is such that Xn →d X with X ∼ TSγ (σλ, exp(−rθ ), μ),
where σλ(du) = σ (du)

1+λ(u) , provided that |λ(u)|< 1 for all u.

(ii) GRGTSγ (σ, 1, λ, θ ;μ) = TSγ (σ, exp(−r(θ + λ)), μ).

(iii) GRGSγ (σ, 1, λ;μ) = TSγ (σ, exp(−rλ), μ).

(iv) If λn → 0 is a positive sequence and γ > 0, then Xn ∼ GRGTSγ (σ, α, λn, θ ;μ) is such
that Xn →d X, with X ∼ TSγ (σ, exp(−rθ ), μ).

(v) If λn → 0 is a positive sequence and γ > 0, then Xn ∼ GRGSγ (σ, α, λn;μ) is such that
Xn →d X, with X ∼ Sγ (σ, μ).

(vi) RGTS+
α (λ, θ, δ;μ0) = TPL

(
α, 1

λ+θα , θ,
δ
α

)
where μ0 = ∫

{x<1} xm+
0 (x; α, λ, θ, δ)dx.

Furthermore we have (up to a possible location shift) the various special cases within the
GRGTS class on R:

(vii) GRGTSγ ((1, 1), λ, θ , (δ, δ);μ) are distributions in the general [30] and KoBol [6]
classes.

(viii) GRGTS(γ,γ )((1, 1), λ, θ , (δ, δ);μ) are CGMY distributions [8].

(ix) RGTS(1,1)(λ, θ , δ;μ) = BG(λ + θ , δ) studied in [35].

(x) GRGTS(γ,γ )((1, 1), λ, (θ, θ ), δ;μ) are the i.d. innovations of truncated Lévy flights
[43].

Proof. Using continuity of the Mittag-Leffler function, E1(−λ(u)x) = exp(−λ(u)x), x ∈R,
Eα(0) = 1 for all α ∈ (0, 1] and Eα(−λ(u)) → 1/(1 + λ(u)) as α→ 0 (see [24]), together with
dominated convergence as needed, (i)–(vi) follow operating on the Lévy measures. For (vi)
write

m+(x; α, λ, θ, δ) = δ
e−θx

x
Eα( − λ xα) = αc1

e−θx

x
Eα

(
c2θ

α − 1

c2
xα
)

(41)
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with c1 = δ/α, c2 = 1/(λ+ θα), which matches the expression of the TPL Lévy measure in [61,
Proposition 2.1], given there for the Laplace exponent. Finally, (vii)–(x) are simple parameter
specifications of the prior cases.

Remark 2 clarifies that GRGTS distributions specialize to TSγ , TPL, and BG distribu-
tions. In particular, they include stable, gamma, and positive/symmetric geometric stable
distributions.

4. Characteristic exponents

We begin a theory of one-dimensional GRGTS distributions by determining their charac-
teristic exponents. We have a divide depending on whether θ+, θ− > 0 or θ+ = θ− = 0, i.e.
the (G)RGTS and (G)RGS cases must be treated separately. The former case is analytical.
The latter corresponds to a radial Lévy density with heavy tails and uses a limiting argu-
ment on the analytic continuation of the positive θ case. The mixed cases θ+ > 0, θ− = 0,
θ+ = 0, θ− > 0 are of course possible and can be obtained by combining negative and positive
parts as necessary, and thus will not be considered. Cumulants are also discussed at the end of
the section.

Theorem 1. Let X be a GRGTSγ (α, λ, θ, δ;μ) r.v. with θ+, θ−>0 and α+, α− ∈ (0, 1), let m
be the Lévy density of X, and set μ0 = ∫

{|x|<1} xm(x)dx and μ1 = ∫
{|x|>1} xm(x)dx. Then

(i) if X ∈ RGTSα(λ, θ , δ;μ), then

ψX(z) = δ+
α+

log

(
θ
α++ + λ+

(θ+ − iz)α+ + λ+

)
+ δ−
α−

log

(
θ
α−− + λ−

(θ− + iz)α− + λ−

)
+ iz(μ−μ0);

(42)

(ii) if γ+, γ− ∈ (0, 2), γ± �= 1, then

ψX(z) =�(−γ+)δ+
(

(θ+ − iz)γ+ 2R1

(
1,−γ+, 1, α+;

−λ+
(θ+ − iz)α+

)

+iz γ+θγ+−1
+ 2R1

(
1, 1 − γ+, 1, α+; − λ+

θ
α++

)

−θγ++ 2R1

(
1,−γ+, 1, α+; − λ+

θ
α++

))
+

�(−γ−)δ−
(

(θ− + iz)γ− 2R1

(
1,−γ−, 1, α−;

−λ−
(θ− + iz)α−

)

−izγ− θγ−−1
− 2R1

(
1, 1 − γ−, 1, α−; − λ−

θ
α−−

)

−θγ−− 2R1

(
1,−γ−, 1, α−; − λ−

θ
α−−

))
+ iz(μ1 +μ); (43)
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12 L. TORRICELLI

(iii) if γ+ = γ− = 1, then

ψX(z) =δ+ λ+
α+

⎛
⎜⎜⎝
�

(
− λ+
θ
α++
, 1, α+−1

α+

)
θ
α+−1
+

−
�
(
− λ+

(θ+−iz)α+ , 1, α+−1
α+

)
(θ+ − iz)α+−1

⎞
⎟⎟⎠

+ δ+
θ+ − iz

α+
log

(
(θ+ − iz)α+ + λ+

θ
α++ + λ+

)
+

δ−
λ−
α−

⎛
⎜⎜⎝
�

(
− λ−
θ
α−−
, 1, α−−1

α−

)
θ
α−−1
−

−
�
(
− λ−

(θ−+iz)α− , 1, α−−1
α−

)
(θ− + iz)α−−1

⎞
⎟⎟⎠

+ δ−
θ− + iz

α−
log

(
(θ− + iz)α− + λ−

θ
α−− + λ−

)
+ iz(δ+ − δ− +μ1 +μ).

(44)

The remaining cases can be derived from the given expressions by combining positive
and negative parts as needed. Furthermore, all the above characteristic functions can be
analytically continued on S = {z ∈C:Im(z) ∈ (−θ+, θ−)}.

Proof. We only treat the positive part, the negative one being identical with the obvious
parameter modification, and by substituting x with |x|. We thus remove the subscripts for ease
of notation.

Assume γ = 0. We notice that in that case x m(x) is integrable around zero, and we can
compute the Lévy–Khintchine integral without truncation. Interchanging series and integral
using Fubini’s theorem, we have∫ ∞

0

(
eizx − 1

)
q(x)x−1−γ dx =

∫ ∞

0

∞∑
k=1

(izx)k

k!
e−θx

x
Eα
(−λ xα

)
dx

=
∞∑

k=1

(iz)k

k!
∫ ∞

0
e−θxxk−1Eα

(−λ xα
)

dx

=
∞∑

k=1

(iz)k

k!
∞∑

j=0

(−λ)j 1

�(1 + αj)

∫ ∞

0
e−θxxαj+k−1dx

=
∞∑

k=1

( iz
θ

)k
k!

∞∑
j=0

(−λ
θα

)j
�(k + αj)

�(1 + αj)

=
∞∑

j=0

(−λ
θα

)j 1

�(1 + αj)

∑
k=1

( iz
θ

)k
k! �(k + αj). (45)

For j = 0 the summations on k in (45) reduce to a logarithmic series. For j ≥ 1, recalling the
binomial series, it holds that

∑
k=1

( iz
θ

)k
k!

�(k + αj)

�(αj)
=
(

θ

θ − iz

)αj

− 1. (46)
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Substitute (46) in (45), and under the convergence conditions |z|< θ, θα > λ, we obtain

∞∑
j=1

( −λ
(θ − iz)α

)j 1

αj
−

∞∑
j=1

(−λ
θα

)j 1

αj
+
∑
k=1

(iz/θ )k

k

= − 1

α

(
log

(
(θ − iz)α + λ

(θ − iz)α

)
− log

(
θα + λ

θα

)
+ log

(
(θ − iz)α

θα

))

= 1

α
log

(
θα + λ

(θ − iz)α + λ

)
. (47)

Here we consider the principal branch of the complex logarithm and the power function y �→ yα

for Arg(y) ∈ (−π, π ].
For γ ∈ (0, 2), we observe that since m decays exponentially, it holds

∫
{|x|>1} xm(x)dx =

μ1 <∞. We can thus use the representation of the characteristic exponent with constant
truncation function 1. The same calculations of (45) produce

∫ ∞

0

(
eizx − 1 − izx

)
q(x)x−1−γ dx = θγ

∞∑
j=0

(−λ
θα

)j 1

�(1 + αj)

∑
k=2

( iz
θ

)k
k! �(k − γ + αj).

(48)

Now first let γ �= 1. Using the binomial series again we have

∞∑
k=2

�(k + jα− γ )
(iz/θ )k

k! = �(jα− γ )

((
θ − iz

θ

)−αj+γ
− iz

jα− γ

θ
− 1

)
, (49)

and therefore, whenever |z|< θ and θα > λ, (48) becomes, in view of the series expression
(29) for the 2R1 function,

∞∑
j=0

�(jα− γ )

�(jα+ 1)

(
(θ − iz)γ

( −λ
(θ − iz)α

)j

− θγ
(−λ
θα

)j (
iz

jα− γ

θ
+ 1

))

= (θ − iz)γ
∞∑

j=0

�(jα− γ )

�(jα+ 1)

( −λ
(θ − iz)α

)j

− θγ
∞∑

j=0

�(jα− γ )

�(jα+ 1)

(−λ
θα

)j

− izθγ−1
∞∑

j=0

�(jα− γ + 1)

�(jα+ 1)

(−λ
θα

)j

= �(−γ )

(
(θ − iz)γ 2R1

(
1,−γ, 1, α;

−λ
(θ − iz)α

)
+ izγ θγ−1

2R1

(
1, 1 − γ, 1, α; − λ

θα

)

−θγ 2R1

(
1,−γ, 1, α; − λ

θα

))
. (50)

Finally, for γ = 1 the term j = 0 in (48) becomes yet another log series,

∞∑
k=2

�(k − 1)
(iz/θ )k

k! =
∞∑

k=2

(iz/θ )k

k(k − 1)
=

∞∑
k=2

(iz/θ )k

k − 1
−

∞∑
k=2

(iz/θ )k

k

= iz

θ
+ log

(
1 − iz

θ

)(
1 − iz

θ

)
. (51)
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Separating this term and using (49) results in the following expression for (48):

θ − iz

α

∞∑
j=1

1

j(αj − 1)

( −λ
(θ − iz)α

)j

− θ

α

∞∑
j=1

1

j(αj − 1)

(−λ
θα

)j

− iz

α

∞∑
j=1

1

j

(−λ
θα

)j

+ iz + log

(
1 − iz

θ

)
(θ − iz) . (52)

Observe that for y ∈C, |y|< 1 it holds that

∞∑
j=1

yj

j(αj − 1)
= α

∞∑
j=1

yj

(αj − 1)
−

∞∑
j=1

yj

j
=

∞∑
j=0

yj+1

(j + α−1
α

)
+ log (1 − y)

=y�

(
y, 1,

α − 1

α

)
+ log (1 − y). (53)

Replacing (53) in (52), and recalling (30), the case γ = 1 specializes to∫ ∞

0

(
eizx − 1 − izx

)
q(x)x−γ−1dx =

λ

α

⎛
⎝�

(
− λ
θα
, 1, α−1

α

)
θα−1

−
�
(
− λ

(θ−iz)α , 1, α−1
α

)
(θ − iz)α−1

⎞
⎠+ θ − iz

α
log

(
(θ − iz)α + λ

(θ − iz)α

)
−

θ

α
log

(
θα + λ

θα

)
+ iz + θ − iz

α
log

(
(θ − iz)α

θα

)
+ iz

α
log

(
θα + λ

θα

)

=λ
α

⎛
⎝�

(
− λ
θα
, 1, α−1

α

)
θα−1

−
�
(
− λ

(θ−iz)α , 1, α−1
α

)
(θ − iz)α−1

⎞
⎠+ θ − iz

α
log

(
(θ − iz)α + λ

θα + λ

)
+ iz.

(54)

Integrating the obtained expressions (47), (50), and (54) in σ (du) as in (39), subtracting
iz(μ0 −μ) to (47), and adding iz(μ1 +μ) to (54)–(50), (i) − (iii) follow for all |z|< θ and
λ< θα .

We must finally prove the analyticity of
X on S and that the constraint λ< θα can be lifted.
We know that
X can be analytically continued on a horizontal strip {z ∈C : − a< Im(z)< b},
a, b ∈R∪ {∞}, a �= b (see [41]), if E[e−cX]<∞, for all c ∈ (−a, b). In turn — by, e.g. [53,
Corollary 25.8] — this is equivalent to

∫
{|x|>1} e−cxm(x)dx<∞ for all such c. In our instance

we thus have a = θ+, b = θ−. Since the expression for 
X has been found on the real line,
that (42)–(44) also provide the analytic continuation of 
X on S would then follow from the
identity principle of analytic functions, if we can show that such expressions are analytic on S.

Assume first γ = 0. The function y �→ yα is analytic outside the logarithm branch cut C \
(−∞, 0] yielding the condition (θ+ − iz) /∈ (−∞, 0], i.e. Im(z) �= θ+. Hence we obtain, S+ :=
{z ∈C:Im(z)>−θ+}. Furthermore, the logarithm branch cut is never crossed by the function
θ
α++ +λ+

(θ+−iz)α+λ+ , so that log

(
θ
α++ +λ+

(θ+−iz)α++λ+

)
is analytic on S+. The same argument applies to (θ− +

iz), which is analytical on S− := {z ∈C:Im(z)< θ−}, and hence ψX is analytical on S, and so is

X .
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For γ ∈ (0, 2), γ �= 1, we exploit the fact that it is known (e.g. [27]) that 2R1 can be
analytically continued on C \ [1,∞). On the other hand, on the regions S±, the functions
−λ±/(θ± ± iz)α± never attain real positive values, again yielding analiticity of ψX on S.
Lerch’s transcendent can also be analytically continued on C \ [1,∞), e.g. [23, Lemma 2.2],
and then the claim also follows for the case γ = 1. That the condition λ< θα can be lifted
also follows from the arguments above, since the parameter ranges of λ, θ, α always lie in the
domain of analyticity of the continued functions.

Remark 3. For γ+, γ− ∈ (0, 1), another expression for the characteristic exponent is
available. For such a parameter range we still have that, as in the γ = 0 case,∫∞

0

(
eizx − 1

)
q(x)x−1−γ dx<∞, and then the summation in (48) would yield the expression

ψX(z) =�(−γ+)δ+
(

(θ+ − iz)γ+ 2R1

(
1,−γ+, 1, α+;

−λ+
(θ+ − iz)α+

)

−θγ++ 2R1

(
1,−γ+, 1, α+; − λ+

θ
α++

))
+

�(−γ−)δ−
(

(θ− + iz)γ− 2R1

(
1,−γ−, 1, α−;

−λ−
(θ− + iz)α−

)

−θγ−− 2R1

(
1,−γ−, 1, α−; − λ−

θ
α−−

))
+ iz(μ−μ0). (55)

Assume X ∼ GRGTSγ (α, λ, θ, δ;μ0). Equating (55) and (43), computing the expression in
z = −i, and noticing that by [53, Chapter 25], in this case it holds that E[X] =μ0 +μ1, one
deduces that

E[X] = δ+�(1 − γ+)

θ
1−γ++

2R1

(
1, 1 − γ+, 1, α+,− λ+

θ
α++

)

− δ−�(1 − γ−)

θ
1−γ−−

2R1

(
1, 1 − γ−, 1, α−; − λ−

θ
α−−

)
(56)

whenever θ+, θ− > 0. We will study cumulants more in detail in Section 4.2.

Example 1. The TPL distribution. Consider a RGTS+
α (λ, θ, δ;μ0) r.v. X. From (42) we have

the characteristic function

ψX(z) = δ

α
log

(
θα + λ

(θ − iz)α + λ

)
(57)

for some positive constants λ, α, θ . Letting c1 = δ/α, c2 = 1/(θα + λ) we can write

ψX(z) = −c1 log
(
1 + c2((θ − iz)α − θα)

)
, (58)

which is the characteristic exponent of a TPL(α, c2, θ, c1) r.v. in the parametrization of [61],
confirming Remark 2(vi).

As a consequence of the analyticity of the characteristic functions above we know by the
general theory of [41], that under the assumptions above a moment generating function for
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a TGS can be defined, all the moments exist, and so do the θ -exponential moments for θ ∈
(−θ−, θ+).

Remark 4. Scaling and independent sums. Let c> 0. If X is as in Theorem 1, by inspection
on all cases we observe

cX ∼ GRGTSγ (α, (λ+c−α+ , λ−c−α− ), θc−1, (δ+cγ+ , δ−cγ− );μc−1). (59)

Furthermore, if X ∼ GRGTSγ (α, λ, θ , δ;μ) and X′ ∼ GRGTSγ (α, λ, θ , δ′;μ′) are indepen-
dent and θ± > 0, then X + X′ ∼ GRGTSγ (α, λ, θ , δ + δ′;μ+μ′) as it follows directly from
the i.d. property.

4.1. The GRGS and RGS cases

When θ = 0, we have the GRGSγ (α, λ, δ;μ) class and its RGSα(λ, δ;μ) subclass.
Distributions in this class are structurally more similar to positive Linnik laws, in that their
Lévy measure takes the form of the ratio of a Mittag-Leffler function over a power function.

Before stating the results we show the following technical lemma on some analytical
properties of the 2R1 functions of interest.

Lemma 1. For b, c> 0, a ≤ b< 1, and z ∈C, Arg(z) �= π/b, it holds that

(i)

lim
z→0

�(a)

za 2R1

(
1, a, 1, b;

−c

zb

)
= c−a/b π

b�(1 − a) sin
(
πa
b

) ; (60)

(ii)

dn

dzn

�(a)

za 2R1

(
1, a, 1, b;

−c

zb

)
= (−1)n�(a + n)

za+n 2R1

(
1, n + a, 1, b;

−c

zb

)
. (61)

Proof. Under the given assumptions we can use [28, Corollary 5.2.1] and conclude that for
all w ∈C such that |Arg(−w)<π | the following asymptotics when w → ∞ for such function
hold true:1

2R1(1, a, 1; b,w) = �(a − b)

�(a)�(1 − b)
(−w−1) + O(w−1)

+ �(1 − a/b)�(a/b)

b�(a)�(1 − a)
(−w− a

b ) + O(−w− a
b ). (62)

Now setting w = −c/zb, since Arg(z) �= π/b then Arg(−w) �= π , and as z → 0, we have w →
∞. Thus (62) implies

�(a)z−a
2R1

(
1, a, 1, b,

−c

zb

)
∼ z−a�(1 − a/b)�(a/b)

b�(1 − a)

(
zb

c

) a
b

, (63)

and the claim follows combining the above and Euler’s reflection formula.

1We believe that there is a typo in [28, Theorem 5.2, Equation (5.2)]. A factor μ/ω appears to be missing from
the second term, since A2 =ω/μ is apparently not accounted for at the denominator of the outer summation, as it
should follow from equation (4.9) of Theorem 4.2 from which equation (5.2) is derived. In our case μ= 1, ω= b.

https://doi.org/10.1017/apr.2025.12 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.12


Radially geometric stable distributions and processes 17

Regarding (ii), first assume n = 1. We have, using the chain rule and differentiating term by
term the uniformly convergent series

d

dz
z−a�(a) 2R1

(
1, a, 1, b;

−c

zb

)
= −a�(a)z−a−1

2R1

(
1, a, 1, b;

−c

zb

)

− z−a
∞∑

j=1

�(bj + a)

�(bj + 1)

(−c)j

zbj+1
bj = −a�(a)z−a−1

2R1

(
1, a, 1, b;

−c

zb

)

+ z−a−1

⎛
⎝−

∞∑
j=1

�(bj + a + 1)

�(bj + 1)

(−c)j

zbj
+ a

∞∑
j=1

�(bj + a)

�(bj + 1)

(−c)j

zbj

⎞
⎠

= −z−a−1

⎛
⎝a�(a) +

∞∑
j=1

�(bj + a + 1)

�(bj + 1)

(−c)j

zbj

⎞
⎠

= −z−a−1�(a + 1) 2R1

(
1, a + 1, 1, b;

−c

zb

)
. (64)

Using (64) with a′ = a + n and appealing to the principle of mathematical induction the proof
is complete.

We can now prove the main result regarding the characteristic exponent of GRGS r.v.s.

Theorem 2. Let X be a GRGSγ (α, λ, δ;μ) r.v., with α+, α− ∈ (0, 1), γ+, γ− �= 1, and define,
for z ∈R,

�±(z) = cos
α±π

2

(
1 − i tan

α±π
2

sgn(z)
)

. (65)

We have, in the notation of Theorem 1:

(i) if X ∈ RGSα(λ, δ;μ) then

ψX(z) = δ+
α+

log

(
λ+

|z|α+�+(z) + λ+

)
+ δ−
α−

log

(
λ−

|z|α−�−(z) + λ−

)
+ iz(μ−μ0),

(66)
otherwise;

(ii) if max{α+ + γ+, α− + γ−} ∈ (0, 1) then

ψX(z) = δ+
(
�(−γ+)|z|γ+�+(z) 2R1

(
1,−γ+, 1, α+;

−λ+
|z|α+�+(z)

)
−�(γ+, α+, λ+)

)

+δ−
(
�(−γ−)|z|γ−�−(z) 2R1

(
1,−γ−, 1, α−;

−λ−
|z|α−�−(z)

)
− �(γ−, α−, λ−)

)
+ iz(μ−μ0); (67)
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18 L. TORRICELLI

(iii) if min{α+ + γ+, α− + γ−} ∈ [1, 3) then

ψX(z) = δ+
(
�(−γ+)|z|γ+�+(z) 2R1

(
1,−γ+, 1, α+;

−λ+
|z|α+�+(z)

)

− �(γ+, α+, λ+) − iz �(γ+ − 1, α+, λ+)

)

+δ−
(
�(−γ−)|z|γ−�−(z) 2R1

(
1,−γ−, 1, α−;

−λ−
|z|α−�−(z)

)

− �(γ−, α−, λ−) + iz �(γ− − 1, α−, λ−)

)
+ iz(μ+μ1); (68)

where

�(x, y, z) = zx/y π

sin
(
−π x

y

) 1

y�(1 + x)
. (69)

The cases not accounted by (i) − (iii) can be obtained by combining the expressions for positive
and negative parts corresponding to the relevant inequalities satisfied by α± + γ±.

Proof. Let m be the Lévy density of X given by (39) and let θn+, θn−, n ∈N, be two
sequences of real numbers such that θn+, θn− → 0 as n → ∞, set θn = (θn+, θn−) and let Xn be
GRGTSγ (α, λ, θn, δ; 0) r.v.s with Lévy densities mn.

We argue by dominated convergence. The sequence (eizx − 1 − izx1{|x|<1})mn(x) is domi-
nated in x for all z by the integrable function (eizx − 1 − izx1{|x|<1})m(x). Therefore

∫
R

(eizx − 1 − izx1{|x|<1})m(x)dx = lim
n→∞

∫
R

(eizx − 1 − izx1{|x|<1})mn(x)dx. (70)

We consider then the decompositions in positive/negative parts m(x) = m+(x) + m−(x) and
mn(x) = mn+(x) + mn−(x) and for brevity only analyze the positive one, the negative one being
identical upon the usual sign and parameter modifications.

Assume first γ = 0. Using Theorem 1(i), in view of (70) and continuity of the logarithm

∫
R

(eizx − 1 − izx1{|x|<1})m+(x)dx = δ+
α+

lim
n→∞ log

(
(θn+)α+ + λ+

(θn+ − iz)α+ + λ+

)
− i lim

n→∞ zμn,+
0

= δ+
α+

log

(
λ+

(−iz)α+ + λ+

)
− izμ+

0 (71)

withμ+
0 = ∫ 1

0 x m+(x)dx, μn,+
0 = ∫ 1

0 x mn+(x)dx, whenμn,+
0 →μ+

0 follows again by dominated
convergence. But now, for α ∈ (0, 1), w ∈R a standard computation [53, p. 84–85] shows,

(−iw)α = |w|α cos
απ

2

(
1 − i tan

πα

2
sgn(w)

)
(72)

and, after adding izμ, (66) is proved.
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Next, assume α+ + γ+ ∈ [1, 3). Proceeding as in (71) we obtain

∫
R

(eizx − 1 − izx1|x|<1)m+(x)dx

= δ+�(−γ+)|z|γ+�+(z) 2R1

(
1,−γ+, 1, α+;

−λ+
|z|α+�+(z)

)

− δ+�(−γ+) lim
n→∞ (θn+)γ 2R1

(
1,−γ+, 1, α+; − λ+

(θn+)α+

)

−izδ+�(1 − γ+) lim
n→∞ (θn+)γ+−1

2R1

(
1, 1 − γ+, 1, α+; − λ+

(θn+)α+

)
+ izμn,+

1 , (73)

where μ+
1 = ∫

{x>1} m+(x)dx, μn,+
1 = ∫

{x>1} mn+(x)dx, with μn,+
1 →μ+

1 by dominated conver-
gence, which is ensured by the condition α+ + γ+ > 1 combined with the asymptotic relation
(26). Now for the limits above we apply Lemma 1(i) with b = α+, z = θn+, c = λ+, and a
respectively equal to −γ+, and 1 − γ+, to obtain (68).

The case α+ + γ+ ∈ (0, 1] is dealt with similarly, but instead uses expression (55) for the
characteristic functions of Xn.

We have been unable to treat the cases γ+ = γ− = 1, since we could not derive asymptotic
results for � in the domain of interest, but we conjecture a similar expression to hold. For
complex numbers z ∈C \R an asymptotic series is given in [16]. The lack of analyticity of the
GRGS class compared to the analyticity of GRGTS, θ± > 0, puts these two cases in a similar
relationship relationship to the one between the S and CTS classes, in that the GRGTS class is
just an exponentially tempered version of the GRGS class. The RGSα(λ, δ;μ) family can be
of interest for applications, and by analogy with the BG(λ, δ) distribution we could also refer
to these distributions as bilateral Linnik BL(α, λ, δ).

Example 2. Linnik distributions. Continuing Example 1, by letting X be a RGS+
α (λ, δ;μ0) r.v.,

we have the characteristic exponent

ψX(z) = δ log

(
λ

|z|α�+(z) + λ

)
, (74)

which is the characteristic exponent of a PL(α, λ−1, δ) r.v.

Example 3. Subordinated representation of a symmetric bilateral Linnik process. The Lévy
measure for general GS distributions on the real line is provided as a Bochner integral
in [33] and does not correspond to a characteristic function of the form (66). Assume
X ∈ RGSs

α(λ, δ;μ0) =: BLs(α, λ, δ). In this case we have, observing that �± are complex
conjugates,

ψX(z) = −δ log
(
|z|2αλ−2 + 2λ−1|z|α + 1

)
. (75)

By indicating G a G(1, δ) law we see that it is possible to write ψX(z) =ψG(ψY1+Y2 (z)) for
independent stable laws Y1 ∼ Sα(2λ−1, 0; 0) and Y2 ∼ S2α(λ−2, 0; 0). In terms of the associ-
ated Lévy processes, the process X = (Xt)t≥0 is such that Xt = Y1,Gt + Y2,Gt where G1 ∼ G is
a gamma subordinator and Y1,t, Y2,t independent stable processes with unit time laws Y1 and
Y2, respectively.
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20 L. TORRICELLI

4.2. Cumulants

The difference in the analytic structure of the characteristic functions of GRGTS laws
depending upon θ = 0 or θ > 0 highlighted in Theorems 1 and 2 is naturally reflected on
cumulants. As we noticed when θ > 0, the GRGTS characteristic function is analytical and
thus all the moments exist and can be computed by differentiating the characteristic function.
However, when θ± = 0 a crude analysis of the Lévy measure using (26) yields that, for exam-
ple, as x → ∞ then m(x) ∼ x−1−α+−γ+ , so that not all the Lévy moments exist. Because of the
equivalence of the finiteness of Lévy and distribution moments (e.g. [53, Chapter 25]), this
implies that not all of the GRGSγ (α, λ, δ;μ) cumulants will be finite. We will explore rigor-
ously the relation between Lévy and probability density tails in Section 6. Recall that if X is a
univariate r.v. such that E[ecX]<∞ for all c ∈ (−ε, ε) and some ε > 0, its nth cumulant kX

n is

defined as kX
n = dn

dsn log E[esX]
∣∣∣
s=0

. We have the following proposition.

Proposition 2. Let X be a GRGTSγ (α, λ, θ, δ;μ) r.v. with θ+, θ− > 0, γ �= 1. Then its
cumulants kX

n , n ∈N0 are given by

kX
1 =μ1 +μ; (76)

kX
n = δ+�(n − γ+)

θ
n−γ++

2R1

(
1, n − γ+, 1, α+; − λ+

θ
α++

)
+

(−1)n δ−�(n − γ−)

θ
n−γ−−

2R1

(
1, n − γ−, 1, α−; − λ−

θ
α−−

)
, n> 1.

(77)

Let instead Y be a GRGSγ (α, λ, δ;μ) r.v. Then Y has finite expectation if and only if
min{α+ + γ+, α− + γ−}> 1 and finite variance if and only if min{α+ + γ+, α− + γ−}> 2,
in which cases

E[Y] =μ1 +μ, (78)

Var[Y] = δ+�(γ+ − 2, α+, λ+) + δ−�(γ− − 2, α−, λ−). (79)

Proof. Denote m(x) = m+(x) + m−(x) the positive and negative parts of the Lévy density.
That kX

1 =μ+μ1 for all i.d. distribution is well known (e.g [53, Example 25.12]). In the case
θ+, θ− > 0 we apply that, for analytic distributions, cumulants and Lévy moments coincide
when n> 1 (again [53, Chapter 25]). In our case kX

n = ∫
R

xnm(x)dx, and for n ≥ 1, γ �= 1, and
θ
α++ >λ+ it holds that∫ ∞

0
xnm+(dx) = δ+

∫ ∞

0
e−θ+xxn−γ+−1Eα+

(−λ+ xα+) dx

= δ+θn−γ++
∞∑

j=0

(
−λ+
θ
α++

)j
�(n − γ+ + α+j)

�(1 + α+j)
(80)

leading, together with the analogous calculation for m−, to (76)–(77). The case for arbitrary
parameters follows by analytic continuation. Because of the analyticity of ψX , for γ �= 1 the
conclusion is also immediate from Lemma 1(i,ii), since we can differentiate ψ in z and take
the limit z → 0 to obtain the cumulants.
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Regarding Y , again because of [53, Corollary 25.8], the first statement follows from∫
{|x|>1} xkm±(x)dx<∞ if and only if k<α± + γ±, which once again is a consequence of

(26). For the variance it is possible to differentiate twice the characteristic exponent (68) and
take the limit z → 0. To this end, since 2 − γ+ <α+ we can apply Lemma 1 with b = α+,
a = −γ+, c = λ+, and z replaced by −iz, so that by part (i) it holds that

Var[Y+] =ψ ′′(0) = δ+�(2 − γ+)

(−iz)2−γ+ 2R1

(
1, 2 − γ+, 1, α+; − λ+

(−iz)α+

)
(81)

and then, using part (ii),

kY+
2 = δ+ lim

z→0

δ+�(2 − γ+)

(−iz)2−γ+ 2R1

(
1, 2 − γ+, 1, α+; − λ+

(−iz)α+

)

= δ+
λ

γ+−2
α++
α+

π

sin
(
π

2−γ+
α+

)
�(γ+ − 1)

= δ+�(γ+ − 2, α+, λ+). (82)

The same arguments apply to kY−
2 , and the proof is finished.

Therefore, GRGS distributions have the peculiar property of retaining finite variance for
some ranges of parameters, but no other higher moment. As mentioned in the introduction this
can capture empirical findings on financial data and make this distribution an ideal candidate
to model such quantities.

Information about the existence of moments can also be extracted by the Rosińsky measure,
which we shall study in Section 5.

Example 4. Cumulants of an RGTS distribution. When X ∼ RGTSα(λ, θ , δ;μ0), θ+, θ− > 0,
we have

kX
n = δ+(n − 1)!

θn+
2R1

(
1, n, 1, α+; − λ+

θ
α++

)
+

(−1)n δ−(n − 1)!
θn−

2R1

(
1, n, α−; − λ−

θ
α−−

)

= δ+(n − 1)!
θn+

∞∑
j=0

(α+j + 1)n−1

(
−λ+
θ
α++

)j

+

(−1)n δ−(n − 1)!
θn−

∞∑
j=0

(α−j + 1)n−1

(
−λ−
θ
α−−

)j

. (83)

This extends the TPL cumulant analysis of [61, Proposition 2.2]. One can show along the lines
of such a result that the TGS cumulants are given by

κX
n = δ+

θn+
gn−1

(
−λ+
θ
γ++

; α+

)
+ (−1)n δ−

θn−
gn−1

(
−λ−
θ
γ−−

; α−

)
, (84)

where gn(x; c) satisfies the recursion

gn(x; c) = xc
d

dx
gn−1(x; c) + ngn−1(x; c) (85)

with c> 0 and g0(x; c) = 1
1−x .
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5. Spectral representations, limits and absolute continuity

We analyze more in detail the structure of one-dimensional GRGTS distributions in relation
to the theory of [51]. We find the spectral and Rosińsky measures of such laws identify short-
and long-time Lévy scaling limits and give conditions for absolute continuity with respect to a
stable law, as well as with other GRGTS distributions. In order to keep in line with the standard
theory, for the most part of this section we assume γ+ = γ− > 0 and we remove the boldface
throughout to indicate this. Extensions to asymmetric cases can be easily obtained.

Proposition 3. A GRGTSγ (α, λ, θ , δ;μ) with α+, α− ∈ (0, 1) and γ > 0 admits both a spec-
tral density s and a Rosińsky density rγ given, respectively, by

s(x; α, λ, θ, δ) = δ+
(x − θ+)α+−1

π

sin(α+π )

λ−1+ (x − θ+)2α+ + 2(x − θ+)α+ cos (α+π ) + λ+
1{x>θ+}+

δ−
(|x| − θ−)α−−1

π

sin(α−π )

λ−1− (|x| − θ−)2α− + 2(|x| − θ−)α− cos (α−π ) + λ−
1{x<−θ−}

(86)

and, with 1/0 := ∞,

rγ (x; α, λ, θ , δ)

= δ+
x−γ+α+−1

π

(1 − θ+x)α+−1 sin(α+π )

λ−1+ (1 − θ+x)2α+ + 2(x(1 − θ+x))α+ cos (α+π ) + λ+x2α+
1{0<x<θ−1+ }

+ δ−
|x|−γ+α−−1

π

(1 − θ−|x|)α−−1 sin(α−π )

λ−1− (1 − θ−|x|)2α− + 2(|x|(1 − θ−|x|))α− cos (α−π ) + λ−|x|2α−
1{−θ−1− <x<0}.

(87)

Proof. By, for example, [13, Equation (2.16)], the density in the Bernstein representation
of Eα(− ·α ) is

sE(x) = xα−1

π

sin(απ )

x2α + 2xα cos (απ ) + 1
, x> 0, (88)

which is the p.d.f. of the ratio of two independent α-stable r.v.s (see [25, p. 9]). After
an application of the Laplace transform rules we see that the tempering function q(x) =
q(x, 1)1{x>0} + q(|x|,−1)1{x<0} is given by

q(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

0
e−yxλ

−1/α++ sE((y − θ+)λ−1/α++
)
dy x> 0,

∫ ∞

0
e−y|x|λ−1/α−− sE((y − θ−)λ−1/α−−

)
dyx< 0.

(89)

Substituting (88) in (89) and using this in (16) with σ as in (36) we obtain (86). Moreover,
writing explicitly (17), for B ∈B(R+) we have, using the integral substitution y = 1/x,
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R(B) = δ+
∫ ∞

θ+
1B

(
sgn(x)

x

)
xγ

π

(x − θ+)α+−1 sin(πα+)

λ−1+ (x − θ+)2α+ + 2(x − θ+)α+ cos (α+π ) + λ+
dx

= δ+
∫ 1/θ+

0
1B(y)

y−γ−2

π

(y−1 − θ+)α+−1 sin(πα+)

λ−1+ (y−1 − θ+)2α+ + 2(y−1 − θ+)α+ cos (α+π ) + λ+
dy

= δ+
∫ 1/θ+

0
1B(y)

y−γ−α+−1

π

(1−θ+y)α+−1 sin(πα+)

λ−1+ y−2α+ (1−θ+y)2α++2y−α+ (1−θ+y)α+ cos (α+π )+λ+
dy

= δ+
∫ 1/θ+

0
1B(y)

y−γ+α+−1

π

(1 − θ+y)α+−1 sin(πα+)

λ−1+ (1 − θ+y)2α+ + 2(y(1 − θ+y))α+ cos (α+π ) + λy2α+
dy.

(90)

The analogous computation holds for the negative part when B ∈B(R−), and (87) follows.

For a GRGTSγ (α, λ, θ , δ;μ), γ �= 0, we denote GRGTSγ (rγ (x; α, λ, θ , δ);μ) the
parametrization using the Rosińsky density rγ and a drift μ.

Remark 5. Moments revisited. According to [51, Proposition 2.7], finiteness of the moments
of a GRGTS law is equivalent to the finiteness of the moments of the measure R. More pre-
cisely, the pth moment, p> 0, is always finite for p< γ ; it is finite for p> γ if and only if∫
{|x|>1} |x|pR(dx)<∞, and for p = γ it is finite if and only if

∫
{|x|>1} |x|γ log |x|R(dx)<∞.

Using (87) we see that these integrals always converge for any p whenever θ+, θ > 0, in accor-
dance with Theorem 1 and Proposition 2. Instead, if θ+ = θ− = 0 we have, with r given by
(87),

xprγ (x) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δ+

xp−γ+α+−1

π

sin(α+π )

λ−1+ + 2xα+ cos (α+π ) + λ+x2α+
= O(xp−γ−1−α+ ), x → ∞

δ−
|x|p−γ+α−−1

π

sin(α−π )

λ−1− + 2|x|α− cos (α−π ) + λ−|x|2α−
= O(|x|p−γ−1−α− ),x → −∞.

(91)

Therefore, for p = γ it is x−γ rγ (x) log (x) = O( log (x)x−α+−1) as x → ∞ and
x−γ rγ (x) log (x) = O( log (−x)(−x)−α−−1) as x → −∞, which both converge, and thus
the boundary moment is finite. Moreover, when p> γ , the convergence condition is
min{α+ + γ, α− + γ }> p, again consistent with Proposition 2. Furthermore, still by [51,
Proposition 2.7], the condition for the finiteness of the exponential moments (clearly
unavailable when θ+ = θ− = 0) of order β > 0 is R({x:|x|>β−1}) = 0. From (87) the latter
holds if and only if β ≤ θ0 = min{θ+, θ−}. By the standard theory of [41], this implicates
the analyticity of the characteristic function of the GRGTS law with positive exponential
tempering at least in the strip B = {z ∈C :|Im(z)|< θ0}, in accordance with Theorem 1.

Spectral measures are useful to understand the short- and long-time behavior of generalized
geometric tempered stable Lévy processes. For clarity of exposition we further confine our
treatment to the case α+ = α−; how to deal with the case α+ �= α−, involving stable limits
with different positive and negative stability indices, should be clear.

Proposition 4. Let X = (Xt)t≥0 be a GRGTSγ (rγ (x; (α, α), λ, θ , δ), μ) Lévy process with γ �=
1 and μ=μ0 if γ ∈ (0, 1), μ= −μ1 if γ ∈ (1, 2). Define for all h> 0 the scaled processes
Xh = (Xht)t≥0. We have, as h → 0, that
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(i) h−1/γXh → Z where Z = (Zt)t≥0 is a stable Lévy process such that Z1 ∼ Sγ (δ;μ∗),
with μ∗ =μ∗

0 if γ ∈ (0, 1) and μ∗ = −μ∗
1 if γ ∈ (1, 2), with μ∗

1, μ∗
0 relative to the Lévy

measure of Z;

and, as h → ∞, that

(ii) if θ+ = θ− = 0 and α + γ ∈ (0, 1) ∪ (1, 2) then h−(α+γ )−1
Xh → Z where Z is a stable

Lévy process such that Z1 ∼ Sα+γ ((δ∗+, δ∗−);μ∗) with

δ∗+ = δ+
�(1 − α)λ+

, δ∗− = δ−
�(1 − α)λ−

; (92)

(iii) if θ+, θ− > 0 or α + γ > 2, then h−1/2Xh → B where B = (Bt)t≥0 is a Gaussian Lévy
process with triplet (0,Var[X1], 0).

The convergences above are uniform on compact sets in probability, i.e.

lim
h→0,∞ P

(
sup
s≤t

|Xh
s − Ys|> ε

)
= 0, (93)

for all ε, t> 0, with Y = Z, B, respectively, in cases (i) − (ii) and (iii).

Proof. Let rγ be the Rosińsky density (87). For (i) from [51, Theorem 3.1], a sufficient
condition for the statement to hold is that∫

R

xγ rγ (x; α, λ, θ, δ)dx<∞. (94)

When θ+, θ− > 0, the above is trivially verified since in that case rγ is supported on a bounded
set. When θ+ = θ− = 0, then using (91) with p = γ , one has xγ rγ (x) ∼ O(|x|−1−α), as x → ±∞
so that (94) still holds. Notice that convergence in distribution can be strengthened to (93), since
such is the conclusion of [26, Theorem 15.17], used in the proof of [51, Theorem 3.1].

Now to show (ii) − (iii) we begin by proving the Gaussian limit in (iii) under the assump-
tion θ+, θ− > 0. Denote by ψh(z) the characteristic exponent of the Lévy process Xh. By the
mentioned result [26, Theorem 15.17], for the claim to hold it is sufficient to show convergence
in distribution which we verify on the characteristic exponents. Write the decomposition of ψh

in spectrally positive and negative parts as ψh =ψ+
h +ψ−

h , Now we can use the integral (48)
since h−1 ∼ 0, which yields, after interchanging the summation order,

lim
h→∞ h−1/2ψ+

h (z) = lim
h→∞ hψ+(zh−1/2)

= θ
γ
+δ+ lim

h→∞ h
∞∑

j=0

(−λ+
θα+

)j 1

�(1 + αj)

∑
k=2

(
izh−1/2

θ+

)k

k! �(k − γ + αj)

= δ+ lim
h→∞ h θγ+−2

+
∞∑

j=0

(−λ+
θα+

)j
�(2 − γ + αj)

�(1 + αj)

(
− z2h−1

2

)
+ o(1)

= − z2

2
δ+θγ−2

+ �(2 − γ ) 2R1

(
1, 2 − γ, 1; α,−λ+

θα+

)
. (95)

After carrying out the corresponding computation for ψ−
h , recalling Proposition 2, we notice

that in the final expression the factor Var[X1] appears as multiplying the characteristic exponent
of the standard Brownian motion, which establishes the claim.
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To prove (ii) and (iii) when θ+ = θ− = 0, we proceed by setting κ > 0 and analyze
ψh(zh−1/k) = hψ(zh−1/κ ). We must expand (67) and (68) around h−1 ∼ 0; in order to do this
we can use [28, Theorem 5.2], providing a series representation for the 2R1 function of com-
plex argument outside the unit circle. Under our parameter specification it holds (recall also
footnote 1)

�(−γ ) 2R1 (1,−γ, 1, α; w)=

−
∞∑

k=0

�(−γ − α(k + 1))

�(1 − α(k + 1))
(w−k−1)

+ (−wγ /α)

α

∞∑
k=0

�((k − γ )/α)�(1 − (k − γ )/α)

k!�(1 + γ − k)
(−1)k(−w)−k/α

= −
∞∑

k=0

�(−γ − α(k + 1))

�(1 − α(k + 1))
(w−k−1) +

∞∑
k=0

(−1)k

k! �(γ − k, α,−w) (96)

after using Euler’s summation and recalling that �(·, ·, ·) is given by (69). Setting w =
−λ+

h−α/κ |z|α�+(z)
, we obtain further

�(−γ )h−γ /κ
2R1

(
1,−γ, 1, α;

−λ+hα/κ

|z|α�+(z)

)

= −
∞∑

k=0

�(−γ − α(k + 1))

�(1 − α(k + 1))

(
(−iz)α

−λ+

)k+1

h−(γ+α(k+1))/κ

+
∞∑

k=0

(−1)k

k! h(γ−k)/κ�

(
γ − k, α,

λ+
(−iz)α

)
. (97)

If α + γ < 1, observing that �
(
γ − k, α, λ+

(−iz)α

)
= (−iz)−γ �(γ − k, α, λ+) in the positive part

of (67) with μ= −μ0 we obtain,

δ+

(
�(−γ )|z|γ�+(z)h−γ /κ

2R1

(
1,−γ, 1, α;

−λ+hα/κ

|z|α�+(z)

)
− �(γ, α, λ+)

)

= δ+

(
− (−iz)γ

∞∑
k=0

�(−γ − α(k + 1))

�(1 − α(k + 1))

(
(−iz)α

−λ+

)k+1

h−(γ+α(k+1))/κ

+
∞∑

k=1

(−1)k

k! h−k/κ�

(
γ − k, α,

λ+
(−iz)α

))
. (98)

The leading order in (98) corresponds to the term k = 0 of the first series. We thus have

lim
h→∞ hψ+(h−1/κ ) = δ+ lim

h→∞ h
�(−γ − α)

�(1 − α)λ+
(−iz)α+γ h−(γ+α)/κ = δ+

�(−γ − α)

�(1 − α)λ+
(−iz)α+γ ,

(99)

with the last equality holding if and only if κ = α + γ . Now it is well known that (e.g. [53,
Lemma 14.11])

(−iz)α+γ �(−α − γ ) =
∫ ∞

0

(eizx − 1)

x1+γ+α dx α + γ ∈ (0, 1), z ∈R, (100)
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which is the characteristic exponent of a spectrally positive α + γ stable r.v. with unit δ+ and
μ=μ∗

0. Substituting in (99) produces the positive part of the characteristic exponent of Z.
Repeating the above for ψ−

h yields (iii) when α + γ ∈ (0, 1).
If, instead, α+ γ ∈ (1, 2) we must use (68) with μ= −μ1 and in (97) we have, from the

relation �
(
γ − 1, α, λ+

(−iz)α

)
= (−iz)1−γ �(γ − 1, α, λ+), that

δ+

(
�(−γ )|z|γ�+(z)h−γ /κ

2R1

(
1,−γ, 1, α;

−λ+hα/κ

|z|α�+(z)

)
− �(γ, α, λ+)

− izh−1/κ�(γ − 1, α, λ+)

)

= δ+

(
−(−iz)γ

∞∑
k=0

�(−γ − α(k + 1))

�(1 − α(k + 1))

(
(−iz)α

−λ+

)k+1

h−(γ+α(k+1))/κ+
∞∑

k=2

(−1)k

k! h−k/κ�

(
γ − k, α,

λ+
(−iz)α

))
. (101)

Now, when α + γ ∈ (0, 2), again the k = 0 term in the first series leads, and the statement
follows as in (99), this time observing that

(−iz)α+γ �(−α− γ ) =
∫ ∞

0

(eizx − 1 − izx)

x1+γ+α dx α + γ ∈ (1, 2), z ∈R, (102)

which is again the characteristic exponent of a spectrally positive α + γ stable r.v. and unit δ+,
but this time with μ= −μ∗

1. This concludes the proof of (ii).
Finally, if α + γ > 2 in (97), then the leading order corresponds to the term k = 2 in the

second series, so that

lim
h→∞ hψ+(h−1/κ ) = δ+ lim

h→∞ h
h−2/κ

2
(−iz)γ � (γ − 2, α, λ+) (−iz)2−γ

= − z2

2
δ+� (γ − 2, α, λ+) (103)

provided that κ = 2. Together with the analogous computation forψ−
h , this completes the proof

of (iii) and of the proposition.

Observe that in view of Proposition 2 (or Remark 5) the second condition in (iii) of
Proposition 4 is equivalent to the finiteness of the variance. We see that the familiar short-time
stable/long-time Gaussian behavior of CTS laws (e.g. [36]) is reproduced for positive θ± or
when the process is GRGSγ (α, λ, δ;μ) but with finite variance, according to the central limit
theorem intuition. This last instance is the most interesting since it accounts for persistently
heavy tails but has a Gaussian limit, and is consistent with the empirical studies motivating our
work.

Instead, case (ii) shows that pure Mittag-Leffler tempering determines a stable limit whose
stability index is increased by the Mittag-Leffler factor α, compared to the short-time γ -stable
limit. This regime may also be of interest for applications.
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Another useful information that can be derived from the measure R is the range of values of
γ for which absolute continuity (in the sense of [53, Chapter 33]) with respect to a stable pro-
cess holds. The situation is akin to the generalized exponential tempering situation described
in [22].

Proposition 5. Let X = (Xt)t≥0 be a GRGTSγ (rγ (x; α, λ, θ , δ), μ) Lévy process. Assume that
there exists a second probability measure P′ under which X is a Sγ (δ, μ∗) Lévy process, with
σ given by (36). Then P′ is absolutely continuous with respect to P if and only if

μ∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ if γ ∈ (0, 1),

μ+
∫
R

x( log |x| − 1)rγ (x; α, λ, θ, δ)dx if γ = 1,

μ+ �(1 − γ )
∫
R

x rγ (x; α, λ, θ , δ)dx if γ ∈ (1, 2),

(104)

and min{α+, α−}> γ/2. Furthermore, in such cases there exists a density Lévy process Z =
(Zt)t≥0 such that for all t> 0

dP′

dP

∣∣∣Ft
= eZt . (105)

Proof. Indicating q the GRGTS tempering function in Cartesian coordinates, from [51,
Theorem 4.1], we have that a necessary and sufficient condition for the absolute continuity of
a TSγ Lévy process with respect to the given stable one is∫

{|x|<1}
(1 − q(x))2x−γ−1dx<∞. (106)

That is, for x> 0 ∫ 1

0

(
1 − e−θ+xEα+ ( − λ+ xα+ )

)2
dx<∞. (107)

We have, when x ∼ 0 and using (27),

e−θ+x ∼ 1 − θ+x, Eα+ ( − λ+ xα+ ) ∼ 1 − λ+xα+

�(α+ + 1)
, (108)

and hence

1 − e−θ+xEα+ ( − λ+ xα+ ) ∼ θ+x + λ+xα+

�(α+ + 1)
, x ∼ 0. (109)

Since α+ < 1 this implies the following leading order for x ∼ 0,

(
1 − e−θ+xEα+ ( − λ+ xα+ )

)2 ∼ λ2+x2α+

�(α+ + 1)2
. (110)

Comparing with (106) we see that the condition for convergence is α+ > γ/2. The same
calculation on −1< x< 0 in (106) establishes the claim.

When comparing among them two GRGTS Lévy processes, conditions of absolute con-
tinuity are somewhat analogous to the TS case (see e.g. [12, Example 9.1]), but additional
constraints on the Mittag-Leffler parameter are present. Below, spectral measures do not play
a role, so we allow asymmetric stability indices.

Proposition 6. Let X = (Xt)t≥0 be a GRGTSγ (mγ (x; α, λ, θ , δ), μ) Lévy process.
Assume that there exists a second probability measure P′ under which X is a
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GRGTSγ ′ (mγ ′ (x; α′, λ′, θ ′, δ′), μ′) Lévy process. Then P ∼ P′ if and only if γ = γ ′,
δ = δ′, min{α±, α′±}> γ±/2, and μ−μ′ = ∫

{|x|<1} (mγ (dx) − mγ ′ (dx)). Furthermore,

dP′

dP

∣∣∣Ft
= eZ (111)

where Z = (Zt)t≥0 is the Lévy process with triplet (μZ, 0,mZ(x)dx) given by

μZ = −
∫
R

(
eizx − 1 − izx1{|x|<1}

)
mZ(x)dx, (112)

mZ(x) = mγ (l−1(x); α, λ, θ, δ), (113)

where

l(x) = (θ+ − θ ′+)x + log

(
Eα′+ (−λ′+xα

′+ )

Eα+ (−λ+xα+ )

)
1{x>0} + (θ ′− − θ−)x

+ log

(
Eα′− (−λ′−|x|α′− )

Eα− (−λ−|x|α− )

)
1{x<0}. (114)

Proof. According to [53, Theorems 33.1, 33.2], P ∼ P′ if and only if the given relation
between μ and μ′ holds, and the Hellinger distance between the absolutely continuous Lévy
measures m(x)dx and m′(x)dx is finite, that is∫

R

(√
m(x) −√

m′(x)
)2

dx<∞. (115)

Furthermore, l(x) = log (m′(x)/m(x)), and then (114) is clear by (39), once the first assertion is
proved.

Now letting I(x) = (√
m(x) − √

m′(x)
)2

and using (26), for large x we have

I(x) ∼
(√

δ+
λ+�(1 − α+)xγ++α++1

e−xθ+/2 −
√

δ′+
λ′+�(1 − α′+)xγ

′++α′++1
e−xθ ′+/2

)2

, (116)

which is always integrable at +∞, whatever the value of θ+ by (26). The corresponding
convergence holds for large negative x.

In a right neighborhood of 0 we have the condition

∫ 1

0

⎛
⎝√δ+ Eα+ (−λ+xα+ )

x1+γ+ e−xθ+/2 −
√
δ′+

Eα′+ (−λ′+xα
′+ )

x1+γ ′+
e−xθ ′+/2

⎞
⎠

2

dx<∞. (117)

We write

I(x) = δ′+
e−θ ′+xEα′+ (−λ′+xα

′+ )

xα
′++1

(
x
γ ′+−γ+

2

√
δ+Eα+ (−λ+xα+ )

δ′+Eα′+ (−λ′+xα
′+ )

e
−θ+−θ ′+

2 x − 1

)2

, x> 0. (118)

https://doi.org/10.1017/apr.2025.12 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.12


Radially geometric stable distributions and processes 29

Assuming γ ′+ < γ+ and δ+ �= δ−, since exp(·) ∼ Eα(·) ∼ 1 as x → 0+, we have that I(x) ∼
δ+x−1−α′+−γ++γ ′+ , which diverges. The case γ+ > γ ′+ is similarly excluded. Therefore, for
convergence we must have γ+ = γ ′+. Once this is further assumed, if we allow δ+ �= δ′+ then

I(x) ∼ (
√
δ+ −

√
δ′+)2x−1−α′+ , again a divergent integrand. Therefore, for convergence it is nec-

essary that both γ+ = γ ′+ and δ+ = δ′+. Expanding the right-hand term in (118) in its McLaurin
series using (27) we obtain, with α∗ = min{α+, α′+},

I(x) ∼ δ+
xγ++1

⎛
⎜⎜⎝
⎛
⎜⎜⎝1 − λ+xα+

�(1+α+)

1 − λ′+xα
′+

�(1+α′+)

⎞
⎟⎟⎠

1/2

− 1

⎞
⎟⎟⎠

2

∼ δ+
xγ++1

((
1 − λ+xα+

2�(1 + α+)

)(
1 + λ′+xα

′+

2�(1 + α′+)

)
− 1

)2

∼ δ+
xγ++1

(
cxα∗)2 = c2δ+

xγ++1−2α∗ (119)

for some c �= 0. The convergence condition is thus γ+ + 1 − 2α∗ < 1, i.e. α∗ > γ+/2.
Repeating in a left neighborhood of 0 proves the result.

We observe that the condition of equivalence of Proposition 5 is embedded in Proposition 6.
Therefore, in order to have mutual equivalence between two GRGTSγ distributions under
different measures, it is necessary that both are equivalent to the same Sγ law.

6. Probability density analysis

An analytic theory of the probability densities of self-decomposable distributions is avail-
able. Continuity and differentiability properties are studied in [54, 65, 67, 68], who also discuss
unimodality. Tail properties and the relation between Lévy and probability densities are ana-
lyzed in [63, 64], among others. Such theory has been already applied in [36] to describe some
properties of the CTS probability densities, and it can be successfully exploited in our more
general GRGTS context.

As anticipated in Section 2, we begin by observing that there is at least one instance in
which the the p.d.f. of a GRGTS distribution is known, i.e. the TPL distribution. For such r.v.s
the density f0 is given in [1], and in our parametrization it reads

f0(x) = (λ+ θα)δ/αe−θxxδ−1Eδ/αα,δ
(−λxα

)
, λ, δ > 0, α ∈ (0, 1), x> 0. (120)

Using the classification in [54], we can deduce the following interesting facts on the regularity
of p.d.f.s of the GRGTS distribution class.

Proposition 7. Let X be a GRGTSγ (α, λ, θ , δ;μ) r.v. and denote its p.d.f. by fX. The following
hold true:

(i) if γ+δ+ > 0 or γ−δ− > 0, then fX ∈ C∞(R);

(ii) if γ+δ+ = 0 and γ−δ− = 0, then for n ∈N, if n< δ+ + δ− ≤ n + 1 both fX ∈ Cn−1(R)
and fX ∈ Cn(R \ {μ∗}). Furthermore, fX is unbounded around μ∗ =μ−μ0 ∈R and
continuous on R \ {μ∗} if and only if δ+ + δ− ≤ 1;
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(iii) fX is strictly unimodal, i.e. there exists a point xm such that fX is increasing on
(−∞, xm) ∩ supp fX and decreasing on (xm,∞) ∩ supp fX.

Proof. According to the theory in [54, 65, 68], the regularity/boundedness of the density
depends on the values of the integral part of the critical parameter λ= k(0 + ) + |k(0 − )|,
whose value coincides with the maximum differentiability order plus one of the p.d.f. on its
support. Recall that k is given by (40).

First, when γ+δ+ > 0 we have k(0 + ) = ∞ and hence by [54, Theorem 1.2], the smoothness
of the density follows. Similarly, if δ−γ− > 0, noticing k(0 − ) = ∞. This proves (i).

For (ii), observe first that in such case μ0 <∞. Assume γ+ = γ− = 0 and δ+, δ− > 0; then
k(0 + ) = δ+, |k(0 − )| = δ−, so that λ= δ+ + δ− and the first claim follows again by [54,
Theorem 1.2]. The case in which either δ+ or δ− is 0 is analogous. For the second state-
ment, observe that in [54] classification X is now of type III. By [54, Theorem 1.5] then fX is
unbounded around μ∗ if and only if the law of X is of subtype III1 or III2, which happens if
and only if δ+ + δ− = λ≤ 1. This shows (ii).

To show strict unimodality, denote k−(x) = k(−x) the canonical density of −X. According
to [54, Theorem 1.4], for fX to fail to be strictly unimodal it is necessary and sufficent that both

k(0 + ) + |k(0 − )| = k−(0 − ) + |k−(0 + )| = δ+ + δ− = 1 (121)

and that for some ξ, ξ− > 0
k(ξ ) = 1, k−(ξ−) = 1. (122)

But in case (i) we know k(0 + ) + |k(0 − )| = λ= ∞ so that (121) is not satisfied. In cases
(ii) assume (121) so that both k(0 + ), k−(0 + ) ≤ 1. Since k and k− from (40) are strictly
decreasing on the positive half line, no strictly positive roots as in (122) can exist. Therefore
(121) and (122) cannot hold simultaneously, and (iii) follows.

Above, μ∗ is a location parameter, which is zero in the case of a driftless Lévy triplet
for the GRGTS law when no truncation function is used. By [53, Theorem 24.10], μ∗ also
coincides with the lower/upper bound of the density support for spectrally positive/negative
GRGTS distributions. We have the following result for the left-tail asymptotic behavior of the
probability density of a GRGTS+ law around μ∗.

Proposition 8. Let X be a GRGTS+
γ (α, λ, θ, δ;μ) r.v. with γ ∈ [0, 1). As x ↓μ∗, we have the

following leading orders:

(i) if X ∈ RGTS+
α (λ, θ, δ;μ) then

fX(x) ∼ (λ+ θα)δ/α(x −μ∗)δ−1; (123)

(ii) otherwise

log fX(x) ∼ δ
γ − 1

γ
�(1 − γ )

1
1−γ (x −μ∗)−

γ
1−γ . (124)

Proof. Part (i) follows by inspection of equation (120), after the location shift x �→ x −μ∗,
since Ec

a,b(0) = exp(0) = 1. Moreover, observe as x ∼ 0, k(x) ∼ cx−γ , c> 0, which is integrable
around zero since γ < 1. This implies that fX is of type I6 in the classification in [54], and thus
part (ii) follows from an application of [54, Theorem 5.2].

A similar result holds when X ∈ GRGTS−
γ (α, λ, θ, δ;μ), γ ∈ [0, 1). Proposition 8 is

consistent with Proposition 7; in particular, if γ = 0 the left tail is a power law.
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Next, we study the asymptotics of the tails of the GRGTS p.d.f. at infinity. It is known that
the tails of probability densities of an i.d. law correspond to those of the Lévy in a weak sense:
for example, finiteness of cumulants is equivalent to finiteness of the truncated Lévy moments.
From the results in [63], one obtains the identity of the tail leading orders if the so-called
property of convolution equivalence can be shown to hold.

Convolution equivalence can be succinctly defined as follows. For a real measure η we
indicate by η(x) := η((x,∞)) its tail function and by η̂(s) its moment generating function at
s ∈ D ⊆R. A r.v. X with law η belongs to the class L(β), β ≥ 0, if for all a, x ∈R we have

η(x)> 0, η̄(x + a) ∼ e−aβη(x), (125)

as x → +∞. A distribution η is said to be convolution equivalent of order β ≥ 0 if η̂(β)<∞,
η ∈ L(β) and

lim
x→∞

η ∗ η(x)

η(x)
= 2η̂(β), (126)

with ∗ indicating the convolution of measures. The convolution equivalence of general TSγ
distributions has been shown in [60], which in particular is shown to be of order θ+ for
GRGTSγ (α, λ, θ , δ;μ), distributions with γ > 0. The proof can be extended with little effort
also to RGTSα(λ, θ , δ;μ) distributions as follows.

Proposition 9. The RGTSα(λ, θ , δ;μ) distribution class is convolution equivalent of order θ+.

Proof. We drop the parameter subscripts throughout. Let m be the Lévy density of some
given RGTSα(λ, θ , δ;μ) law and consider the normalization

m1(dx) := m(x)

m(1)
1{x>1}dx = δ

m(1)x
e−θxEα(−λxα)1{x>1}dx, (127)

which is a probability law. According to [63, Theorem B, (1)–(2)], the stated convolution
equivalence holds if and only if so does convolution equivalence of m1 of same order. Using
de l’Hopital’s rule, the fundamental theorem of calculus, and (26), for all a ∈R it holds that

lim
x→∞

m1(x + a)

m1(x)
= lim

x→∞

∫ ∞

x+a

e−yθ

y
Eα(−λyα)dy∫ ∞

x

e−yθ

y
Eα(−λyα)dy

= e−(x+a)θx

(x + a)

Eα(−λ(x + a)α)

e−θxEα(−λxα)

=e−θa lim
x→∞

(
x

x + a

)
Eα(−λ(x + a)α)

Eα(−λxα)
= e−θa lim

x→∞

(
x + a

x

)α−1

= e−θa (128)

verifying (125) with β = θ . If η is the law of X, and θ > 0, that η̂(θ ) = eψ(−iθ) <∞, with ψ as
in Theorem 1, (ii) or (iii) can be verified directly, and if θ = 0 there is nothing to prove.

To show (126), proceeding as in [60, Equations (2.11)–(2.13)], we arrive at the equality

lim
x→∞

m1 ∗ m1(x)

m1(x)
= lim

x→∞
δ

m(1)

∫ x/2

1

(
x

(x − z)z

)
Eα(−λ(x − z)α)Eα(−λzα)

Eα(−λxα)
dz. (129)

Again, referring to [60, Theorem 1], convolution equivalence of m1 of order θ—and hence, by
[63, Theorem B, (1)–(2)], that of order θ of the given RGTS r.v.—would follow by a dominated
convergence argument if the last integrand is dominated by an integrable function of z for any
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parameter choice. Now, for z ∈ (1, x/2) we have x/(x − z) ≤ 2. Let k(y) = Eα(−λyα). Since k is
c.m., as a consequence of [60, Proposition 1(ii)], for all fixed z ≥ 1 the ratio k(x − z)/k(x)
is decreasing in x for all x> z so that k(x − z)/k(x)1{1≤z≤x/2} has a maximum in x = 2z.
Combining with the usual asymptotic estimate (26) this results in

(
x

(x − z)z

)
Eα(−λ(x − z)α)Eα(−λzα)

Eα(−λxα)
1{1≤z≤x/2} <

2

z

Eα(−λzα)2

Eα(−λ(2z)α)
∼ 21−α

λ�(1 − α)
z−1−α

(130)
as z → ∞. Hence the integrand in (129) is bounded by an integrable function on [1,∞) for all
values of λ and α.

Combining convolution equivalence with density monotonicity, the theory of regular
variation can be used to provide the explicit tail asymptotics of GRGTS p.d.f.s.

Proposition 10. Let X be a GRGTSγ (α, λ, θ , δ;μ) r.v. and denote by fX its p.d.f. Then as
x → ±∞,

fX(x) ∼ δ±
λ±�(1 − α±)

e−θ±x+ψ(−iθ±)

x1+γ±+α± , (131)

where ψ is the characteristic exponent given in Theorem 1.

Proof. We assume x → ∞ first and drop the subscript + for notational convenience. From
[60, Theorem 1] and Proposition 9 above, we know that the law of X is convolution equiv-
alent of order θ for all γ ∈ [0, 2). Denote by FX the survival function of X and by fX and m
respectively its p.d.f. and Lévy measure. Set X0 be the GRGSγ (α, λ, δ;μ) r.v. with Lévy den-
sity m0(x) = eθxm(x) (possibly, θ = 0, and m0 = m), and corresponding survival function F0,X
having tilted p.d.f. f0,X(x) = eθx−ψ(−iθ)fX(x), with ψ as in Theorem 1 if θ > 0, replaced by 0, if
θ = 0. It is shown in [63, Theorem B, (3)] that convolution equivalence ensures that

F0,X(x) ∼ m0(x)eψ(−iθ) = m0(x), x → +∞, (132)

whereψ is that of Theorem 2 (but in view of the second equality, this information is irrelevant).
Then for all c> 0, using (26) we obtain

lim
x→∞

m0(cx)

m0(x)
= c−1−α−γ , (133)

that is, m0 is regularly varying of order −1 − α − γ . Therefore,

m0(x) = x−1−α−γ �(x) (134)

for some slowly varying function �. By [15, VIII.9, Theorem 1(a)], applied with p = 0, and
(134) we see that

m0(x) ∼ x m0(x)

γ + α
= x−α−γ �(x)

γ + α
, x → +∞, (135)

which replaced in (132) leads to

F0,X(x) ∼ x−α−γ �(x)

γ + α
, x → +∞. (136)
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Now by the monotone density theorem (MDT) in its version for the tail function (see [5,
Theorems 1.7.2, 1.7.2b], and the related discussion of the alternative versions), we have that if
U(x) = ∫∞

x u(y)dy with u ultimately monotone, and U(x) ∼ cxρ�(x), x → ∞, �(x) slowly vary-
ing, ρ < 0, then u(x) ∼ −cρxρ−1�(x), x → ∞. In the present case, based on (136), and because
by Proposition 7(iii), f0,X is ultimately monotone, we can apply the MDT with U = F0,X ,
u = f0,X , c = (γ + α)−1, ρ = −α − γ . Hence

f0,X(x) ∼ x−1−α−γ �(x), x → ∞. (137)

Again, in view of (26) and (39) one has

�(x) ∼ δ

�(1 − α)
, x → ∞, (138)

which used in (137) proves (131) for f0,X .
Letting then θ > 0, recalling the definition of f0,X , by what just proved it also follows

fX(x) = f0,X(x)e−θx+ψ(−iθ) ∼ δ

�(1 − α)
x−1−α−γ e−θx+ψ(−iθ) (139)

and we have shown (131) in its generality. The statement for x → −∞ follows by considering
the convolution equivalent GRGTSγ (α, λ, θ , δ;μ) r.v. −X of order θ− at x → +∞.

In at least one case it is not hard to verify Proposition 10, namely, for TPL distributions.

Example 5. Right tail of a TPL p.d.f. For a TPL(α, λ, θ, δ) distribution we have the p.d.f. (120)
available. Using (25) we can extract the following leading order as x → +∞,

f0(x) ∼ − δ

αλδ/α+1

(λ+ θα)δ/α

�(−α)

e−θx

xδ+α
xδ−1 = δ

λ�(1 − α)
exp

(
δ

α
log

(
λ+ θα

λ

))
e−θx

x1+α , (140)

which matches the expression (131) at +∞ with ψ from (42).

7. Conclusions

Motivated by the investigation of heavy-tailed distributions with finite variance in eco-
nomics and physics, we have proposed the use of positive geometric tempered stable laws
to model the radial part of Lévy measure. Such suggestion naturally fits in with the theory
of complete monotone tempering of stable distributions. In particular, Propositions 2 and 4
make viable the introduction of processes with Gaussian limit but heavy tails at all time lags in
the form of GRGS laws, entailing (very slow) central limit theorem convergence. Also, when
θ �= 0, familiar exponential/semi-heavy tails are obtained, but in principle a faster reversion to
Gaussian ought to be observable (because of (27)) compared to, for example, CTS models.

To illustrate such effects, in Figure 1 we plot some comparisons between Lévy densi-
ties/tempering functions of Ss/CTSs laws against those of a GRGTSs law, θ > 0, and its GRGSs

counterpart. Around 0 the Lévy densities are all unbounded, with Sγ showing the fastest blow-
up rate. For large |x|, the |x|−γ tails of the Sγ density are the heaviest, followed by those of the
GRGSs

γ density. As predicted by our results the latter are still heavy, but lightened compared

https://doi.org/10.1017/apr.2025.12 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.12


34 L. TORRICELLI

TABLE 1. Distribution list. When appearing, the superscripts s,+,− stand, respectively, for the
symmetric, spectrally positive, and spectrally negative version of the corresponding distribution.

Symbol Description Dimension

BG(λ, δ) bilateral gamma 1
BL(α, λ, δ) bilateral Linnik 1
CTSα(θ , δ;μ) classical tempered stable 1
G(λ, δ) gamma 1
GRGSγ (α, λ, δ;μ) generalized radially geometric stable 1
GRGSγ (σ, α, λ;μ) GRGS, polar parameterization d
GRGTSγ (α, λ, θ , δ;μ) generalized radially geometric

tempered stable
1

GRGTSγ (σ, α, λ, θ ;μ) GRGTS, polar parameterization d
GRGTSγ (rγ (x; α, λ, θ , δ);μ) GRGTS, Rosińsky parametrization 1
ML(α, λ) Mittag-Leffler 1
PL(α, λ, δ) positive Linnik 1
RGSα(λ, δ;μ) radially geometric stable 1
RGS(σ, α, λ;μ) RGS, polar parameterization d
RGTSα(λ, θ, δ;μ) radially geometric tempered stable 1
RGTS(σ, α, λ, θ ;μ) RGTS, polar parameterization d
Sα(λ, β;μ) stable, classical parameterization 1
Sα(δ;μ) stable, Lévy parameterization 1
Sα(σ, μ) stable, polar parameterization d
TPL(α, λ, θ, δ) tempered positive Linnik 1
TSγ (Q;μ) Rosińsky tempered stable, spectral

parameterization
d

TSγ (R;μ) Rosińsky tempered stable, Rosińsky
parameterization

d

to the Sγ ones, by a factor |x|−α entailing finite variance in this example (since α+ γ > 2).
The CTSs

γ and GRGTSs
γ , θ �= 0, decays are instead both exponential, with the GRGTSs

γ faster
again because of the factor |x|−α . Such impact eventually becomes negligible, as can be also
seen in the considered range. In the bottom panel we visualize the corresponding tempering
functions. We notice a stronger tempering around 0 in the GRGTSs

γ , θ �= 0 and GRGSs
γ laws

compared with the CTSs
γ , but as |x| becomes larger the GRGTSs

γ tails look like those of an
exponential, while those of the pure Mittag-Leffler tempering remain much heavier.

In terms of possible extensions, we notice that one limitation of the radial geometric stable
approach is that the tail index of the GRGS densities is always confined to be smaller than 3,
which implicates diverging higher moments. This is at odds with some estimates of financial
data (e.g. [19]) which instead find evidence of finite skewness. In view of (26), this could be
resolved by considering radial functions comprising the three-parameter Mittag-Leffler func-
tion, which is known to be c.m. under some parameter constraints (see [21]). We leave this
direction of research for further investigations.

https://doi.org/10.1017/apr.2025.12 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.12


Radially geometric stable distributions and processes 35

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

2

4

6

8

10

12

14

16

18

Ss

CTSs

GRGSs

GRGTSs, >0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ss

CTSs

GRGSs

GRGTSs, >0

FIGURE 1. Top: Ss
γ , CTSs

γ , GRGTSs
γ , and GRGSs

γ Lévy densities. Bottom: corresponding tempering
functions. The parameters are γ = 1.6, α = 0.5, λ= θ = δ = 1.
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