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Quasimap Floer Cohomology for Varying
Symplectic Quotients

Glen Wilson and Christopher T. Woodward

Abstract. We show that quasimap Floer cohomology for varying symplectic quotients resolves several

puzzles regarding displaceability of toric moment fibers. For example, we present a compact Hamilto-

nian torus action containing an open subset of non-displaceable orbits and a codimension four singular

set, partly answering a question of McDuff, and we determine displaceability for most of the moment

fibers of a symplectic ellipsoid.

1 Introduction

Quasimap Floer cohomology, constructed in [16], is an obstruction to Hamiltonian

displaceability of an invariant Lagrangian submanifold in the zero level set of a mo-

ment map for the action of a Lie group by an invariant time-dependent Hamiltonian.

The differential for quasimap Floer cohomology counts orbits of the group on the

space of holomorphic disks with boundary in the Lagrangian. Since holomorphic

disks “upstairs” often have better properties than holomorphic disks in the symplec-

tic quotient, quasimap Floer cohomology is a sometimes-better-behaved substitute

for Floer cohomology in the quotient.

Here we restrict to the case of toric varieties. That is, the group G ⊂ U (1)N is a

torus and the symplectic manifold Y ∼= CN is a Hermitian vector space. The group

G acts in Hamiltonian fashion on Y with quadratic moment map Ψ : Y → g∨. The

symplectic quotient X = Y//G := Ψ
−1(0)/G is a possibly singular toric manifold

with action of the torus T = U (1)N/G and a moment map Φ : X → t∨ induced from

that of U (1)N on Y . By definition, a smooth function on X is an equivalence class

of smooth G-invariant functions on Y such that displaceability in X is equivalent to

displaceability by a G-invariant Hamiltonian on Y . Non-displaceability results in the

quotient X are provided by Floer-theoretic methods in Fukaya–Oh–Ohta–Ono [8,9].

Quasimap Floer cohomology gives the following result, which at first seems only

slightly stronger. We denote by v1, . . . , vN ∈ t the images of minus the standard basis

vectors e1, . . . , eN ∈ RN . The moment polytope Φ(X) is the set of points satisfying

linear inequalities

Φ(X) = {λ ∈ t∨ | li(λ) ≥ 0}, li(λ)/2π := 〈λ, vi〉 − ǫi , i = 1, . . . ,N
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where 〈 · , · 〉 : t∨ × t → R is the canonical pairing and ǫ1, . . . , ǫN are constants given

by the choice of moment map. This list of inequalities may not be minimal; that

is, any particular inequality may or may not define a facet of Φ(X). Let Λ be the

universal Novikov field consisting of possibly infinite sums of real powers of a formal

variable q,

Λ =

{ ∞∑

n=0

cnqdn , cn ∈ C, dn ∈ R, lim
n→∞

dn = ∞

}
.

Let Λ0 denote the subring consisting of sums with only non-negative powers. Any

fiber Lλ = Φ
−1(λ) over an interior point λ ∈ int(Φ(X)) is a Lagrangian torus in X,

namely a single free T-orbit, and has inverse image L̃λ in Ψ
−1(0) a U (1)N -orbit in

Y . We identify H1(Lλ,Λ0) ∼= H1(T,Λ0)T ∼= t∨ ⊗ Λ0. In particular, for any v ∈ t

and b ∈ H1(Lλ,Λ0) we have a pairing 〈v, b〉 ∈ Λ0 and an exponential e〈v,b〉 ∈ Λ0.

Choose δ = (δ1, . . . , δN ) ∈ Λ
N
0 . The bulk-deformed potential (introduced in [10,

Theorem 3]) is

(1.1) Wλ,δ : H1(Lλ,Λ0) → Λ0, b 7→

N∑

i=1

e〈vi ,b〉−δi qli (λ).

Theorem 1.1 For any λ ∈ int(Φ(X)), if there exists δ ∈ Λ
N
0 such that Wλ,δ has a

critical point, then Lλ is non-displaceable in X, or equivalently, L̃λ is not displaceable by

any G-invariant time-dependent Hamiltonian H ∈ C∞([0, 1] × Y )G.

This was proved in [16], but the possibility that the quotient is singular or that

some of the inequalities do not define facets of the polytope was not included in the

main result. Later we realized the importance of the more general result: even for

understanding displaceability in open subsets of CN , the case of singular or “spuri-

ous” inequalities is highly relevant. The following example shows the importance of

singular quotients.

Example 1.2 (Non-displaceability in C2 by Z2-invariant Hamiltonians) Let µ =

(µ1, µ2) ∈ R2
>0, and L = {(z1, z2) ∈ C2 | |z1|

2
= µ1, |z2|

2
= µ2}. The group Z2 =

{±1} acts diagonally on C2. We claim that L ⊂ C2 is displaceable by a Z2-invariant

Hamiltonian if and only if µ1 6= µ2. Indeed, L is displaceable by a Z2-invariant time-

dependent Hamiltonian if and only if L/Z2 is displaceable in the orbifold quotient

X = C2/Z2. The latter admits the structure of a toric orbifold with moment polytope

given by the span of the vectors (1, 1), (−1, 1); see Example 3.6 and Figure 1. The

quotient L/Z2 is the moment fiber over (λ1, λ2) = (µ1 − µ2, µ1 + µ2). The probes

of McDuff [14] (or the Hamiltonian action of SU (2) on C2) show that if λ1 6= 0,

then L is displaceable, since any such (λ1, λ2) is contained in a probe with direction

(0, 1). Unfortunately quasimap Floer cohomology for C2/Z2 does not give any non-

displaceable fibers, since the potential has no critical points. We apply the following

trick: observe that 0 ∈ C2 is fixed by the flow of any Z2-invariant Hamiltonian H,

since dH(t, 0) = 0 for all t ∈ [0, 1]. Consider the singular symplectic quotient

X̂ obtained from X × C by symplectic quotient by S1, acting on X with moment
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map |z1|
2 + |z2|

2, that is, by symplectic cut of X with respect to the diagonal circle.

The space X̂ has the same moment polytope as X, but its realization as a symplectic

quotient Y//G involves a “spurious inequality” λ2 ≥ 0 as well as the inequalities for

X given by λ1 + λ2 ≥ 0,−λ1 + λ2 ≥ 0. A toric moment fiber for X is displaceable

if and only if the corresponding toric moment fiber for X̂ is displaceable, since after

applying a cutoff function we may assume that H vanishes near the singular locus

and X and X̂ are isomorphic away from the singular loci; see Proposition 2.2. The

bulk-deformed potential qλ1+λ2 eb1+b2 + q−λ1+λ2 e−b1+b2 + qλ2 eb2−δ has a critical point

if and only if λ1 = b1 = 0 and 2eb2 + eb2−δ
= 0 or e−δ

= −2. See Figure 1. A similar

result for the deformation of C2/Z2 was studied in Fukaya et al. [7].

Figure 1: Displaceable and non-displaceable fibers for C
2/Z2.

Below we give further examples of displaceability of torus orbits in open subsets

of CN . Embedding such open subsets in singular symplectic quotients turns out to

be quite useful for resolving displaceability. We use the same technique to partially

answer a question of McDuff by giving an example of a compact toric orbifold with

an open subset of non-displaceable fibers.

2 Displaceability in Orbifolds

In this section we review some basic facts about Hamiltonian displaceability in orb-

ifolds. Recall that an orbifold is a Hausdorff second-countable topological space

X equipped with an equivalence class of orbifold structures: a smooth proper étale

groupoid X̃ together with a homeomorphism from the space of isomorphism classes

of objects in X̃ to X; see e.g., Adem–Klaus [3]. For any orbifold X and element x ∈ X,

we denote by Aut(x) the group of automorphisms of any object x̃ in X̃ mapping to

x, independent up to isomorphism of the choice of orbifold structure and choice of

x̃. Denote by Xorb
= {x ∈ X|# Aut(x) > 1} the subset of X consisting of points

with more than one automorphism and by Xmfd
= X − Xorb the locus of points with

only the identity morphism. Thus Xmfd is a smooth manifold and admits an open

embedding into X.

Orbifolds typically arise as quotients of smooth manifolds by locally free actions

of compact groups. The quotient Y/G of a smooth manifold Y by a compact group

G has a canonical orbifold structure, given by taking local slices for the action. A

G-space Y together with an orbifold equivalence Y/G → X is called a global quotient

presentation of X. If the generic automorphism group of an orbifold X is trivial so
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that Xmfd is non-empty, then X admits a global quotient presentation, namely the

orthogonal frame bundle of X by the action of the orthogonal group. The notion

of an action of a Lie group on an orbifold X is somewhat complicated in general

because of the various notions of an action of a Lie group on a category; see e.g.,

[12]. In this paper all group actions will arise from global presentations, that is, from

a G-equivariant action on Y where X = Y/G. The notion of symplectic form and

Hamiltonian action have natural extensions to the orbifold case, which are somewhat

simpler in the globally presented case: a symplectic form on a globally presented orb-

ifold X = Y/G is a closed G-basic form on Y that is non-degenerate on the normal

bundles to the G-orbits.

Definition 2.1 Let X be a symplectic orbifold. A subset L ⊂ X is Hamiltonian

displaceable if and only if there exists a function H ∈ C∞
c ([0, 1] × X) with time t

Hamiltonian flow φH,t : X → X such that φH,t (L) ∩ L = ∅ for some t .

We collect a few elementary properties of displaceability in the following proposi-

tion.

Proposition 2.2 (i) Suppose that X1 ⊂ X2 is an open set and L ⊂ X1. If L is

displaceable in X1, then L is displaceable in X2.

(ii) Suppose that either L1 ⊂ X1 or L2 ⊂ X2 are displaceable. Then L1 ×L2 is displace-

able in X1 × X2.

(iii) Suppose that X is a Hamiltonian G-orbifold and X//G is its symplectic quotient.

Then L ⊂ X//G is displaceable if and only if the inverse image of L in X is displace-

able by the flow of a G-invariant time-dependent Hamiltonian.

(iv) Suppose that L1, L2 ⊂ X are disjoint subsets such that L1 is displaceable by a flow

φt,H with φt,H(L2) = L2 for all t ∈ [0, 1]. Then L1 is displaceable by a flow φt,H2

equal to the identity in a neighborhood of L2 for all t ∈ [0, 1].

Proof (i) If H1 ∈ C∞
c (X1) displaces L1 in X1, then the extension of H1 by zero to

C∞
c (X2) displaces L1 in X2. (ii) Suppose without loss of generality that H1 displaces

L1. Then π∗
1 H1 displaces L1 × L2 where π1 : X1 × X2 → X1 is the projection. (iii)

If H displaces L then any invariant extension of π∗H, where π : Φ−1(0) → X//G, to

X, displaces the inverse image of L. The converse is similar. (iv) If φt,H displaces L1

and maps L2 to itself, then let ρ ∈ C∞(X) be a function equal to 1 on the image of L1

under the flow φH,t , and zero on an open neighborhood of L2. Then the flow of ρH

displaces L1 and is equal to the identity on a neighborhood of L2.

3 Displaceability of Toric Moment Fibers

We consider the following class of possibly non-compact Hamiltonian torus actions

on orbifolds. Let T be a torus and let tZ = exp−1(1) be the integral lattice.

Definition 3.1 X is an open symplectic toric orbifold for T if X is a connected Hamil-

tonian T-orbifold with moment map Φ : X → t∨ satisfying the following conditions:

(i) Φ(X) is a defined by a finite set of affine linear inequalities defined by vectors in

tZ and strict affine linear inequalities defined by vectors in t;
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(ii) Φ : X → Φ(X) is proper;

(iii) the T-action is generically free;

(iv) dim(T) = dim(X)/2;

Remark 3.2 By (i) the image Φ(X) is given by

(3.1) Φ(X) =

{
λ ∈ t∨

∣∣∣ 〈λ, vi〉 ≥ ǫi i = 1, . . . , k,
〈λ, vi〉 > ǫi i = k + 1, . . . ,N

}

for some vectors vi ∈ tZ, i = 1, . . . k and vi ∈ t, i = k + 1, . . . ,N. By (ii), (iii),

and the results of [13], the stabilizer of any point in the inverse image Φ−1(F) of an

open facet F is isomorphic to the cyclic group Zn(F) for some integer n(F) ≥ 1. We

assume that vi is normalized to be the n(Fi)-th multiple of the primitive lattice vector

pointing inward from the facet Fi corresponding to vi . In this way, in the compact

case, the vectors vi are the data used in the weighted fan classification of toric orbifolds

in [4, 13].

Example 3.3 We have that X = Cn itself is an open symplectic toric manifold with

symplectic form −2
∑n

i=1 dq j ∧ dp j where z j = q j + i p j and moment map

Φ : X → t∨ ∼= R
n, (z1, . . . , zn) 7→ (|z1|

2, . . . , |zn|
2).

The vectors v1, . . . , vn are the standard basis vectors.

Example 3.4 Any open subset of Cn defined by a1|z1|
2 + · · · + an|zn|

2 < 1 for

some a1, . . . , an ∈ Q is an open symplectic toric manifold obtained from a weighted

projective space by removing a divisor at infinity.

The following well-known lemma indicates how to read off the automorphism

group Aut(x) of a point x ∈ X from the facets of Φ(X) containing Φ(x).

Lemma 3.5 (see e.g., [13, Lemma 6.2]) Let X be an open symplectic toric orbifold,

x ∈ X, and let I(x) = {i|〈Φ(x), vi〉 = ǫi} be the indices of normal vectors of facets

containing Φ(x). Then

Aut(x) ∼= ker

(
U (1)#I(x) → T, exp

( ∑

i∈I(x)

ciei

)
7→ exp

( ∑

i∈I(x)

civi

))
.

In particular, since Aut(x) is finite, this lemma implies that Φ(X) is a simple poly-

tope; that is, the normal vectors at any point are linearly independent.

Example 3.6 Let X be the quotient of Y = C2 by the diagonal action of Z2 = {±1}
given by scalar multiplication. The action of T ′

= U (1)2 on C2 descends to a generi-

cally free action of T = T ′/Z2 on X. The integral lattice tZ is the inverse image of Z2

under the exponential map for T ′, hence tZ is generated by (1/2, 1/2), (1/2,−1/2).
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We identify t → R2 by (ξ1, ξ2) 7→ (ξ1 + ξ2, ξ1 − ξ2), so the integral lattice becomes

the standard one. The moment map for the T action on X is then

Φ : X → R
2, (z1, z2) 7→

(
|z1|

2 + |z2|
2, |z1|

2 − |z2|
2
)
.

The integral vectors are (−1, 1), (1, 1). The automorphism group

Aut(0) = ker
(

U (1)2 → U (1)2, (z1, z2) 7→ (z1z2, z1z−1
2 )

)
= Z2.

Theorem 3.7 Any open symplectic toric orbifold can be obtained by symplectic reduc-

tion by an open subset of T∗U (1)k × Cl for some k, l by a subtorus of U (1)k+l.

Proof The compact case is a consequence of the results of [11] as discussed in [16].

Given an open symplectic toric orbifold X the symplectic cutting construction pro-

duces a symplectic toric orbifold X ′ with the same moment polytope as X. The

uniqueness result of [11] implies that X is isomorphic to X ′ as a Hamiltonian T-orbi-

fold.

We wish to understand the Hamiltonian displaceability of toric moment fibers:

Definition 3.8 Let X be an open symplectic toric orbifold. A toric moment fiber is

a Lagrangian torus given as a fiber Lλ = Φ
−1(λ) for some λ ∈ int(Φ(X)).

Denote by ND(X) ⊂ int(Φ(X)) (resp. D(X)) the set of points corresponding to

non-displaceable (resp. displaceable) toric moment fibers.

Example 3.9 (Moser) Let X be the unit disk with moment polytope [0, 1). Then

D(X) = [0, 1/2) and ND(X) = [1/2, 1), because Moser [15] shows that the only

invariant of a symplectic surface is its area. Hence a circle L in the disk X encloses

less than half the area if and only if L is displaceable in X. Similarly, if X = P1 with

moment polytope Φ(X) = [−1, 1], then ND(X) = {0}.

Example 3.10 (McDuff [14]) Let X be a compact symplectic toric orbifold with

moment map Φ, and let F be an open facet of Φ(X) such that Φ−1(F) ⊂ Xmfd.

Let v ∈ t∨Z be a vector such that v can be completed to a lattice basis by vectors

parallel to F. If λ0 ∈ F and λ lies less than half-way along (λ0 + R≥0v) ∩ Φ(X), then

Φ
−1(λ) is displaceable. Let T0 ⊂ T be the torus whose Lie algebra is the annihilator

of v. Moser’s argument shows that Φ−1(λ)/T0 is displaceable in X//T0, and then

Proposition 2.2(iii) implies that Φ−1(λ) is displaceable in X. See Abreu–Borman–

McDuff [1] for improvements on this method.

Naive application of Theorem 1.1 (that is, without spurious inequalities) does not

come close to resolving the questions of non-displaceability of toric fibers even for

simple examples and after including bulk deformations in [9]. For example, for a

weighted projective space the naive method gives a single non-displaceable fiber over

λ = (5/3, 5/3), while McDuff ’s method shows displaceability for only some of the

other fibers. See Example 4.11.
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4 Potentials for Varying Quotients

As explained in the introduction, open symplectic toric manifolds have various re-

alizations as symplectic quotients, some singular, and the quasimap Floer cohomol-

ogy for each realization can give additional information about displaceability. We

combine the potentials for the different compactifications into a potential involving

infinitely many variables as follows.

Definition 4.1 An affine linear function ℓ : t∨ → R is semipositive on Φ(X) if and

only if ℓ is positive on Φ(Xmfd) and non-negative on Φ(Xorb).

Remark 4.2 Any affine linear function ℓ on t∨ is given by ℓ(λ) = 〈v, λ〉 − ǫ for

some v ∈ t, ǫ ∈ R. If the function corresponding to λ, ǫ is semipositive, then so is

the function corresponding to λ, ǫ ′ for any ǫ ′ ≤ ǫ.

Example 4.3 Let X = P(1, 1, 2) denote the weighted projective plane with moment

map the convex hull of (0, 0), (1, 0), and (0, 2), with the orbifold singularity with

automorphism group Z2 mapping to (1, 0). Then the linear function 〈(−1, 0), · 〉− ǫ
is semipositive for ǫ ≤ −1, while the linear function 〈(0,−1), · 〉 − ǫ is semipositive

for ǫ < −2.

Definition 4.4 Denote by C(tZ,R)+ the set of maps ǫ : tZ → R ∪ {−∞} such that

(i) only finitely many values of ǫ are finite;

(ii) if v defines a facet of Φ(X) in the sense of (3.1), then ǫ(v) = minλ∈Φ(X)〈v, λ〉;
(iii) if v does not define a facet, then 〈v, · 〉 − ǫ(v) is semipositive on Φ(X).

Definition 4.5 The potential for λ ∈ int(Φ(X)), ǫ ∈ C(tZ,R)+, δ ∈ C(tZ,Λ0) is

the function

Wλ,ǫ,δ : H1(T,Λ0) → Λ0, b 7→
∑

v∈tZ

q〈v,λ〉−ǫ(v)e〈v,b〉−δ(v)

where by convention q∞ = 0.

Example 4.6 (Symplectic balls) Let X = {z ∈ Cn|
∑n

i=1 |zi |
2 < 1} be the unit ball

in Cn. Consider the coweight v = (−1, . . . ,−1) and let ǫ(v ′) = −c if v = v ′, ǫ(ei) =

0 for all 1 ≤ i ≤ n (where ei denotes the standard basis vector) and ǫ(v ′) = −∞
otherwise, and δ(ei) = 0. Then

Wλ,ǫ,δ(b) =

n∑

i=1

qλi ebi + q−λ1−···−λn+ce−b1−···−bn

for c ≥ 1.

Theorem 4.7 Suppose that λ ∈ int(Φ(X)) is such that for some ǫ, δ, Wλ,ǫ,δ has a

critical point. Then Φ
−1(λ) ⊂ X is non-displaceable.

Before we give the proof, we present several examples showing how this theorem

improves on that of [16].
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Example 4.8 (Symplectic balls continued) Continuing Example 4.6, Wλ,ǫ,δ has a

critical point if and only if λ = (c, . . . , c)/(n + 1) for c ≥ 1 if and only if Φ−1(λ)

is non-displaceable, which is well known from the works of Cho [5] and Entov-

Polterovich [6]. McDuff ’s method implies that the remaining toric fibers are dis-

placeable. See Figure 2.

Figure 2: Displaceable and non-displaceable fibers for the symplectic 4-ball.

Example 4.9 (A weighted projective plane with a measure zero set of non-displace-

able fibers) Suppose that X = P(1, 1, 2) is the weighted projective plane with mo-

ment polytope (0, 0), (1, 0), (0, 2). We write

Φ(X) =
{

(λ1, λ2) | λ1 ≥ 0, λ2 ≥ 0, 2λ1 + λ2 ≤ 2, λ1 ≤ 1
}
.

The corresponding potential is

Wλ,ǫ,δ(b) = qλ1 eb1 + qλ2 eb2 + q−2λ1−λ2+2e−2b1−b2 + q−λ1−ǫe−b1−δ1 .

For ǫ = 1 we obtain a critical point if and only if λ = (1, 0)+ζ(−1, 1) where ζ ≤ 1/2.

See Figure 3.

Example 4.10 (A symplectic ellipsoid) Suppose that

X =
{

(z1, z2) ∈ C
2 | |z1|

2 + |z2|
2/2 < 1

}
.

We write

Φ(X) =
{

(λ1, λ2) | λ1 ≥ 0, λ2 ≥ 0, 2λ1 + λ2 < 2, λ1 < 1
}
.

For ǫ1, ǫ2 ≥ 0, the corresponding potential is

Wλ,ǫ,δ(b) = qλ1 eb1 + qλ2 eb2 + q−2λ1−λ2−ǫ1 e−2b1−b2−δ1 + q−λ1−ǫ2 e−b1−δ2 .

Then Wλ,ǫ,δ has a critical point for some ǫ, δ if and only if λ1 + λ2 ≥ 1, λ1 ≥ 1/2,

namely ǫ1 = 2ǫ2 and ǫ2 = −λ1−λ2. Most of the remaining fibers are displaceable by

probes, although we did not manage to resolve the question completely; see Figure 4.
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Figure 3: Displaceable and non-displaceable fibers for P(1, 1, 2).

Figure 4: Displaceable and non-displaceable fibers for the ellipsoid

Example 4.11 (A weighted projective plane with a positive measure subset of non-

displaceable fibers) We show that the toric orbifold X = P(1, 3, 5) contains an open

subset of non-displaceable moment fibers. This partly answers a question of McDuff

who asked whether there is an example of such an action, presumably thinking of the

smooth case. The moment polytope is the convex hull (0, 0), (3, 0), (0, 5), and can be

defined by the inequalities

Φ(X) =
{
λ ∈ R

2, λ1 ≥ 0, λ2 ≥ 0, 5λ1 + 3λ2 ≤ 15,−λ1 ≥ −3,−2λ1 − λ2 ≥ −6
}
.

Consider the potential

Wλ,ǫ1,ǫ2,δ1,δ2
(b) = qλ1 eb1 + qλ2 eb2 + q−5λ1−3λ2+15e−5b1−3b2

+ q−λ1+3−ǫ1 e−b1−δ1 + q−2λ1−λ2+6−ǫ2 e−2b1−b2−δ2 .
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Figure 5: More non-displaceable fibers for P(1, 3, 5) using spurious inequalities

The potential for (λ1, λ2) = (3, 0) + c1(−1, 1) + c2(−3, 4) has a critical point if

c1, c2 ≥ 0, but 〈(λ1, λ2), (−1, 0)〉 + 3 ≤ 〈(λ1, λ2), (1, 0)〉. This is the condition that

the terms defined by the facets with normal vectors (−1, 0), (0, 1), (−2,−1) have

leading order terms that of equal order and lower order than the terms arising from

the remaining facets. As in the previous examples, this means that the potential aris-

ing from these terms has a non-degenerate critical point. The additional terms do

not affect the existence of a critical point, by [8, Lemma 10.16] (which is a version

of the implicit function theorem for formal functions with values in the Novikov

ring). Note that [8, Lemma 10.16] was written for integral polytopes (polytopes

corresponding to smooth toric varieties), but the technique works equally well for

arbitrary potentials, since integrality of the basis given by the normal vectors at a

vertex is never used in the proof. It follows that P(1, 3, 5) has an open subset of

non-displaceable fibers. An additional line segment of non-displaceable fibers is de-

termined by the equality of powers in the leading order of terms from the facets with

normal vectors (1, 0), (−5,−3) and a “spurious” facet with normal vector (−1,−1).

Additional open region of non-displaceable torus fibers in P(1, 3, 5) are determined

by the leading order terms of (i) the facet with normal vector (0, 1) and the spurious

facets with normal vectors (−1,−1) and (−1, 0), and (ii) the facet with normal vec-

tor (−5,−3) and the spurious facets with normal vectors (−1, 0), (−2,−1) These
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were pointed out to us by M. S. Borman; see [1]. See Figure 5, where the regions

displaceable by McDuff ’s probes are shaded in lighter grey. Note that the projective

line P(1, 2) also has an open subset of non-displaceable fibers as explained in [16],

but this is somewhat more expected, since displaceability in P(1, 2) is equivalent to

dispaceability in the disk and has singularities in codimension 2, not 4.

Proof of Theorem 4.7 First suppose that X is a compact manifold, so that all of the

additional affine linear functions are strictly positive on Φ(X). Suppose that Wλ,ǫ,δ

has a critical point for some ǫ = (ǫ(v)). Then X is a symplectic quotient of the

representation Y by a torus given as the kernel G of the homomorphism U (1)N → T

defined by the matrix formed by the vectors v ∈ tZ where ǫ(v) 6= −∞. The theorem

then follows from [16, Theorem 7.1].

Next consider the case where X is a compact orbifold. Suppose that Wλ,ǫ,δ has a

critical point for some ǫ = (ǫ(v)). Let Y//G be the symplectic quotient of the repre-

sentation Y as in the previous paragraph. Then Y//G is a Hamiltonian T-orbifold on

the locus where G acts freely, and the singular set of Y//G (which can be worse than

orbifold) is contained in the singular set of X. The proof of [16, Theorem 7.1] shows

that there is no G-invariant Hamiltonian on Y displacing the inverse image of Lλ in

Y . On the other hand, suppose that Lλ is displaceable in X by some Hamiltonian H.

Necessarily, the flow of H preserves Xorb, so if φH(Lλ) := ∪t∈[0,1]φH,t (Lλ) is the flow-

out, then φH(Lλ) is disjiont from Xorb. Choose a cutoff function ρ ∈ C∞(X) such

that ρ is equal to 1 on an open neighborhood of φH(Lλ), and support contained in

Xmfd. Then the flow of ρH also displaces Lλ. Since ρH vanishes in a neighborhood of

the singular set, ρH lifts to a smooth function on Y that displaces the inverse image

of Lλ.

Finally consider the case where X is non-compact. Then Xmfd is an open subset

of the space Y//G defined in the previous paragraph. Suppose that Lλ is displaced

by the flow of some H ∈ C∞
c ([0, 1] × X), and Wλ,ǫ,δ has a critical point for some

ǫ = (ǫ(v)). Then after choosing a cutoff function ρ as in the previous paragraph, ρH

lifts to a smooth invariant function on Y displacing the inverse image of Lλ, which is

a contradiction.

5 Functoriality of the Quasimap Mirror

According to the philosophy of mirror symmetry, the mirror of a symplectic orbifold

X should be a complex space with potential function W : X∨ → Λ0, so that the

Fukaya category of X is equivalent to the derived category of matrix factorizations.

As explained in Fukaya et al. [8], the mirror of a toric variety is a quantum correction

of a potential obtained by Givental (1.1). In this section, we describe the quasimap

mirror construction (which is a somewhat naive version of the mirror but perhaps

more useful for determining displaceability) as a contravariant functor that behaves

well with respect to inclusions, which clarifies various aspects of the displaceability

problem.

Definition 5.1 Let X be a (possibly) open toric orbifold in the sense of Defini-
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tion 3.1. The quasimap mirror for X is the space

X∨ := t∨ ×C(tZ,R)+ ×C(tZ,Λ0) × H1(T,Λ0)

equipped with the potential W : X∨ → Λ0, (λ, ǫ, δ, b) 7→ Wλ,ǫ,δ(b).

Note that the work of Fukaya et al. [8,9] shows the existence of a particular defor-

mation of the naive potential that has the properties predicted by mirror symmetry,

such as the correct number of critical points that the definition above lacks. However,

as we saw in the previous section, the above formulation is more useful for detecting

displaceability. The quasimap mirror also has good functoriality properties, parallel

to the properties of displaceable fibers listed in Proposition 2.2. The following defi-

nition will be used in the theorem to relate the mirror of an action with the mirror

for a quotient.

Definition 5.2 For any sub-torus T0 ⊂ T, define π : t → t/t0 to be the projection

and

(5.1) (π∗ǫ)(v0) = min
π(v)=v0

ǫ(v), (π∗δ)(v0) =
∑

π(v)=v0,ǫ(v)=(π∗ǫ)(v0)

δ(v).

Theorem 5.3 (Functorial properties of quasimap mirrors) (i) If X1 → X2 is an

open embedding of toric orbifolds then X∨
2 embeds canonically in X∨

1 . If X1 →
X2 → X3 are open embeddings then X∨

3 → X∨
1 is the composition of X∨

3 → X∨
2

and X∨
2 → X∨

1 .

(ii) If X1,X2 are open toric sub-orbifolds of a toric orbifold X, then (X1 ∪ X2)∨ =

X∨
1 ∩ X∨

2 and (X1 ∩ X2)∨ = X∨
1 ∪ X∨

2 .

(iii) (X1 × X2)∨ = X∨
1 × X∨

2 .

(iv) If T0 ⊂ T is a subtorus, then considering X//T0 as a toric T/T0 orbifold then the

space obtained from X∨ by composition with H1(T/T0,Λ0) → H1(T,Λ0) and

composition with π∗ from (5.1) embeds into (X//T0)∨.

The proof is immediate from the definition of semipositivity; in particular, in

the setting of (i) if ℓ is semipositive on Φ(X2), then ℓ is automatically semipositive

on Φ(X1). Part (i) says that the quasimap mirror construction gives a contravariant

functor. Part (iv) is only an embedding, because some of the true facets of Φ(X) will

not define facets of Φ(X//T0), so the mirror of X//T0 is in general larger than that

obtained from X.

The functorial properties of the quasimap mirror construction translate into

the following functorial properties of the corresponding non-displaceable moment

fibers. Say that Lλ ⊂ X is (quasimap) Floer non-displaceable if Wλ,ǫ,δ has a criti-

cal point for some ǫ, δ. Let FND(X) denote the set of Floer non-displaceable La-

grangians. The following is a consequence of Theorem 5.3.

Corollary 5.4 (Functorial properties of Floer non-displaceable sets)

(i) For any open embedding X1 → X2, FND(X1) ⊃ FND(X2).
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(ii) If X1,X2 are open subsets of a toric orbifold X, then

FND(X1 ∪X2) ⊂ FND(X1)∩ FND(X2) and FND(X1 ∩X2) ⊃ FND(X1)∪ FND(X2).

(iii) FND(X1 × X2) = FND(X1) × FND(X2).

(iv) If T0 ⊂ T is a subtorus, then FND(X//T0) contains the intersection of FND(X)

with the fiber over 0 under the map t∨ → (t/t0)∨.

The importance of the last item was pointed out to us by Abreu–Macarini [2].

Obviously one would like to know whether one can obtain the non-displaceable

set from a cover.

Proposition 5.5 Any compact symplectic toric orbifold has a canonical open cover

indexed by the fixed point set XT , given as follows: for each x ∈ XT , let X(x) be the

open symplectic toric orbifold obtained from X by removing all divisors not containing

x. Then X = ∪x∈XT X(x).

Because the quasimap mirror construction is contravariant, one cannot expect to

“recover” the symplectic topology of a toric orbifold from the symplectic topology

of its canonical cover. Rather, the symplectic topology of each open subset already

“knows” about the symplectic topology of the compactification. Still one would like

to know the relationship between displaceability in X and displaceability in the open

cover. The following question is, as far as we know, open.

Question 5.6 Is ND(X) =
⋂

x∈XT ND(X(x)), D(X) =
⋃

x∈XT D(X(x))?
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