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We study a class of optimal transport planning problems where the reference cost involves a non-
linear function G(x, p) representing the transport cost between the Dirac measure δx and a target
probability p. This allows to consider interesting models which favour multi-valued transport maps
in contrast with the classical linear case (G(x, p)= ∫ c(x, y) dp) where finding single-valued optimal
transport is a key issue. We present an existence result and a general duality principle which apply
to many examples. Moreover, under a suitable subadditivity condition, we derive a Kantorovich–
Rubinstein version of the dual problem allowing to show existence in some regular cases. We also
consider the well studied case of Martingale transport and present some new perspectives for the
existence of dual solutions in connection with �-convergence theory.
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1 Introduction

In classical optimal transport theory, the primal problem is written in the Monge–Kantorovich
form

inf

{∫
X×Y

c dγ : γ ∈�(μ, ν)

}
, (1.1)

where μ, ν are given probability measures on X and Y , and c : X × Y→R∪ {+∞} is a cost
function. Here the competitors are probability measures γ on X × Y with marginals μ and ν,
respectively, called transport plans. The particular case where the optimal transport plan γ ∈
�(μ, ν) is carried by the graph of a map T : X→ Y has been extensively studied since the trans-
port map T then solves the original Monge problem. We refer to the books [16, 18, 19] for a
detailed presentation of the classical theory.

In this work, we present a different point of view motivated by scenarios where the optimal
strategy favours multi-valued transport maps. As a first example, let us describe a very simple
toy model where, in a prescribed region � of the Euclidean space Rd (a town), several compet-
ing agents (for instance web suppliers) operating in given locations {x1, x2, . . . , xN } can reach a
prescribed ratio ci of potential customers. We have then a given discrete measure μ=∑ ciδxi

and a target probability measure ν = f dx where f = f1 + f2 + · · · + fN and fi represents the local
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density of customers supplied by xi (ci =
∫
�

fi dx and
∑

i ci = 1). Each agent xi aims to optimize
its own commercial impact by choosing fi to be spread as much as possible over �, namely
by maximising the variance var(νi) of the probability νi of density fi

ci
. If the global criterium

to be maximised is
∑

ci var(νi), then, as the variance is a concave function, the optimal choice
would be to take νi = ν. In fact this trivial strategy is ruled out if we add a classical transport cost
involving the distance between the agent and the customer, say

∫
�

c(xi, y) νi(dy), with for instance
c(x, y)= |x− y|α with α ≥ 1. In that case, we are led to a minimisation problem of the kind

inf

{∑
i

ci G(xi, νi) :
∑

i

ci νi = ν
}

where G(x, p) :=
∫

X
c(x, y)p(dy)− var(p).

To deal with a more general framework, it is convenient to associate with every transport plan
γ ∈�(μ, ν) the family of conditional probabilities γ x such that

〈γ , ϕ〉 =
∫

X

(∫
Y
ϕ(x, y)γ x(dy)

)
μ(dx),

and to incorporate in problem (1.1) a general cost over γ x as follows;

inf

{∫
X

G(x, γ x) dμ :=
∫

X×Y
c dγ +

∫
X

H(x, γ x)dμ : γ ∈�(μ, ν)

}
, (1.2)

where the function G(x, p) : X ×P(X )→R∪ {+∞} is the sum of the usual linear cost
(x, p) 
→ ∫Y c(x, ·)dp which appears in (1.1) and a given non-linear function H .

In fact the formulation (1.2) allows to make a connection with another direction in probability
theory which received an increasing attention in the recent years, in the context of martingale
optimal transport. This corresponds to the case where H(x, p)= χ[ p]=x is the indicator function
of the linear constraint [ p]= x being [ p] the barycentre of p (this is detailed in Example 2.1
below). A classical result due to Strassen [17] states that the infimum in (1.2) is finite under
the assumption that μ and ν are in convex order (see Remark 4.6). This problem was intro-
duced in the one-dimensional case X , Y ⊂R in [12] for the special cost c(x, y)=− |x− y| and
for more general costs in [4] in the context of mathematical finance, to obtain robust model-
independent bounds on option prices: in both works the authors obtain existence for the primal
problem (1.2), give a dual problem whose formulation incorporates a Lagrange multiplier for the
martingale barycentre constraint, prove there is no duality gap and provide an example for which
there is no dual optimal solution (see Example 4.13 below). In [5], under some specific regular-
ity hypotheses on the cost c, the authors use the natural order on the real line to prove that the
optimal solutions, so-called left-curtain coupling, have a special monotone structure: this result
is obtained through a variational characterisation of the optimal solutions (Lemma 2.1 therein);
they also provide a decomposition of the couple (μ, ν) in irreducible components for which they
obtain the existence of dual maximisers (see Section 8 therein). Those seminal works have then
been extended and precised in several ways. The variational characterisation for left-curtain cou-
plings was used to prove their stability with respect to the marginals (see [13]) and was extended
for more general constraints and spaces X , Y (see [3, 20]). Also the precise formulation of the
associated dual problem and the existence of dual maximisers have received a particular atten-
tion. In [7], the authors propose a quasi-sure formulation for the dual problem for which they
prove the existence of a maximiser, and also provide several examples and counter-examples.
Still on the real line, [6] provides regularity hypotheses on the cost c which ensure the existence
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of point-wise (as opposed to quasi-sure) minimisers for the usual formulation of the martin-
gale dual problem. The d-dimensional case for the cost c(x, y)=± |x− y| is addressed in the
remarkable paper [10], where the existence of a dual maximiser and the structure of the optimal
martingale plans are described under the hypothesis that the measures μ and ν are in subhar-
monic order. An alternative approach relying on �-convergence is proposed in Section 7 of the
present work.

The paper is organised as follows. In Section 2 we state our main hypotheses and present the
examples we shall consider in the following. In Section 3, we give an existence proof for the
primal problem (see Theorem 3.1) which relies on the lower semicontinuity result presented
in Lemma 3.5. Section 4 is devoted to the dual problem obtained via Fenchel conjugation, and
the statement of related optimality conditions: in particular we address the case of entropies
depending on the barycentre and propose a possible relaxation in the set of upper semicontinu-
ous functions for the dual problem. The last three sections deal with the existence issue for dual
maximisers. In Section 5 we propose a regularisation by penalisation and we extensively study
the variance case. In Section 6 we tackle the generalisation of the Kantorovich–Rubinstein sub-
additive cost to our setting, and then deduce a general existence result for dual maximisers in the
case where the cost G is regular. Finally in Section 7 we provide a new approach for the relaxation
of the dual problem in the martingale case that we hope may be fruitful for further work.

Before concluding this introduction, we point out that, while completing the present study,
we became aware of the recently published paper [11] (and of its arXiv 2014 version) where
the authors consider problem (1.2) in the case of general spaces X = Y , with the motivation of
obtaining weak versions of Talagrand’s transport–entropy inequality. The examples of costs they
consider are costs of Marton type (and its barycentric version) and Samson type that we detail
below in Example 2.2. Note that such generalised transport costs have been firstly introduced
by Marton in [14]. In [11], a general formulation for the dual problem is given and the absence
of duality gap is established as well as a way of recovering Strassen’s result (see Remark 4.6
below). This work is the closest related to the present article, since it gives a first insight on
problems of the form (1.2) under general hypotheses. The results obtained therein overlap with
those of Sections 3 and 4 of the present paper, although the techniques of proofs slightly differ.

2 Problem setting

In this paper, X and Y are metrisable compact sets. Some of the proofs and results below may
hold for general Polish spaces, but we prefer to avoid additional technical difficulties since the
main examples we have in mind hold when X = Y is the closure of a bounded open convex subset
of Rd . The measures μ ∈P(X ) and ν ∈P(Y ) are Borel probabilities over X and Y , respectively.
In the following P(·) will be endowed with the weak star topology which, since X and Y are
compact, is equivalent to the topology of the tight convergence. As well known this space P(·)
is compact metrisable.

We consider optimal transport problems of the form

F(μ, ν)= inf

{∫
X×Y

c(x, y)γ (dx, dy)+
∫

X
H(x, γ x)μ(dx) : γ ∈�(μ, ν)

}
, (P)

where

�(μ, ν)= {γ ∈P(X × Y ) : π x
� γ =μ , π y

� γ = ν
}
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is the set of transport plans γ from μ to ν (i.e. γ has marginals μ and ν), and γ = γ x ⊗μ is the
disintegration of γ with respect to its first marginal μ. This last notation means that

∀f ∈ C(X × Y ), 〈γ , f 〉 =
∫

X

(∫
Y

f (x, y)γ x(dy)

)
μ(dx).

In classical optimal transport theory, H = 0 and a particular interest is given to transport plans
γ induced by a transport map T , i.e. of the form γ = (id × T)#μ. In our context, this can also be
written as γ = δT(x) ⊗μ, i.e. γ x = δT(x) for μ almost every x.

We shall make the following assumptions on the costs c and H :

(A1) the classical cost c : X × Y→R∪ {+∞} is lower semicontinuous,
(A2) the entropy (or perturbation) cost H : X ×P(Y )→R∪ {+∞} satisfies

• H is lower semicontinuous on X ×P(Y ).
• for every x ∈ X , p 
→H(x, p) is convex.

Here the entropy cost H is meant as a nonlinear perturbation of the classical mass transport cost
associated with c. In fact it is also convenient to rewrite (P) by putting c and H in the same global
cost defined by

G : (x, p) 
→G(x, p)=
∫

Y
c(x, y)p(dy)+H(x, p). (2.1)

Then our generalised transport problem reads

F(μ, ν)= inf

{∫
X

G(x, γ x)μ(dx) : γ ∈�(μ, ν)

}
. (2.2)

Notice that Assumptions (A1) and (A2) imply that

G is lower semicontinuous in (x, p) and convex in p. (A3)

In the following, in order to simplify the presentation, we will prefer using this more concise
form, but if needed we will come back to the original formulation with c and H as in the examples
below.

Example 2.1 We shall in particular study the following cases:

• the Monge cost c(x, y)= |y− x| and the quadratic cost c(x, y)= |y− x|2 where |·| is the
Euclidean norm on Rd,

• the barycentre constraint case:

H(x, p)=Hbar(x, p) := χ[p]=x =
{

0 if [p]= x

+∞ otherwise,

where [p]=
∫

Y
y p(dy) denotes the barycentre of p and χA is the characteristic function of A.

Note that in this case we assume that X = Y.
• the variance case, in the case Y is a compact subset of Rd:

H(x, p)=Hvar(x, p) :=− var(p)= [p]2 −
∫

Y
|y|2 p(dy),
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where we stress the fact that Hvar is indeed convex with respect to the variable p since p 
→ [p]

and p 
→
∫

Y
|·|2 dp are linear in p.

Example 2.2 In [11], in the case X = Y, the authors consider the following costs on X ×P(X )

GM (x, p)= α
(∫

X
d(x, y)p(dy)

)
and GS(x, p)=

∫
X
α

(
d(x, y)

dp

dρ

)
ρ(dy)

introduced by Marton [14] and Samson [15], respectively, where α : R+→R∩ {+∞} is con-
vex, d is the distance over X and ρ ∈P(X ) is a reference probability. In the case X = Y =Rd,
Morton also considered the cost

G̃M (x, p)= θ (x− [p])

being θ : Rd→R∩ {+∞} a convex function. Section 4.3 is devoted to more general forms of
entropies depending on the barycentre.

2.1 Around the barycentre constraint

As noted in [5], when one selects the barycentre constraint H =Hbar then the quadratic cost
c(x, y)= |y− x|2 turns (P) to an easy problem since the functional to be minimised is constant
over the admissible transport plans. Indeed one then has∫

X×Y
|y− x|2 γ (dx, dy) =

∫
Y
|y|2 ν(dy)− 2

∫
X

[γ x] · xμ(dx)+
∫

X
|x|2 μ(dx)

=
∫

Y
|y|2 ν(dy)−

∫
X
|x|2 μ(dx)

for any γ ∈�(μ, ν) such that [γ x]= x for μ-a.e. x. Therefore, as far as the barycentre constraint
H =Hbar is considered, we shall further restrict ourselves to the study of examples involving
sub-quadratic costs like the Monge cost c(x, y)= |y− x|.

2.2 Around the variance case

Selecting the variance cost H =Hvar =− var in problem (P) favours the spreading of the mea-
sures γ x so as to increase their variance var(γ x). For example if one takes c= 0, then the problem

(P) amounts to maximising
∫

var(γ x)dμ among transport plans γ ∈�(μ, ν), but then one may

compute for any admissible plan γ that∫
X

var(γ x)dμ =
∫

X

∣∣[γ x
]∣∣2 dμ−

∫
X

(∫
Y
|y|2 γ x(dy)

)
dμ

≤
∣∣∣∣
∫

X
[γ x]dμ

∣∣∣∣
2

−
∫

Y
|y|2 ν(dy)= var(ν)

so that the only optimal solution is γ =μ× ν, i.e. γ x = ν for a.e. x. Note that the linear part∫
Y |·|2 dγ x of the variance has no impact on the global cost since it yields to the second moment∫
Y |·|2 dν when integrated with respect to μ. We shall make an extensive study of this case in

Section 5.2.
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3 Existence of an optimal solution for the primal problem

We first investigate the existence of an optimal solution for (P). Our main result is the following
(see also [11, Corollary 9.12]).

Theorem 3.1 Let μ ∈P(X ) and ν ∈P(Y ) be such that F(μ, ν)<+∞. Then under
Assumptions (A1) and (A2), the problem

F(μ, ν)= inf

{∫
X×Y

c(x, y)γ (dx, dy)+
∫

X
H(x, γ x)μ(dx) : γ ∈�(μ, ν)

}
(P)

admits at least one minimiser.

In the above statement, the regularity hypothesis (Assumption (A1)) on c is rather stan-
dard in optimal transport theory. The measurability and lower semicontinuity hypotheses
(Assumption (A2)) on H are also quite natural in the context of variational functionals over prob-
ability spaces. The condition F(μ, ν)<+∞ means that the class of competitors is non-empty: it
will be discussed further in Section 4 in particular in the case where H(x, ·) takes infinite values.
The necessity of the convexity hypothesis (Assumption (A2)) on H(x, ·) is illustrated in the next
example.

Example 3.2 Let X = Y := [−1, 1]× [0, 1] and consider the problem (P) which corresponds to
the choice

μ=H1
⌊{0} × [0, 1] and ν = 1

2
H1
⌊{−1, 1} × [0, 1]

c(x, y) := |y− x|2 and H(x, p)= #(support(p))

where #(support(p)) denotes the cardinal of support(p) whenever it is finite and +∞ otherwise.
We shall denote

E(γ ) :=
∫

X×Y
|y− x|2 γ (dx, dy)+

∫
X

#(support(γ x))μ(dx).

It is known (see [16]) that the only optimal solution to the classical transport problem

m= inf

{∫
X×Y
|y− x|2 γ (dx, dy) : γ ∈�(μ, ν)

}
(3.1)

is the transport plan γopt for which γ (0,t)
opt = 1

2 (δ(−1,t) + δ(1,t)) for a.e. t ∈ [0, 1], and that there exists
a minimising sequence (Tn)n of transport maps from μ to ν such that

m= lim
n→+∞

∫
X
|y− x|2 γn(dx, dy) with γn := δTn(x) ⊗μ for all n.

Then one has E(γopt)=m+ 2, E(γ )>m+ 1 for any admissible γ �= γopt and limn→+∞ E(γn)=
m+ 1. As a consequence, F(μ, ν)=m+ 1 and the infimum is not attained.

Example 3.3 The same argument as in the previous example also yields to a non-existence
result when the entropy/perturbation cost H = #(support) is replaced with the more regular cost
H(x, p)= var(p). In this case, one obtains F(μ, ν)=m (defined in (3.1) above) and the infimum
is not attained either.
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In view of the definition of the global cost G (see (2.1)), Theorem 3.1 is a consequence of
Lemmas 3.4 and 3.5 below, which are stated in some more generality for further use. We denote
by M(X × Y ) the set of bounded non-negative Borel measures on X × Y , and for γ ∈M(X × Y )
we still denote by γ = γ x ⊗μ the disintegration of γ with respect to its first marginal μ: note
that here μ need not be a probability, but the measures γ x are indeed probabilities on Y .

In the sequel, for every x ∈ X , we denote by G∗(x, ·) the Fenchel conjugate of the convex
functional G(x, ·) in the duality between M(Y ) and C(Y ), i.e.

∀ψ ∈ C(Y ), G∗(x, ·) :ψ 
→ sup

{∫
Y
ψdp−G(x, p) : p ∈P(Y )

}
.

It is convenient to introduce the real number

mG := min{G(x, p) : (x, p) ∈ X ×P(Y )}, (3.2)

where we note that mG >−∞ by the lower semicontinuity property of G and the compactness
of X and Y . As a preliminary result, we have the following.

Lemma 3.4 The following properties of G∗ hold:

(i) Let ψ ∈ C(Y ) and λ ∈R. Then for every x ∈ X it holds

G∗(x,ψ + λ)=G∗(x,ψ)+ λ, (3.3)

G∗(x,ψ)+mG ≤ sup
Y
ψ . (3.4)

(ii) Let ψ ∈ C(Y ) and (xn)n be a sequence such that xn→ x in X , then

lim sup
n→+∞

G∗(xn,ψ)≤G∗(x,ψ).

(iii) For every x ∈ X , ψ1 ∈ C(Y ) and ψ2 ∈ C(Y )∣∣G∗(x,ψ1)−G∗(x,ψ2)
∣∣ ≤ sup

Y
|ψ1 −ψ2|.

Proof (i) Since
∫

Y λdp= λ for every p ∈P(Y ), (3.3) follows. Now for every p ∈P(Y ) it holds∫
Y
ψdp−G(x, p) ≤ sup

Y
ψ −mG,

so (3.4) follows by taking the sup in p.
(ii) From (i), it comes that supn G∗(xn,ψ)<+∞. Since P(Y ) is weak∗ compact and G is lower
semicontinuous on X ×P(Y ) , there exists a sequence (pn) in P(Y ) such that

∀n, G∗(xn,ψ)=
∫

Y
ψdpn −G(xn, pn).

Moreover, there exists p ∈P(Y ) and an increasing sequence of integers (nk) such that

lim sup
n→+∞

G∗(xn,ψ)= lim
k→+∞

G∗(xnk ,ψ) and pnk ⇀ p weak* in P(Y ).
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Hence

lim sup
n→+∞

G∗(xn,ψ) = lim sup
k→+∞

(∫
Y
ψdpnk −G(xnk , pnk )

)

≤ lim
k→+∞

∫
Y
ψdpnk − lim inf

k→+∞
G(xnk , pnk )

≤
∫

Y
ψdp−G(x, p) ≤ G∗(x,ψ).

(iii) Let p2 ∈P(Y ) be such that G∗(x,ψ2)+G(x, p2)= ∫Y ψ2 dp2. Then

G∗(x,ψ2)−G∗(x,ψ1) ≤
(∫

Y
ψ2 dp2 −G(x, p2)

)
−
(∫

Y
ψ1dp2 −G(x, p2)

)
≤ sup

Y

(
ψ2 −ψ1

)
.

Lemma 3.5 Assume that the sequence (γn)n = (γ x
n ⊗μn)n weakly converges in M(X × Y ) to

γ = γ x ⊗μ, then the following holds

lim inf
n→+∞

∫
X

G(x, γ x
n )dμn ≥

∫
X

G(x, γ x)dμ.

Proof We recall from (3.2) that G is bounded from below, and without loss of generality we
shall assume that G is non-negative.

Let us fix a dense sequence (ψk)k≥0 in C(Y ). Then, as G(x, ·) is convex weakly lower
semicontinuous, one has for every (x, p)

G(x, p)= sup

{∫
Y
ψ dp−G∗(x,ψ), ψ ∈ C(Y )

}
= sup

k

{∫
Y
ψk dp−G∗(x,ψk)

}
(3.5)

where for the last equality we used the Lipschitz property of G∗(x, ·) established in Lemma
3.4. Accordingly, we associate with the probability family γ x the following sequences of Borel
functions on X :

gk(x) :=
∫

Y
ψkdγ x −G∗(x,ψk), ĝk(x)=max{g0(x), . . . , gk(x)}.

It can be checked from (3.2) and (3.4) that each gk is bounded from below. Moreover, by (3.5), the
sequence (̂gk(x))k≥0 converges increasingly to G(x, γ x) for μ-almost all x, and it is also uniformly
bounded from below by minX g0.

Let now the integer m≥ 0 be fixed, we denote by (Bk)k≤m a Borel partition of X such that
ĝm = gk on Bk for all k ≤m. For any k ≤m we denote by (Kk,p)p≥0 a non-decreasing sequence of
compact subsets of Bk such that

lim
p→+∞μ

(
Bk\Kk,p

)= 0.

For any p≥ 0 let also (�k,p)k≤m be a family of disjoint open sets such that Kk,p ⊂�k,p for all
k ≤m. Since G≥ 0, we have
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X

G(x, γ x
n )dμn(x) ≥

m∑
k=0

∫
�k,p

G(x, γ x
n )dμn(x)

≥
m∑

k=0

∫
�k,p

[∫
Y
ψk(y)dγ x

n (y)−G∗(x,ψk)

]
dμn(x)

=
m∑

k=0

[∫
�k,p×Y

ψk(y)dγn(x, y)+
∫
�k,p

−G∗(x,ψk)dμn(x)

]

for any n, p. By Lemma 3.4 the function −G∗(·,ψk) is bounded from below and lower semicon-
tinuous for fixed k, and since the sets �k,p are open we can take the lower limit as n→∞ and
compute

lim inf
n→+∞

∫
X

G(x, γ x
n )dμn(x) ≥

m∑
k=0

[∫
�k,p×Y

ψk(y)dγ (x, y)+
∫
�k,p

−G∗(x,ψk)dμ(x)

]

=
m∑

k=0

∫
�k,p

gk(x)dμ(x)

=
m∑

k=0

[∫
Kk,p

ĝm(x)dμ(x)+
∫
�k,p\Kk,p

gk(x)dμ(x)

]

≥
m∑

k=0

[∫
Kk,p

ĝm(x)dμ(x)+μ(�k,p\Kk,p) min
X

gk

]
.

For each k ≤m one has

�k,p\Kk,p = �k,p\
⋃

0≤l≤m

Kl,p ⊂ X\
⋃

0≤l≤m

Kl,p =
⋃

0≤l≤m

(Bl\Kl,p).

We thus get

∀k ≤m, lim
p→+∞μ(�k,p\Kk,p)= 0.

As a consequence, passing to the limit in p we obtain

lim inf
n→+∞

∫
X

G(x, γ x
n )dμn(x) ≥

m∑
k=0

∫
Bk

ĝm(x)dμ(x)=
∫

X
ĝm(x)dμ(x),

from which the claim follows by the monotone convergence theorem.

Proof of Theorem 3.1 For fixed probabilities μ, ν, the set of transport plans�(μ, ν) is compact
for the tight convergence in P(X × Y ). Then if (γn)n is a minimising sequence for (P), we can
extract a subsequence which weakly converges in P(X × Y ) to some γ ∈�(μ, ν), and it results
from Lemma 3.5 that γ is an optimal solution of (P).

Example 3.6 (Variance case with quadratic cost) We now illustrate the above existence result
in the following simple framework: we take X = Y = [0, 1], μ= 1

2 (δ0 + δ1), ν =L1
�[0,1], for λ≥ 0

we set cλ(x, y)= λ |y− x|2 and take H(p)=− var(p), so that (P) reads

Fλ(μ, ν)= inf

{
λ

∫
X

∫
Y
|y− x|2 γ x(dy)dμ−

∫
X

var(γ x)dμ : γ ∈�(μ, ν)

}
. (3.6)
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Since an admissible transport plan γ is such that γ 0 and γ 1 are absolutely continuous with
respect to L1

�[0,1] and satisfy the identity γ 0 + γ 1 = 2L1
�[0,1], one may rewrite the above problem

as

Fλ(μ, ν)= inf

{
[γ 0]2 + (λ− 1)[γ 0]+ 1

6
(1− λ) : 0≤ γ 0 ≤ 2L1

�[0,1] and
∫ 1

0
dγ 0 = 1

}
.

For λ≥ 1
2 the solution is uniquely attained by γ 0 = 2L1

�[0, 1
2 ]

(for which [γ 0]= 1
4 ) which corre-

sponds to the usual monotone transport plan γ between μ and ν (which spreads the mass at
0 onto [0, 1

2 ] and that at 1 onto [ 1
2 , 1] ): in this case, the cost cλ appears to be dominant over

the perturbation H. On the other hand, for λ ∈ [0, 1
2 [ any admissible γ 0 such that [γ 0]= 1− λ

2
yields to an optimal solution, and then Fλ(μ, ν) admits infinitely many minimisers. Notice that the
disintegrations γ 0 and γ 1 of such optimal solutions γ may be supported on the whole segment
[0, 1] in this case.

4 Duality and optimality conditions

4.1 The duality principle

Here we propose a general framework which rests upon the convexity of the minimal value
function F(μ, ν). Such a duality principle has been obtained in some particular cases (see [4, 5,
20]) and in a more general setting in [11]. First we extend the definition of F to the set of bounded
measures on X × Y as follows:

F(μ, ν)=

⎧⎪⎪⎨
⎪⎪⎩

inf
{∫

X G(x, γ x)μ(dx) : γ ∈�(μ, ν)
}

if μ and ν are non-negative with
∫
μ= ∫ ν

+∞ otherwise.

Recall that, for every x ∈ X , G∗(x, ·) denotes the Fenchel conjugate of the convex function G(x, ·)
in the duality between M(Y ) and C(Y ).

Lemma 4.1 The functional F defined above is positively one homogeneous and convex. Its
Fenchel conjugate in the duality between M(X )×M(Y ) and C(X )× C(Y ) is the indicator
function of the following subset K of C(X )× C(Y ):

K := {(ϕ,ψ) ∈ C(X )× C(Y ) : ϕ(x)+G∗(x,ψ)≤ 0 ∀x ∈ X
}
.

Proof The homogeneity property is obvious by construction. In order to show the convexity of
F, it is enough to establish that the functional E(γ )= E(γ x ⊗μ) := ∫ G(x, γ x)μ(dx) is convex
as a functional on P(X × Y ). Let γi = γ x

i ⊗μi for i= 1, 2 two elements of P(X × Y ). Then,
we have

γ1 + γ2

2
=
(

dμ1

d(μ1 +μ2)
γ x

1 +
dμ2

d(μ1 +μ2)
γ x

2

)
⊗ μ1 +μ2

2

Thus E( γ1+γ2
2 )≤ E(γ1)+E(γ2)

2 by the convexity of G(x, ·). The convexity of E then follows owing
to the lower semicontinuity property of E (see Lemma 3.5).
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Now the one homogeneity of F implies that the Fenchel conjugate of F coincides with the
indicator of the convex subset

K̃ :=
{

(ϕ,ψ) ∈ C(X )×C(Y ) :
∫

X
ϕ dμ+

∫
Y
ψ dν ≤ F(μ, ν) , ∀(μ, ν) ∈M(X )×M(Y )

}
.

We need only to check that K = K̃. Let (μ, ν) such that F(μ, ν)<+∞. Then by using Fenchel
inequality, we observe that for every ψ ∈ C(Y ) and every admissible γ = γ x ⊗μ, one has∫

X
G(x, γ x)μ(dx)≥

∫
X

(∫
Y
ψdγ x −G∗(x,ψ)

)
μ(dx) =

∫
Y
ψ dν −

∫
X

G∗(·,ψ) dμ.

By taking the infimum in the left-hand member with respect to all admissible γ x, we obtain that
(ϕ,ψ) ∈ K̃ whenever (ϕ,ψ) ∈K. To prove the converse implication, we take μ to be the Dirac
mass δx at an arbitrary x ∈ X and ν to be a probability measure on Y such that G(x, ν)<+∞.
Then (ϕ,ψ) ∈ K̃ implies that:

F(μ, ν)=G(x, ν)≥ ϕ(x)+
∫

Y
ψ dν.

It follows that G∗(x,ψ)= sup
ν∈P(Y )

{∫
Y
ψ dν −G(x, ν)

}
≤−ϕ(x), thus (ϕ,ψ) ∈ K̃.

We are now in position to introduce the dual problem to (P):

sup

{∫
Y
ψ dν −

∫
X

G∗(x,ψ)μ(dx) : ψ ∈ C(Y )

}
. (P∗)

As a direct consequence of previous Lemma 4.1, we obtain the equality inf(P)= sup(P∗) and
the optimality conditions which characterise an optimal (γ ,ψ). This is an alternative proof of
the duality formula in [11, Theorem 9.6] which avoids the measurable selection arguments used
therein.

Theorem 4.2 Under Assumptions (A1) and (A2), we have the following equality

F(μ, ν) = sup

{∫
Y
ψ dν −

∫
X

G∗(x,ψ) dμ : ψ ∈ C(Y )

}
. (4.1)

In particular F(μ, ν) is finite if and only if the supremum in the right-hand side above is finite.
Furthermore an admissible pair (γ ,ψ) is optimal for (P) and (P∗) if and only if it holds

G(x, γ x)+G∗(x,ψ)=
∫

Y
ψ dγ x for μ-almost every x ∈ X . (4.2)

Note that (4.2) can also be rewritten as

ψ ∈ ∂G(x, ·)(γ x) for μ-almost every x ∈ X ,

where the subdifferential of G(x, ·) is intended in the sense of the duality between M(Y ) and
C(Y ).
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Remark 4.3 In the particular case where H = 0, one has

−G∗(x,ψ)= inf

{∫
Y

(c(x, ·)−ψ) dp : p ∈P(Y )

}
= inf {c(x, y)−ψ(y) : y ∈ Y } ,

the latter expression being usually denoted as ψc(x) in the literature (e.g. [18, 19]). We then
recover the classical dual problem:

sup

{∫
Y
ψ dν +

∫
X
ψc dμ : ψ ∈ C(Y )

}
.

Proof of Theorem 4.2 By Lemma 3.5, we can check easily that F is weakly*-lower semicon-
tinuous and proper on M(X )×M(Y ). Therefore, since F is also convex, it coincides with its
Fenchel biconjugate in the duality between M(X )×M(Y ) and C(X )× C(Y ). By Lemma 4.1,
we infer that it is the support function of the convex set K given therein. That is,

F(μ, ν)= sup
(ϕ,ψ)∈C(X )×C(Y )

{∫
X
ϕ dμ+

∫
Y
ψ dν : ϕ(x)+G∗(x,ψ)≤ 0 in X

}
.

As, for everyψ ∈ C(Y ), the function G∗(x,ψ) is bounded upper semicontinuous (see Lemma 3.4),
there exists a non-decreasing sequence (ϕn) of admissible functions in C(X ) such that supn ϕn =
−G∗(x,ψ). Then passing to the limit in the identity above, we are led to (4.1). Furthermore, the
optimality of a pair (γ ,ψ) for (P) and (4.1) can be checked by testing the equality

∫
X

G(x, γ x)μ(dx) =
∫

Y
ψ dν −

∫
X

G∗(x,ψ)μ(dx)

=
∫

X

(∫
Y
ψdγ x

)
μ(dx)−

∫
X

G∗(x,ψ)μ(dx),

which means that the non-negative function ρ(x) :=G(x, γ x)+G∗(x,ψ)−
∫

Y
ψ dγ x vanishes as

an element of L1
μ(X ), thus (4.2). The proof is complete.

Remark 4.4 In the recent paper [11], the authors obtain a similar result as Theorem 4.2 in the
general case where X = Y is not necessarily bounded, under some mild regularity hypotheses on
the cost (x, p) 
→G(x, p) (in fact they prove Lemma 5.4 below, which in turn yields Theorem 4.2).
As in the above proof, their argument relies on convexity and Fenchel conjugation, as well as on
a lower semicontinuity result (Proposition 9.3 therein) which is more restrictive than Lemma 3.5
since it applies to sequences (γn)n with fixed first marginal.

The equality (4.1) allows to derive a necessary and sufficient condition to have F(μ, ν)<+∞.
To that aim let us introduce the recession function associated with G∗(x, ·) (see Theorem 2.5.4
in [2]):

(G∗)∞(x,ψ) = lim
t→+∞

G∗(x, tψ)

t
= sup

{∫
Y
ψdp : G(x, p)<+∞

}
. (4.3)

Then (G∗)∞(x, ·) is convex, lower semicontinuous positively one homogeneous on C(Y ).
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Corollary 4.5 A necessary condition to have F(μ, ν)<+∞ is that∫
X

(G∗)∞(x,ψ)μ(dx) ≥
∫

Y
ψ dν for all ψ ∈ C(Y ). (4.4)

This condition is sufficient if there exists k ∈ L1
μ(X ) such that G(x, p)≤ k(x) for every

p ∈ dom(G(x, ·)).

Proof Assume that α := F(μ, ν)<+∞. Then, by (4.1), for every ψ ∈ C(Y ) and every t> 0,
one has ∫

X
G∗(x, tψ)μ(dx) ≥ t

∫
Y
ψ dν − α.

Then, after dividing by t, we may pass to the limit t→+∞ taking into account (4.3) and applying
monotone convergence theorem. The inequality (4.4) follows. Under the additional assumption
on G and by exploiting the second equality in (4.3), we derive that:

G∗(x,ψ) = sup

{∫
Y
ψ dp−G(x, p)

}
≥ sup

{∫
Y
ψ dp− k(x) : p ∈ dom G(x, ·)

}

= (G∗)∞(x,ψ)− k(x).

Therefore, under (4.4), we infer that F(μ, ν)= sup(P∗)≤ ∫X k dμ.

Remark 4.6 In the case where X = Y and H is the martingale constraint, i.e. H(x, p)= χ[p]=x,
we derive easily that (G∗)∞(x,ψ)=−(−ψ)∗∗. Then condition (4.4) amounts to say that for every
convex l.s.c. function f ( f = (−ψ)∗∗), it holds

∫
X f dμ≤ ∫X f dν. We recover the convex order

condition denoted by μ≤c ν appearing in Strassen’s theorem [17]: the fact that (4.4) is sufficient
for F(μ, ν)<+∞ (which amounts here to the existence of a martingale transport plan) was
already noted in Section 3 of [11].

4.2 A relaxed version of the dual problem

The existence of a solution ψ in C(Y ) or possibly in a suitable larger class is a difficult issue
that we will overcome under some additional regularity assumption on the global cost function
G(x, p) (see Sections 5 and 6). Before developing Theorem 4.2 in specific cases, we present now
a straightforward extension of dual problem in which we enlarge the class of competitors.

Let us denote by U (Y ) (resp. U (X )) the set of bounded and upper semicontinuous functions on
Y (resp. X ). Then the map ψ ∈ C(Y )→G∗(·,ψ) ∈ U (X ) (see assertion (ii) of Lemma 3.4) can be
extended to a map from U (Y ) to U (X ) by setting

∀x ∈ X , G∗(x,ψ)= inf
{
G∗(x, ϕ) : ϕ ∈ C(Y ), ϕ ≥ψ}.

Indeed,

Lemma 4.7 For every ψ ∈ U (Y ), it holds

G∗(x,ψ)= sup

{∫
X
ψdp−G(x, p) : p ∈P(Y )

}
= lim

n→+∞G∗(x,ψn),
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for any sequence (ψn)n in C(Y ) decreasing to ψ . The map ψ ∈ U (Y ) 
→G∗(·,ψ) ∈ U (X ) satisfies
the properties (i) and (ii) of Lemma 3.4.

Proof Let x ∈ X and let us show that G∗(x,ψ)= lim
n→+∞G∗(x, ϕn) for any sequence (ϕn)n in C(Y )

decreasing to ψ . First we note that lim inf G∗(x, ϕn)≥G∗(x,ψ) since (ϕn) is decreasing to ψ .
Then, for n≥ 1 consider pn ∈P(Y ) such that

G∗(x, ϕn)=
∫
ϕndpn −G(x, pn)+ 1

n
.

One may assume that pn ⇀ p∞, then for any n≥ k ≥ 1 we have G∗(x, ϕn)≤ ∫ ϕkdpn −
G(x, pn)+ 1

n , and passing to the limit one gets

lim sup
n→+∞

G∗(x, ϕn)≤
∫
ϕk dp∞ −G(x, p∞).

Eventually we deduce the following extended version of Theorem 4.2

Proposition 4.8 Under Assumptions (A1) and (A2), it holds

F(μ, ν)= sup(P∗) = sup

{∫
Y
ψ dν −

∫
X

G∗(x,ψ)μ(dx) : ψ ∈ U (Y )

}
. (4.5)

Moreover the necessary and sufficient optimality condition (4.2) for an optimal pair (γ ,ψ) still
holds.

Proof We first note that for any ψ ∈ U (Y ) and γ ∈�(μ, ν) one has

∀x ∈ X ,
∫

Y
ψdγ x −G∗(x,ψ)≤G(x, γ x)

and then integrating with respect to μ and taking the infimum in γ it comes to

sup

{∫
Y
ψdν −

∫
X

G∗(x,ψ)μ(dx) :ψ ∈ U (Y )

}
≤ F(μ, ν)= sup(P∗),

where the last equality follows from Theorem 4.2. The reverse inequality is straightforward as
well as the validity of (4.2) for characterising an optimal pair (γ ,ψ).

In the following, we shall still denote by (P∗) the right-hand side of (4.5). Let us remark that
this extended version of the dual problem is useful when considering for instance Example 4.13
where, in a precise range of parameter α, a solution exists in U ([0, 1]) while no bounded solution
exists.

4.3 Case of entropies depending on the barycentre

We are going to particularise Theorem 4.2 in the special case where X = Y is a compact convex
subset of Rd and the convex entropy H involved in the definition of G (see (2.1)) depends only
on the barycentre [p] of the probability measure p, typically:

H(x, p)= h(x, [p]) where h= h(x, z) is l.s.c. in (x, z) and convex in z. (4.6)
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In this case the optimality conditions characterising an optimal pair (γ ,ψ) for the primal–dual
problem read as follows:

Theorem 4.9 Assume X = Y is a compact subset of Rd and let γ ∈�(μ, ν) and ψ ∈ C(Y ).
Under the assumption (4.6) on H, the pair (γ ,ψ) is optimal for (P) and (P∗) if and only if

0 ∈ ∂(h(x, ·)+ (c(x, ·)−ψ(·))∗∗)([γ x]) for μ-almost every x ∈ X , (4.7)

where the biconjugate (c(x, ·)−ψ(·))∗∗ is the l.s.c. convex envelope for the function c(x, ·)−ψ(·)
extended to Rd\Y by +∞.

If moreover h(x, [γ x]) ∈R for μ-almost every x ∈ X then

(c(x, ·)−ψ(·))∗∗([γ x])=
∫

Y
(c(x, y)−ψ(y))γ x(dy) μ-a.e. (4.8)

which in particular implies that c(x, ·)−ψ(·) is affine on the support of γ x.

Proof Let ψ ∈ C(Y ), we compute

−G∗(x,ψ) = inf
p∈P(Y )

{
h(x, [p])+

∫
Y

(
c(x, y)−ψ(y)

)
p(dy)

}

= inf
z∈Rd

{
h(x, z)+ inf

[p]=z

{∫
Y

(
c(x, y)−ψ(y)

)
p(dy)

}}
= inf

z∈Rd

{
h(x, z)+ (c(x, ·)−ψ(·))∗∗(z)

}
.

As a consequence, according to Theorem 4.2, a pair (γ ,ψ) ∈�(μ, ν)× C(Y ) is optimal for (P)
and (P∗) if and only if for μ-almost every x ∈ X one has

h(x, [γ x])+
∫

Y

(
c(x, y)−ψ(y)

)
γ x(dy)= inf

z∈Rd

{
h(x, z)+ (c(x, ·)−ψ(·))∗∗(z)

}
. (4.9)

Taking z= [γ x] in the right-hand term and then using Jensen inequality, we obtain

h(x, [γ x])+
∫

Y

(
c(x, y)−ψ(y)

)
γ x(dy) ≤ h(x, [γ x])+ (c(x, ·)−ψ)∗∗([γ x])

≤ h(x, [γ x])+
∫

Y

(
c(x, ·)−ψ)∗∗ dγ x

≤ h(x, [γ x])+
∫

Y

(
c(x, ·)−ψ) dγ x.

Thus the infimum in (4.9) is attained at [γ x] and the proof is thus complete.

Example 4.10 (Variance case with null cost) Let us consider the simple example already
addressed in Section 2.2: we take the variance cost H =Hvar =− var with c= 0. In order to
apply Theorem 4.9 above, we should in fact take H(p)= [p]2 −m2(ν) where m2(ν) is the second-
order moment of ν: as noted in Section 2.2, this yields to an equivalent problem. We have already
noted that in this case the only optimal solution γ for (P) satisfies γ x = ν for μ a.e. x. Then by
(4.8) an optimal solution ψ of (P∗) should be affine on the support of ν, while (4.7) then implies
that ψ(y)= 2[ν] · y+ α on the support of ν for some constant α. Then the solutions of (P∗) are
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the functions of the form ψ + φ where φ is any non-negative continuous function on Y satisfying
φ = 0 on the support of ν.

Example 4.11 (Variance case with quadratic cost) We get back to Example 3.6: as in Example
4.10 we take H(p)= [p]2 −m2(ν)= [p]2 − 1

3 instead of H(p)=− var(p). Then the primal
problem (3.6) reads

Fλ(μ, ν)= inf

{∫
X

∫
Y
λ |y− x|2 γ x(dy)μ(dx)+

∫
X

(
|[γ x]|2 −m2(ν)

)
dμ : γ ∈�(μ, ν)

}

and setting Gλ(x, p)=
∫

Y
λ |y− x|2 p(dy)+ (|p|2 −m2(ν)

)
the dual reads

sup

{∫
Y
ψdν −

∫
X

G∗λ(x,ψ)μ(dx) : ψ ∈ C(Y )

}
. (4.10)

Now if the pair (γ ,ψ) is optimal for (3.6) and (4.10) then according to (4.8) in Theorem 4.9
the functions λy2 −ψ(y) and λ(y− 1)2 −ψ(y) should be affine, respectively, on the supports of
γ 0 and γ 1. For λ≥ 1

2 this function should thus be affine on the segments [0, 1
2 ] and [ 1

2 , 1], while
for λ ∈ [0, 1

2 [ it should be affine on the whole [0, 1]. As a consequence of (4.7) written at the
barycentres [γ 0] and [γ 1], we obtain that the optimal potentials are of the form

ψλ(y)= λy2 + (1− λ)y+ b,

whenever λ ∈ [0, 1
2 [ , while

ψλ(y)=
{
λy2 + 1

2 y+ b if y≤ 1
2

λ(y− 1)2 + 3
2 y− 1

2 + b if y≥ 1
2 ,

if λ≥ 1
2 , where b ∈R.

Example 4.12 (Monge cost with barycentre constraint) Let X = Y := [−1, 1] and consider
problems (P) and (P∗) corresponding to the choice

μ= 1

2
dx
⌊

[−1, 1] and ν = 1

4
δ−1 + 1

2
δ0 + 1

4
δ1,

c(x, y) := |y− x| and Hbar(x, p)= h(x, [p])= χ[p]=x.

We first solve problem (P). Any γ ∈�(μ, ν) with
∫

X G(x, γ x)μ(dx)<+∞ is such that γ x must
be a convex combination of δ−1, δ0, δ1 with [γ x]= x for μ-almost every x ∈ [−1, 1]. We are led
to write

γ x(dy)= ρ(x)− x

2
δ−1(dy)+ (1− ρ(x))δ0(dy)+ ρ(x)+ x

2
δ1(dy),

where ρ is a non-negative Borel regular function defined μ-almost everywhere and such that
|x| ≤ ρ(x)≤ 1. In addition, the condition ν(dy)= ∫X γ

x(dy)μ(dx) implies that
∫ 1
−1 ρ(x) dx= 1.

As a consequence, the unique martingale transport between μ and ν is given as above with
ρ(x)= |x|.
We now focus on problem (P∗). Let us define ψ ∈ C[−1, 1] by

ψ(y) :=−(2|y| + α)(1− |y|)+ ay+ b.
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If α ≤ 0, a ∈R, b ∈R then a direct computation shows that

(| · −x| −ψ(·))∗∗(x)=−ψ(x) and −ψ(x)=
∫

[−1,1]

(|y− x| −ψ(y)
)
γ x(dy).

According to Theorem 4.9,ψ is optimal for the dual problem (P∗). Note that the optimal potential
ψ is not unique up to an affine function (since one can play with the parameter α).

Example 4.13 (The non-existence example of [4] revisited) Let X = Y := [0, 1] and consider
problems (P) and (P∗) corresponding to the choice

μ=
∞∑

n=1

|In|δxn and ν = dy�[0, 1],

c(x, y) :=−|y− x| and H(x, p)= h(x, [p])= χ[p]=x,

where {In}n≥1 is a family of intervals which forms a partition of [0, 1], xn is the middle point of
In and it is assumed that

(xn)n≥1 is an increasing sequence,

∞∑
n=1

|In| = 1 and
∞∑

n=1

n|In| =+∞.

We first solve problem (P). Any γ ∈�(μ, ν) with
∫

X G(x, γ x)μ(dx)<+∞ is such that∑
n≥1 |In|γ xn(dy)= dy�[0, 1] so that |In|γ xn (dy)≤ dy�[0, 1] for all n. We also have

|I1|
2
= x1 = [γ x1 ] =

∫ 1

0
yγ x1 (dy)=

∫ 1

0
γ x1 ([t, 1])dt

≥
∫ |I1|

0

(
1− γ x1 ([0, t])

)
dt≥

∫ |I1|

0

(
1− t

|I1|
)

dt= |I1|
2

.

Therefore one has |I1|γ x1 (dy)= dy�I1 and by induction |In|γ xn(dy)= dy�In for every n≥ 1. As a
consequence, the unique martingale transport between μ and ν is such that: for every n≥ 1

γ xn (dy)= 1In (y)dy

|In|
and one has F(μ, ν)=− 1

4

∑
n≥1 |In|2.

We now focus on problem (P∗). Assume that ψ ∈ C[0, 1] is optimal for the problem (P∗).
According to Theorem 4.9, for every n≥ 1

(− | · −xn| −ψ(·))∗∗(xn)= 1

|In|
∫

In

(−|y− xn| −ψ(y)) dy.

By Jensen’s inequality, this is equivalent to y 
→−|y− xn| −ψ(y) being affine and equal to its
convex envelope on In. Hence ψ is optimal for (P∗) if and only if for all y ∈ [0, 1] one has⎧⎨

⎩
ψ(y)=∑n≥1

(
ψ(xn)+ an(y− xn)− |y− xn|

)
1In (y)

ψ(y)≤ψ(xn)+ an(y− xn)− |y− xn| for all n≥ 1,
(4.11)
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where an|In| :=ψ(xn + |In|2 )−ψ(xn − |In|2 ). Therefore one has an+1 + 1≤ an − 1 which implies
an ≤ a1 − 2(n− 1). A direct computation gives us

ψ(xn) = ψ(xn + |In|2 )+ 1− an

2
|In|

= ψ(0)+
n−1∑
k=1

ak|Ik| + an + 1

2
|In|

≤ ψ(0)+
n−1∑
k=1

(a1 + 2− 2k)|Ik| + 1

2
(a1 + 3− 2n)|In|.

Passing to the limit as n tends to +∞ we obtain that ψ(1)−ψ(0)≤−∞. As a consequence, the
problem (P∗) has no continuous (thus bounded) solution.

On the other hand, if we assume in addition that

|In| = 1

C

1

nα
with 1<α ≤ 2 with C :=

∞∑
k=1

1

kα
and an = 2(1− n),

then we obtain an upper semicontinuous function ψα that satisfies (4.11). We now show that this
candidate dual maximiser is in L1

ν if and only if 3
2 <α ≤ 2. Indeed, we compute

∫
⋃n

k=1 Ik

ψα(y)ν(dy) =
n∑

k=1

∫
Ik

(ψα(xk)+ ak(y− xk)− |y− xk|)dy

=
n∑

k=1

(
ψα(xk)|Ik| − |Ik|2

4

)

=
n∑

k=1

((
ψα(0)+

k−1∑
i=1

ai|Ii| + ak + 1

2
|Ik|
)
|Ik| − |Ik|2

4

)

=
n∑

k=1

(
ψα(0)|Ik| +

(
5

4
− k

)
|Ik|2 + 2

k−1∑
i=1

(1− i)|Ii||Ik|
)

=
n∑

k=1

(
ψα(0)

C

1

kα
− 1

C2

1

k2α−1
+ 5

4C2

1

k2α
+ 2

C2

1

kα

k−1∑
i=1

(
1

iα
− 1

iα−1

))
.

Since ψα is bounded from above by ψα(x1)=ψα(0)+ |I1|
2 , we obtain the claim. Also note from

the previous computation that any upper semicontinuous function that satisfies (4.11) with values
0 on ∂I1 is lower than ψα , so that when 1<α ≤ 3

2 it does not belong to L1
ν .

Remark 4.14 In the above example, if the cost function c(x, y)=−|y− x| is replaced by the
more usual Monge cost c(x, y)= |y− x|, then it can be checked that the dual problem (P∗) admits
a solution ψ ∈ C[0, 1] namely:

ψ(y) :=
∞∑

n=1

(
|y− xn| − |In|

2

)
1In (y).
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In fact the unique martingale transport map given in Example 4.13 realises the Monge distance
W1(μ, ν) and ψ given above is the associated potential.

5 Existence results for the dual problem

We recall that, in the standard case (H = 0), the existence of an optimal solution can be derived
under very mild assumptions on the cost c and moreover the optimal pair (ψ ,ψc) (see Remark
4.3) inherits some regularity from the cost c. In contrast, a general existence result for the dual
problem (P∗) in our general framework cannot be expected as illustrated for instance in Example
4.13. In this section, we first show the existence of Lipschitz solutions for a regularised version of
(P∗). Then we focus on the variance case with quadratic cost in which the existence of Lipschitz
solutions is provided.

5.1 Existence for a penalised problem

The underlying idea stems from control theory in which a penalisation term is introduced allow-
ing the final state to differ from the target. In this analogy, the penalisation term is taken to be
the Monge distance to the target measure ν and the primal problem F(μ, ν) is approximated by

Fk(μ, ν) := inf {F(μ, ν̃)+ k W1(ν̃, ν) : ν̃ ∈P(Y )} (5.1)

for a possibly large scalar k > 0. By the lower semicontinuity of the Monge distance with respect
to the weak convergence of measures, it can be readily checked that the infimum above is
achieved under the standing assumptions on G made in Section 1. Moreover Fk(μ, ν) converges
increasingly to F(μ, ν).

Theorem 5.1 Assume that Y is a metric space and let Fk(μ, ν) be defined by (5.1). Then,

Fk(μ, ν) = max

{∫
Y
ψ dν −

∫
X

G∗(x,ψ) dμ : ψ is k-Lipschitz on Y

}
.

In particular, if F(μ, ν) is finite, then the dual problem (P∗) admits a k-Lipschitz solution if and
only if F satisfies

F(μ, ν)≤ F(μ, ν̃)+ k W1(ν̃, ν) for all ν̃ ∈P(Y ). (5.2)

Remark 5.2 A straightforward generalisation of Theorem 5.1 can be obtained by substitut-
ing the Monge distance with any convex functional � : P(Y )→R such that |�(ν1)−�(ν2)| ≤
k W1(ν1, ν2). In that case, the dual problem involves the Fenchel conjugate �∗ on C(Y ) whose
domain consists of k-Lipschitz functions. Then the following equality holds:

min {F(μ, ν̃)+�(ν̃) : ν̃ ∈P(Y )} = max

{
−�∗(−ψ)−

∫
X

G∗(x,ψ) dμ : ψ ∈ C(Y )

}
,

where the right-hand side stands for the dual problem whose solutions exist and are k-Lipschitz.

Remark 5.3 As will be seen in Section 6, where X = Y and G satisfies a suitable subadditivity
condition (see Theorem 6.8), the condition (5.2) is satisfied when G(x, p) is Lipschitz with respect
to x. On the other hand, in the specific case considered in Example 4.10 where G(x, p)=− var(p),
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it can be checked directly that the map ν̃ 
→ F(μ, ν̃) is Lipschitz on P(Y ). Indeed, as F(μ, ν̃)=
− var(ν̃), it holds

F(μ, ν)− F(μ, ν̃)=
∫

Y
y d(ν − ν̃) ·

∫
Y

y d(ν + ν̃)−
∫

Y
|y|2 d(ν − ν̃)

=
∫

Y
y · (ξ − y) d(ν − ν̃),

where ξ = ∫Y y d(ν + ν̃) is bounded by 2C where C is a bound for the compact Y: the function
y 
→ y · (ξ − y) thus has a Lipschitz constant independent of ν and ν̃, so that F(μ, ·) is indeed
Lipschitz on P(Y ). The solutions of (P∗) are described in Example 4.10.

The proof of the above result relies on the following result, which is a corollary of
Theorem 4.2.

Lemma 5.4 Under Assumptions (A1) and (A2) we have

∀ψ ∈ C(Y ), F∗μ(ψ)=
∫

X
G∗(x,ψ)μ(dx), (5.3)

where Fμ is defined on P(Y ) by Fμ(ν) := F(μ, ν).

Proof We infer from Theorem 4.2 that

∀ν ∈P(Y ), Fμ(ν)= sup

{∫
Y
ψdν −

∫
X

G∗(x,ψ)μ(dx) :ψ ∈ C(Y )

}
,

so that Fμ is the Fenchel conjugate of the functional ψ 
→ ∫X G∗(x,ψ)dμ: it follows directly
from the definition of G∗(x, ·) and from Lemma 3.4(iii) that this functional is convex and l.s.c.
on C(Y ), so that it is equal to its biconjugate, which concludes the proof.

Proof of Theorem 5.1 We first note that the two extrema in the equality are attained from direct
compactness and lower semicontinuity arguments over C(Y ) and P(Y ), respectively. Denoting
by χkLip the characteristic function of the subset of k-Lipschitz functions in C(Y ), we compute

sup

{∫
Y
ψ dν −

∫
X

G∗(x,ψ) dμ : ψ is k-Lipschitz on Y

}

= sup

{∫
Y
ψ dν − F∗μ(ψ)− χkLip(ψ) : ψ ∈ C(Y )

}
= (F∗μ + χkLip

)∗
(ν) = (Fμ�(χkLip

∗)
)∗∗

(ν),

where in the last equality the notation Fμ�(χkLip
∗) stands for the inf-convolution of Fμ and χkLip

∗

over M(Y ), and we have used that χkLip is convex l.s.c. on C(Y ) so that χkLip = χkLip
∗∗. We now

compute that for any ν, ν̃ in P(Y ) we have

χkLip
∗(ν − ν̃)= sup

{∫
Y
ψd(ν − ν̃) : ψ is k-Lipschitz on Y

}
= kW1(ν̃, ν),
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where we use a well-known characterisation of the 1-Wasserstein distance (e.g. see [18]).
We thus get (

Fμ�(χkLip
∗)
)

(ν)= inf
{

F(μ, ν̃)+ k W1(ν̃, ν) : ν̃ ∈P(Y )
}

.

The right-hand side is convex and continuous (and even k-Lipschitz with respect to W1) over
P(Y ) so it is equal to its Fenchel biconjugate, which concludes the proof.

5.2 The variance case with a quadratic cost

Here we assume that X = Y is the closure of a bounded convex subset of Rd . Let λ> 0 be a real
positive parameter. Then, for every pair (μ, ν) ∈ (M(X ))2, we set

Fλ(μ, ν) := inf

{
λ

∫
X 2
|x− y|2 dγ −

∫
X

var(γ x) dμ : γ ∈�(μ, ν)

}
.

As shown in the lemma below, whose proof follows from the discussion in Section 2.2, Fλ(μ, ν)
as a function of ν can be seen as an interpolation between the Wasserstein distance W2(μ, ·) and
the variance.

Lemma 5.5 It holds Fλ(μ, ν)↘− var(ν) as λ↘ 0, whereas

W 2
2 (μ, ν)− var(ν)

λ
≤ Fλ(μ, ν)

λ
≤ W 2

2 (μ, ν).

It is convenient to search solutions ψ to the dual problem associated with (Pλ) in the form
ψ =−ϕ. After some subtle manipulations which will be detailed in the proof of Theorem 5.6
below, it turns out that we are led to search ϕ solving

sup

{
−
∫

X
ϕ�λ

2
|·|2 dμ−

∫
X
ϕ∗ dν : ϕ convex continuous

}
, (Qλ)

where

ϕ�λ
2
|·|2 (x) := inf

z∈X

{
ϕ(z)+ λ

2
|x− z|2

}

denotes the Moreau–Yosida transform of ϕ (implicitly extended by +∞ for z /∈ X ).

Theorem 5.6 The supremum of (Qλ) is achieved and

Fλ(μ, ν)

2λ
= sup(Qλ)+ cλ, cλ = m2(μ)+m2(ν)

2
− 1

2λ
m2(ν). (5.4)

Moreover a pair (γ , ϕ) is optimal iff it holds for μ-a.e x

supp(γ x) ⊂ ∂ϕ

[
x− 1

λ
[γ x]

]
. (5.5)

Note that, for λ→+∞, we recover the well-known optimality condition for the W2-Wasserstein
distance. Indeed if μ is absolutely continuous, then an optimal transport is obtained by taking
T(x)=∇ϕ(x) (Brenier’s map) which by the convexity of ϕ is well-defined μ-a.e. For λ= 1, the
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duality formulation (Qλ) also appears in [11, Theorem 2.11(3)] for the special cost T2 considered
therein (which then amounts to (3.6)).

In order to prove Theorem 5.6, we will need the following technical result.

Lemma 5.7 Let ϕ : Rd→ (−∞,+∞) be a convex l.s.c. proper function. Then for every x ∈Rd

and λ> 0, the following identity holds

λ

2
|x|2 − ϕ�λ

2
|·|2 (x)= ϕ∗� 1

2λ
|·|2 (λx). (5.6)

Proof One has

λ

2
|x|2 − ϕ�λ

2
|·|2 (x) = sup

y∈Rd

{
λ

2
|x|2 − λ

2
|y− x|2 − ϕ(y)

}

= sup
y∈Rd

{
λ x · y−

[
ϕ(y)+ λ

2
|y|2
]2
}

=
[
ϕ + λ

2
|·|2
]∗

(λx).

The equality (5.6) follows by noting that the convex continuous function ϕ∗� 1
2λ |·|2 admits

ϕ + λ
2 |·|2 as Fenchel conjugate.

Proof of Theorem 5.6 We compute

Fλ(μ, ν)

2λ
= inf

γ∈�(μ,ν)

{∫
X 2

|x− y|2
2

γ (dxdy)+ 1

2λ

(∫
X
|[γ x]|2 dμ−

∫
X 2
|y|2 γ x(dy)μ(dx)

)}

= m2(μ)+m2(ν)

2
− 1

2λ
m2(ν)+ inf

γ∈�(μ,ν)

{∫
X

(
−x · [γ x]+ 1

2λ
|[γ x]|2

)
μ(dx)

}

= cλ + inf
γ∈�(μ,ν)

{∫
X

Gλ(x, γ x)μ(dx)

}

= cλ + sup

{∫
Y
ψ dν −

∫
X

G∗λ(x,ψ)μ(dx) : ψ ∈ U (X )

}
, (5.7)

where in the third line we set Gλ(x, p) :=−x · [p]+ 1
2λ |[p]|2, for every p ∈P(X ) and in the

last line, we applied the duality formula (4.5). In this case the Fenchel conjugate G∗λ can be
determined as follows:

−G∗λ(x,ψ) = inf
p∈P(X )

{∫
−ψ dp− x · [p]+ 1

2λ
|[p]|2

}

= inf
z∈X

{
(−ψ)∗∗(z)+ 1

2λ
|λx− z|2

}
− λ

2
|x|2

=
(

(−ψ)∗∗� 1

2λ
|·|2
)

(λx)− λ
2
|x|2

= −
(

(−ψ)∗�λ
2
|·|2
)

(x), (5.8)
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where for the last equality we applied the identity (5.6) to the convex l.s.c. function ϕ = (−ψ)∗.
Noticing that −ϕ∗ =−(−ψ)∗∗ ≥ψ , we infer from (5.7) that

Fλ(μ, ν)

2λ
≤ cλ + sup

{
−
∫

X
ϕ�λ

2
|·|2 dμ−

∫
X
ϕ∗ dν : ϕ convex

}
.

The converse inequality is straightforward by restricting the supremum in (5.7) to those elements
ψ ∈ U (X ) which are concave functions. So far we have established the duality formula (5.4).

The existence issue can be fixed by very similar arguments to those in [9]. Let {ϕn} be a
sequence of convex continuous functions on X which is maximising for (Qλ). Up to adding a
constant we assume that infX ϕn = 0 so that ϕ∗n (0)= 0 (ϕn is extended by +∞ over Rd\X ). Let
R> 0 such that X ⊂ BR. Then as ϕ∗n (y)= supx∈X (x · y− ϕn(x)), it is straightforward that∣∣ϕ∗n (y1)− ϕ∗n (y2)

∣∣≤ R |y1 − y2| ∀y1, y2 ∈Rd .

On the other hand, the non-negative function defined by

ϕR
n (x) := inf

y∈X
{ϕn(y)+ R |y− x|} (5.9)

satisfies the following properties:

ϕR
n ≤ ϕn , ϕR

n (x) ≤ 2 R2 , (ϕR
n )∗ = (ϕn)∗ on BR, ϕR

n (x) ∈ LipR(X ). (5.10)

Indeed, the first two inequalities in (5.10) follow from (5.9) by choosing y= 0 or such that
ϕn(y)= 0. The third relation holds since (ϕR

n )∗ = ϕ∗n + χBR on Rd whereas the equi-Lipschitz
property of ϕR

n is straightforward. It follows from Ascoli’s Theorem that both ϕR
n and (ϕR

n )∗

are relatively compact in C(X ). Thus, possibly after extracting a subsequence, we may assume
that ϕR

n → ϕ, (ϕR
n )∗ → ϕ∗ uniformly in X . Here we exploit the classical fact that the two lim-

its are convex conjugate to each other (see for instance [1]). Similarly, as (ϕR
n )∗ + 1

2λ |·|2→
(ϕ)∗ + 1

2λ |·|2 uniformly in X , by passing to the conjugates (which are still R-Lipschitz), we
deduce that ϕR

n � λ
2 |·|2→ ϕ� λ

2 |·|2 in C(X ). Therefore, by exploiting (5.10), we can conclude that
the convex continuous function ϕ is optimal. Indeed,∫

X
ϕ�λ

2
|·|2 dμ+

∫
X
ϕ dν = lim

n→∞

(∫
X

(
ϕR

n �
λ

2
|·|2
)

dμ+
∫

X
(ϕR

n )∗ dν

)

≤ lim sup
n→∞

(∫
X

(
ϕn�

λ

2
|·|2
)

dμ+
∫

X
(ϕn)∗ dν

)
= − sup(Qλ).

Now we turn to the optimality condition. Let (γ , ϕ) be an admissible pair for (Pλ, Qλ) and let
ψ =−ϕ∗. Then, in view of (4.2), (γ , ϕ) is optimal if and only if the inclusion ψ ∈ ∂Gλ(x, γ x)
holds for μ-a.e x ∈ X . In view of the definition of Gλ and of (5.8), denoting by w : X→ X a Borel
function such that ϕ� λ

2 |·|2 (x)= ϕ(w(x))+ λ
2 |x−w(x)|2 , we have

Gλ(x, γ x)+G∗λ(x,ψ)− 〈γ x,ψ〉 =−x · [γ x]+ 1

2λ
|[γ x]|2 + ϕ�

(
λ

2
|·|2
)

(x)+ 〈γ x, ϕ〉

=
∫

X
[ϕ(w(x))+ ϕ∗(y)−w(x) · y] γ x(dy)

+ λ
2

∣∣∣∣x−w(x)− 1

λ
[γ x]

∣∣∣∣
2

.
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Thus one has ψ ∈ ∂Gλ(x, γ x) if and only if x−w(x)= 1
λ

[γ x] together with the condition that
y ∈ ∂ϕ(w(x)) holds γ x a.e. This is exactly the requirement (5.5).

Example 5.8 Let us illustrate Theorem 5.6 in the setting of Example 3.6: if ϕλ is convex
continuous on [0, 1] and is an optimal solution for (Qλ) then it should satisfy support(γ x)⊂
∂ϕλ
(
x− 1

λ
[γ x]
)

for x= 0 and x= 1, which yields that ϕ∗λ is affine with derivative x− 1
λ

[γ x] on
support(γ x) for x= 0 and x= 1. For λ ∈ ]0, 1

2 [ this gives

ϕ∗λ(y)= λ− 1

2λ
y+ b

while for λ≥ 1
2 one has

ϕ∗λ(y)=
{− 1

4λy+ 1
2 − 1

4λ + b if y≤ 1
2(

1− 3
4λ

)
y+ b if y≥ 1

2 .

Note that this form is not the same as that found in Example 4.11 where we solve the dual problem
(4.10). However we observe that the optimal potential ψλ found for the latter one coincides up
to an additive constant with λ |·|2 − 2λϕ∗λ .

6 The subadditive case

In this part we shall assume that X = Y and that X is the closure of a bounded convex subset of
Rd . In addition, we will assume that the function G(x, p) satisfies (A3) and

G(x, δx)= 0 for every x ∈ X . (6.1)

This amounts to say that F(μ, ν)= 0 whenever μ= ν.
In order to avoid multiple occurrences of minus sign, it is convenient to reformulate the relaxed

dual problem appearing in (4.5) with the new unknown ϕ =−ψ . Then G∗(x,ψ)=−ϕG(x) where
we have set

∀x ∈ X , ϕG(x) := inf

{∫
X
ϕ dp+G(x, p) : p ∈P(X )

}
. (6.2)

Accordingly, we can rewrite the dual problem as

sup(P∗) = sup

{∫
X
ϕGdμ−

∫
X
ϕ dν : ϕ ∈ Sb(X )

}
,

where Sb(X ) denotes the set of bounded lower semicontinuous functions from X to R. We will
denote by G the following subclass of invariant functions

G = {ϕ ∈ Sb(X ) : ϕ = ϕG}. (6.3)

Lemma 6.1 For every ϕ ∈ Sb(X ), the infimum in (6.2) is achieved (for all x) and ϕG belongs to
Sb(X ). Moreover ϕG ≤ ϕ and the invariant set G is a convex subset of Sb(X ).

Proof The first statement is straightforward by using the lower semicontinuity of ϕ and that
of G on the compact set of X ×P(X ). The second one follows from (6.1) and of the fact that
(θ ϕ1 + (1− θ ) ϕ2)G ≥ θ ϕG

1 + (1− θ ) ϕG
2 for every ϕ1, ϕ2 in Sb(X ) and θ ∈ [0, 1].
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We will use the following definition.

Definition 6.2 We say that the cost function G is idempotent if it holds

ϕGG = ϕG, for every ϕ ∈ Sb(X ).

The next duality result is motivated by the celebrated Kantorovich–Rubinstein formulation for
(P∗) which arises in the case where H = 0 and c is subadditive and vanishes on the diagonal
(we refer for instance to [18] for more details). Like in the Rubinstein case, we expect that the
regularising property of the operator ϕ 
→ ϕG will be a cornerstone to obtain the existence of a
minimiser for (P∗).

Theorem 6.3 Assume that the transform ϕ ∈ Sb(X ) 
→ ϕG ∈ Sb(X ) is idempotent and let G be
defined by (6.3). Then

F(μ, ν)= sup(P∗) = sup

{∫
X
ϕdμ−

∫
X
ϕdν : ϕ ∈ G

}
. (6.4)

Proof As G is a subset of Sb(X ), we clearly have that sup(P∗) is larger than the right-hand side
of (6.4). On the other hand, as ϕG ≤ ϕ for all ϕ ∈ Sb(X ) (see the lemma above), one has

sup(P∗)≤ sup

{∫
X
ϕGdμ−

∫
X
ϕGdν : ϕ ∈ Sb(X )

}
≤ sup

{∫
X
ψdμ−

∫
X
ψdν : ψ ∈ G

}
,

where in the last inequality, we used that {ϕG : ϕ ∈ Sb(X )} is a subset of G by the idempotent
property.

The link between the idempotent property of G and the subadditivity of the functional F(μ, ν)
is precised in the following key result.

Proposition 6.4 Assume that G satisfies (A3) and (6.1). Then the following assertions are
equivalent:

(i) F(μ, ν) ≤ F(μ, p)+ F(p, ν), for every (μ, ν, p) ∈ (P(X ))3.
(ii) For every (p, ν) ∈ (P(X ))2 and every p-measurable family {γ y}y∈X , one has

G(x, ν)≤G(x, p)+
∫

X
G(y, γ y) p(dy) whenever ν =

∫
X
γ y p(dy). (6.5)

(iii) G is idempotent.

Proof (i)⇒ (ii). Apply (i) for μ= δx, ν = ∫ γ yp(dy). Then,

G(x, ν)≤G(x, p)+ F(p, ν)≤G(x, p)+
∫

X
G(y, γ y) p(dy),

where, in the last inequality, we use the definition of F(p, ν) as an infimum.
(ii)⇒ (iii). As ϕGG ≤ ϕG, it is enough to check that, for every (x, p) ∈ X ×P(X ), one has

G(x, p)+
∫

X
ϕG(y) p(dy) ≥ ϕG(x).

https://doi.org/10.1017/S0956792518000669 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000669


1254 J.-J. Alibert et al.

For every y ∈ X , we chose a minimiser γ y for ϕG(y) (see (6.2)). In fact we can do this in
such a way that the map y ∈ X→ γ y is p-measurable. Indeed we may use a selection theorem
(e.g. Theorem III.30 in [8]) for the multifunction y ∈ X 
→ {q ∈P(X ) : G(y, q)+ ∫X ϕdq≤ ϕG(y)}
whose graph is a Borel subset of X ×P(X ). Then setting ν(dz)= ∫X γ

y(dz) p(dy), we obtain

G(x, p)+
∫

X
ϕG(y) p(dy) = G(x, p)+

∫
X

G(y, γ y)p(dy) +
∫

X 2
ϕ(z)γ y(dz) p(dy)

≥G(x, ν)+
∫

X
ϕ(z) ν(dz)

≥ ϕG(x),

where in the second line the inequality (ii) is used.
(iii)⇒ (i). For every ϕ ∈ G, one has

∫
X
ϕdμ−

∫
X
ϕdν =

(∫
X
ϕdμ−

∫
X
ϕdp

)
+
(∫

X
ϕdp−

∫
X
ϕdν

)
≤ F(μ, p)+ F(p, ν).

Assuming (iii), we can apply Theorem 6.3 so that the supremum of the left-hand member above
with respect to ϕ ∈ G is equal to F(μ, ν).

Remark 6.5 By the characterisation given in Proposition 6.4(ii), it follows immediately that if
G1, G2 are two idempotent functions, so is the sum G1 +G2. On the other hand, as the condition
Proposition 6.4(i) is stable by passing to a supremum, we deduce that supi Gi is idempotent for
any family {Gi, i ∈ I} of idempotent functions.

Remark 6.6 It follows from Proposition 6.4(i) that G(x, p)= ∫X c(x, y)p(dy) satisfies the idem-
potent property if and only if the function c is subadditive in the usual sense (i.e. c(x, z)≤
c(x, y)+ c(y, z)). In that case, the idempotent property can be extended to cost functions of the
kind (see Subsection 4.3) G(x, p)= ∫X c(x, y)p(dy)+ h([p]− x) provided h : Rd→R∪ {+∞} is
a convex, l.s.c. subadditive function. In particular we may consider h(z)= χz=0 which corre-
sponds to the martingale constraint. Alternatively the martingale constraint can be penalised
by taking h(z)= λ |z| where λ is a large positive parameter. A slightly more general case of
idempotent entropy H(x, p) is presented in the next Lemma 6.7 showing thus that G(x, p)=∫

X c(x, y) p(dy)+H(x, p) is idempotent as well.

Lemma 6.7 Let {ψk : 1≤ k ≤N} be a finite subset of C(X ) and let L : P(X )→RN be the linear
map defined by L(p)= (∫X ψk dp

)
1≤k≤N

. Then the entropy given by H(x, p) := h (L(p)− L(δx)) is
idempotent for every convex, l.s.c. subadditive function h : RN→R∪ {+∞}.

Proof We are done if H satisfies the condition (6.5) of Proposition 6.4. Let ν, p ∈P(X ) and {γ x}
a p-measurable family such that ν = ∫X γ

y p(dy). By the linearity of L we infer that L(ν)− L(p)=∫
X

(
L(γ y)− L(δy)

)
p(dy). Thus by Jensen inequality:

h (L(ν)− L(p)) ≤
∫

X
h (L(γ y)− L(δy)) p(dy) =

∫
X

H(y, γ y) p(dy).
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The required inequality (6.5) then follows thanks to the subadditivity property of h:

H(x, ν)= h (L(ν)− L(δx))≤ h (L(p)− L(δx))+ h (L(ν)− L(p))

≤H(x, p)+
∫

X
H(y, γ y) p(dy).

We conclude this section by an existence result for the dual problem which generalises the
case considered by Kantorovich and Rubinstein where G(x, p)= ∫X c(x, y) p(dy) being c a con-
tinuous metric on X (see [18, Theorem 1.14]). In particular we may apply the next theorem
when G(x, p)= ∫X c(x, y) p(dy)+ λ |[p]− x| where λ> 0 acts as a Lagrange multiplier for the
martingale constraint [γ x]= x.

Theorem 6.8 Let G(x, p) be an idempotent cost such that the family of functions FG := {G(·, p) :
p ∈P(X )} is equi-continuous. Then the dual problem (P∗) admits a solution in C(X ). If FG is
equi-Lipschitz, then (P∗) admits a Lipschitz solution.

Proof By Theorem 6.3, we are reduced to show that the supremum in the right-hand side of
(6.4) is achieved by an element of G. Let (ϕn) be a maximising sequence in G. As we can add to
every ϕn a constant cn without changing the value of

∫
ϕn dμ− ∫ ϕn dν and since (ϕn + cn)G =

ϕG
n + cn = ϕn + cn, we may assume that infX ϕn = 0 for every n (note that the latter infimum

is actually a minimum since ϕn is l.s.c and X is compact). On the other hand, recalling that
ϕG

n (x)= inf{∫ ϕn dp+G(x, p)}, it holds for every (x, y) ∈ X 2:∣∣ϕG
n (x)− ϕG

n (y)
∣∣≤ sup{G(x, p)−G(y, p) : p ∈P(X )} :=ω(x, y),

where, by the (uniform) equi-continuity assumption, ω(x, y)≤ ε(|x− y|) for a suitable continuous
function ε(t) on R+ vanishing at t= 0. As ϕn = ϕG

n , we deduce that {ϕn} is an equi-continuous and
uniformly bounded family in C(X ). By Arzelà–Ascoli theorem, it follows that a subsequence of
(ϕn) (still denoted by the same symbol) converges uniformly to an element ϕ∞ ∈ C(X ). Observe
that this function ϕ∞ is Lipschitz in case the family FG is assumed to be equi-Lipschitz. Let us
show that ϕ solves (P∗). Since∫

ϕ∞ dμ−
∫
ϕ∞ dν = lim

n→∞

(∫
ϕn dμ−

∫
ϕn dν

)
= sup(P∗),

it is enough to check that ϕ∞ ∈ G. To that aim, we pass to the limit n→∞ in the inequality∫
ϕn dp+G(x, p)≥ ϕG

n (x)= ϕn(x). We then obtain the inequality
∫
ϕ∞ dp+G(x, p)≥ ϕ∞(x)

holding for every (x, p) ∈ X ×P(X ). Thus ϕG∞(x)≥ ϕ∞(x), hence ϕG∞ = ϕ∞.

7 Some perspectives for martingale transport

Here we focus on the case where X = Y is a convex compact subset of Rd and

G(x, p)=
∫

X
c(x, y) p(dy)+ χ[p]=x, (7.1)

being c : X 2→R a continuous function. We denote by MT(μ, ν) the non-empty subset of
�(μ, ν) consisting of martingale transport plans, i.e. such that [γ x]= x μ-a.e. Recall that the
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transport cost F(μ, ν)= inf{∫X 2 c dγ , γ ∈MT(μ, ν)} is finite iff μ≤c ν in the sense of convex
order (see Remark 4.6). From now on we assume that

μ≤c ν, X = co(supp(ν)). (7.2)

We observe that assuming the second condition is not restrictive since μ≤c ν implies that
supp(μ)⊂ co(supp(ν)) and that any transport plan γ ∈MT(μ, ν) satisfies supp(γ x)⊂ supp(ν)
for μ-a.e. x ∈ X .

The existence issue for the dual problem in the case of (7.1) is a major problem. The difficulty
arises with the lack of compactness of maximising sequences and even the absence of bounded
solutions can be demonstrated for very specific cost functions (see Example 4.13 where in some
cases unbounded solutions do exist in L1

ν). In fact, except in the one-dimensional case (see [5–7]),
very few results are known about the existence of continuous solutions and, related to this, we
point out the recent contribution [10], where the achievement for the dual problem is proved in
Rd in the case of the cost c(x, y)=± |x− y| under the additional assumption:∫

ϕ dμ≤
∫
ϕ dν for every subharmonic function ϕ on Rd . (7.3)

The aim of this section is to provide an alternative approach for existence in the case of (7.1)
for c being a continuous function. We will make use of the function

ω(x, y) := sup{|c(x, z)− c(y, z)| : z ∈ X }, (7.4)

which is continuous on X 2 and vanishes on the diagonal. Moreover, we will denote shortly by
ϕ̂ the G transform of a function ϕ (defined in (6.2)) in the case of G defined by (7.1), i.e.

ϕ̂(x) := inf
[p]=x

{∫
X

(c(x, y)+ ϕ(y)) p(dy)

}
= (c(x, ·)+ ϕ)∗∗(x). (7.5)

(Note that here the Fenchel conjugates defined on Rd are computed assuming that ϕ =+∞ in
Rd\X ). With these notations, we may rewrite the dual problem and the equality inf(P)= sup(P∗)
of Theorem 4.2 as

F(μ, ν)= sup(P∗) = sup

{∫
X
ϕ̂ dμ−

∫
X
ϕ dν : ϕ ∈ Sb(X )

}
, (7.6)

where Sb(X ) is the set of l.s.c. and bounded functions already introduced in Section 6. Moreover,
in a similar way as in (4.8), we have the following necessary and sufficient optimality condition
for an admissible pair (γ , ϕ) in MT(μ, ν)× Sb(X ):

ϕ̂(x)=
∫

Y
(c(x, y)+ ϕ(y)) γ x(dy) μ-a.e. (7.7)

The novelty of our approach is that we are going to relax the maximisation problem above using
the topology of �-convergence. To that aim we need to allow unbounded l.s.c. competitors and
accordingly we first enlarge the admissible class Sb(X ) used in (7.6) as follows:

S(X ) :=
{
ϕ : X 
→R∪ {+∞} : ϕ l.s.c. and dom ϕ �= ∅

}
.

We point out that elements of S(X ) reach a finite minimum on the compact set X and that their
Fenchel biconjugate ϕ∗∗ are convex proper. On the other hand, we deduce easily from (7.5) that,
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for every ϕ ∈ S(X ), ϕ̂ belongs to S(X ) and satisfies

ϕ∗∗ +m ≤ ϕ̂ ≤ ϕ∗∗ +M for every ϕ ∈ S(X ), (7.8)

where m, M are, respectively, a lower bound and an upper bound for c on X 2 (in particular every
element ϕ in the invariant set G (see (6.3)) is such that ϕ − ϕ∗∗ is bounded).

Let us now recall the definition and the main features of �-convergence in our finite
dimensional context. For every sequence (ϕn) in S(X ), we define for every x ∈ X

�−lim inf
n→∞ ϕn(x) := inf

xn→x

{
lim inf

n→∞ ϕn(xn)
}

, �−lim sup
n→∞

ϕn(x) := inf
xn→x

{
lim sup

n→∞
ϕn(xn)

}
.

We say that ϕn �-converges to ϕ (denoted as ϕn
�→ ϕ) if �−lim infn→∞ ϕn = �−

lim supn→∞ ϕn = ϕ holds on X . Notice that in general ϕ is not proper unless we assume that
the infimum of ϕn does not blow up to infinity. If it is the case then ϕ ∈ S(X ) (a �-limit is always
l.s.c.) and, as X is compact, it holds infX ϕn→ infX ϕ. Another useful property is the following
generalisation of Fatou’s Lemma holding for any sequence (ϕn) of non-negative functions in
S(X ) and any probability measure p ∈P(X ):

ϕn ≥ 0 and ϕn
�→ ϕ ⇒ lim inf

n

∫
X
ϕn dp ≥

∫
X
ϕ dp. (7.9)

This can be deduced by noting that ϕ = limn gn where gn is the lower semicontinuous envelope
of gn := infm≥n ϕm.

Eventually we recall that by Kuratowski’s theorem, every sequence (ϕn) admits a
�-convergent subsequence (we refer for instance to [1] for further details about these notions
and the possibility to construct a metrisable topology associated with the �-convergence).

The following stability result holds.

Proposition 7.1 Let (ϕn) be a sequence in S(X ) such that |infX ϕn| ≤C and ϕn
�→ ϕ. Then,

(i) ϕ ∈ S(X ) and ϕ∗∗n
�→ ϕ∗∗

(ii) It holds ϕ̂n
�→ ϕ̂. In particular if ϕn ∈ G for every n, then ϕ = ϕ̂.

Proof (i) By the upper bound hypothesis, it holds supn

∣∣ϕ∗n (0)
∣∣<+∞. On the other hand, if R

denotes the diameter of the compact subset X and since ϕ∗n (y) := supx∈X {x · y− ϕn(x)}, we derive
that ∣∣ϕ∗n (y)− ϕ∗n (z)

∣∣≤ R, |y− z| , for all (y, z) ∈ X 2.

Thus the family {ϕ∗n } is relatively compact in C(X ). Let us show that ϕ∗ is the unique cluster
point. In fact by the property of �-convergence, one has for every y ∈ X

−ϕ∗n (y)= inf
x∈X
{ϕn(x)− x · y}→ inf

x∈X
{ϕ(x)− x · y} =−ϕ∗(y),

where we used that X is compact and the fact that ϕn − (·|y)
�→ ϕ − (·|y). In particular for y= 0,

we obtain that ϕ∗(0)= limn ϕ
∗
n (0) is finite, thus inf ϕ ∈R and ϕ belongs to S(X ). Now it is a

consequence of [1, Corollary 3.13, p. 286 ] that ϕ∗n
�→ ϕ∗ and ϕ∗∗n

�→ ϕ∗∗.
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Let us now prove (ii). We show first that if (xn) is a sequence in X converging to x, then
lim infn ϕ̂n(xn)≥ ϕ̂(x). To that aim, it is enough to apply the assertion (i) to the sequence (ψn)
in S(X ) where ψn := ϕn + c(xn, ·). Indeed the continuity of c implies that c(xn, ·)→ c(x, ·) uni-

formly in X so that one deduces easily that ψn
�→ψ with ψ := ϕ + c(x, ·). On the other hand, as

|infψn − inf ϕn| ≤M , the sequence (infψn) remains bounded. Recalling (7.5) we conclude that

lim inf
n

ϕ̂n(xn)= lim inf
n

ψ∗∗n (xn)≥ψ∗∗(x)= ϕ̂(x).

It remains to show that for every x ∈ X , we can find a sequence (xn) converging to x such that
lim supn ϕ̂n(xn)≤ ϕ̂(x). We may assume that ϕ̂(x)<+∞. In a similar way as above, by applying

the assertion (i) to φn := ϕn + c(x, ·), we obtain that φ∗∗n
�→ φ∗∗ where φ := ϕ + c(x, ·). In partic-

ular this implies the existence of a sequence xn→ x such that φ∗∗n (xn)→ φ∗∗(x). We observe that
ϕn + c(xn, ·)≤ φn +ω(x, xn), thus passing to the biconjugate, we have

ϕ̂n(xn)= (ϕn + c(xn, ·))∗∗(xn)≤ φ∗∗n +ω(x, xn).

Therefore, it holds lim sup ϕ̂n(xn)≤ lim sup φ∗∗n (xn)= φ∗∗(x)= ϕ̂(x) and the claim follows.

The regularisation effect induced by the transform ϕ→ ϕ̂ is summarised in the next result.

Lemma 7.2 Let (ϕn) be a sequence in S(X ) such that |infX ϕn| ≤C and ϕn
�→ ϕ. Assume that the

convex subset Dϕ := {ϕ∗∗ <+∞} has non-empty interior. Then ϕ̂n is continuous and converges
uniformly to ϕ̂ on every compact subset K ⊂⊂Dϕ . Furthermore if ω given by (7.4) satisfies
ω(x, y)≤K |x− y|, then ϕ is locally Lipschitz on Dϕ .

Proof By Ascoli–Arzela’s theorem, we are done if we show that, for every x0 in the interior
of Dϕ , we can find r> 0 such that {ϕ̂n} is equi-continuous (resp. equi-Lipschitz) in the ball
B(x0, r). To show this claim, we consider any simplex � = co{a0, a1, . . . , ad} such that � ⊂Dϕ

and � contains x0 in its interior. Then we choose r so small that B(x0, 3r)⊂�. By the assertion

(i) of Proposition 7.1, we have ϕ∗∗n
�→ ϕ∗∗, there exists ai,n→ ai such that lim supn ϕ

∗∗
n (ai,n)≤

ϕ∗∗(ai)<+∞. As �n = co{a0,n, a1,n, . . . , an,d} is arbitrary close to � for large n, it contains a
smaller ball B(x0, 2r) so that, by the convexity of ϕ∗∗n , we have

lim sup
n→∞

sup
B(x0,2r)

ϕ∗∗n ≤ C :=max{ϕ∗∗(ai) , 0≤ i≤ d}. (7.10)

Accordingly {ϕ∗∗n } is equi-Lipschitz on the smaller ball B(x0, r). Let us now consider for every x,
the convex function f x

n := (c(x, ·)+ ϕn)∗∗. For every x, y ∈ X , it holds∣∣f x
n − f y

n

∣∣≤ω(x, y), f x
n ≤ ϕ∗∗n +M , ϕ̂n(x)= f x

n (x).

Then we deduce the following inequality:∣∣ϕ̂n(x)− ϕ̂n(y)
∣∣≤ ∣∣f x

n (x)− f x
n (y)
∣∣+ω(x, y). (7.11)

Furthermore, by the estimate (7.10) and the fact that |infX ϕn| ≤C, the family of convex functions
{f x

n : n≥ 0, x ∈ B(x0, 2r)} is uniformly majorised on B(x0, 2r) (by a constant a little larger than
C+M). Thus it is also equi-Lipschitz on B(x0, r). The equi-continuity (resp. equi-Lipschitz)
property of the family {ϕ̂n, n ∈N} on B(x0, r) that we claimed follows then from (7.11).
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Remark 7.3 By a careful reading of the proof, it is possible to show that, even if Dϕ has an
empty interior, the uniform convergence of (ϕ̂n) still holds on every compact set KR := {ϕ∗∗ ≤
R}. Indeed the arguments developed there apply on the relative interior of the possibly lower
dimensional convex subset Dϕ .

We are now in position to define our relaxed version for the dual problem (P∗). Let us define
the functional E : S(X )→R∪ {+∞} by

E(ϕ)=
{∫

ϕ dν − ∫ ϕ̂ dμ if ϕ ∈ Sb(X )

+∞ otherwise.

It can be easily checked that E is a convex lower bounded functional and it holds inf{E(ϕ) : ϕ ∈
S(X )} =−F(μ, ν). We consider the �-lower semicontinuous envelope defined by

E(ϕ) := inf
{

lim inf
n→∞ E(ϕn) : ϕn

�→ ϕ
}

and define the relaxed dual problem as:

inf
{
E(ϕ) : ϕ ∈ S(X )

}
. (Q)

Thanks to the compactness argument due to Kuratowski, we deduce immediately the following.

Lemma 7.4 The relaxed problem (Q) admits a (possibly unbounded) solution and we have

−F(μ, ν)= inf
{
E(ϕ) : ϕ ∈ S(X )

}=min
{
E(ϕ) : ϕ ∈ S(X )

}
.

Proof Since E thus E are invariant by addition of a constant function, we can choose a
minimising sequence (ϕn) in S(X ) such that inf ϕn =−ϕ∗n (0)= 0. By Kuratowski compactness

theorem (and since X is compact), we have ϕnk

�→ ϕ for a suitable subsequence where ϕ is an
element of S(X ) (such that inf ϕ = 0). We infer that E(ϕ)= inf{E(ϕ) : ϕ ∈ S(X )} = inf{E(ϕ) :
ϕ ∈ S(X )}.

In order to make this abstract existence result meaningful, we need now to identify E(ϕ) and in
particular the subset {ϕ ∈ S(X ) : E(ϕ)<+∞}. This central issue is partially achieved only and
we present here some recent progress. In the next theorem 7.5, we will show that

E(ϕ)=
∫
ϕ dν −

∫
ϕ̂ dμ for every ϕ ∈ S(X )∩ L1

μ+ν , (7.12)

thus in particular E= E on Sb(X ). Notice that by (7.8), it holds ϕ̂ ∈ L1
μ whenever ϕ ∈ L1

ν . In order
to identify E(ϕ) for elements ϕ which are not in L1

ν , we set

Iγ (ϕ) :=
∫

X

(∫
X
ϕ dγ x − ϕ̂(x)

)
μ(dx),

for every γ ∈MT(μ, ν). Notice that by (7.8) and since [γ x]= x, we have

gϕ(x) :=
∫

X
ϕ dγ x − ϕ̂(x) ≥ −M μ−a.e. (7.13)
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so that Iγ (ϕ)>−∞. In view of (7.12), we see that, for ϕ ∈ S(X )∩ L1
ν , it holds E(ϕ)= Iγ (ϕ) for

every γ ∈MT(μ, ν). The issue of the next result is to extend this equality to a suitable subclass
of S(X ). We define

�0(X )=
{
ϕ =

k=∞∑
k=0

ψk , ψk convex continuous on X

}
. (7.14)

In the one-dimensional case, it is shown in [7, Lemma 4.1] that �0(X ) coincides with the set of
all convex l.s.c. functions on X . We believe that it is still the case when X is a compact convex
subset of Rd . As a consequence of Proposition 7.1 and Lemma 7.2, we have the following.

Theorem 7.5 Assume (7.2) and let ϕ ∈ S(X ) be such that μ ({ϕ∗∗=+∞})= 0. Then it holds

E(ϕ) ≥ Iγ (ϕ), for all γ ∈MT(μ, ν). (7.15)

Assume furthermore that ϕ is of the form ϕ = u+ f with u ∈ S(X )∩ L1
μ+ν and f ∈ �0(X ).

Then E(ϕ) = Iγ (ϕ) (and Iγ (ϕ) is independent of the choice of γ ∈MT(μ, ν)). In particular,
it holds (7.12).

Proof Let ϕ ∈ S(X ) such that μ ({ϕ∗∗=+∞})= 0 , γ ∈MT(μ, ν) and gϕ as defined in (7.13).
We have to prove that E(ϕ)≥ ∫X gϕ dμ. To that aim we consider an arbitrary sequence (ϕn)

in Sb(X ) such that ϕn
�→ ϕ to which we associate the sequence (gϕn ) in L1

μ where gϕn (x) :=∫
X ϕn dγ x − ϕ̂n(x) . We are then reduced to show the following claim: lim infn

∫
X gϕn dμ≥∫

X gϕ dμ. Without loss of generality, we may assume that ϕn is non-negative. Then by the �-
convergence of ϕn, we know already (see (7.9)) that lim inf

∫
X ϕndγ x ≥ ∫X ϕdγ x. On the other

hand, by Lemma 7.2 (and remark 7.3), ϕ̂n is continuous and converges uniformly to ϕ̂ on
KR := {ϕ∗∗ ≤ R} for every R. It follows in particular that ϕ̂n→ ϕ̂ on {ϕ∗∗ <+∞} that is μ-a.e.
according to our assumption. Thus we deduce that lim infn gϕn ≥ gϕ holds μ-a.e. and the claim
follows by applying Fatou’s lemma. Thus we have proved that E(ϕ)≥ ∫X gϕ dμ.

Let us now show that the reverse inequality holds when ϕ = u+ f with u ∈ S(X )∩ L1
μ+ν

and f ∈ �0(X ). It is not restrictive to assume that u≥ 0 and
∫

X gϕ dμ<+∞. We consider a
non-decreasing sequence of non-negative (un) in Sb(X ) such that supn un = u. Let (ψk) be a
sequence associated with f through the definition (7.14) and set fn :=∑n−1

k=0 ψk . Then (fn) is a
non-decreasing sequence of convex functions in Sb(X ) such that f = sup fn and fn+1 − fn =ψn is

convex continuous. Let us define ϕn := un + fn. Clearly it holds ϕn
�→ ϕ since (ϕn) is monotone

non-decreasing. By the assertion (ii) of Proposition 7.1, we infer that ϕ̂n
�→ ϕ̂. As (ϕ̂n) is non-

decreasing, we deduce that ϕ̂n→ ϕ̂ point-wise. All in all we have proved that gϕn (x)→ gϕ(x) for
μ-almost all x ∈ X . As E(ϕ)≤ lim supn

∫
X gϕn dμ, we are done if we can establish that gϕn→ gϕ

in L1
μ.

By dominated convergence theorem, it is enough that gϕn (recall gϕn ≥−M) satisfies the upper
bound gϕn ≤ β for a suitable function in L1

μ. In fact, by (7.8), we have ϕ̂n ≥ (un + fn)∗∗ +m≥
fn +m so that

gϕn (x)≤
∫

X
un γ

x(dy)+ hn(x)−m where hn(x)=
∫

X
fn dγ x − fn(x).
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Here we use the same trick as in [7], namely that by the convexity of fn+1 − fn =ψn, it holds

hn+1(x)− hn(x)=
∫

X
ψn dγ x −ψn(x) ≥ 0.

Thus un ≤ u and hn ≤ h where h(x) := ∫X f dγ x − f (x). We are led to gϕn ≤ β where β :=∫
X u dγ x + h(x). Let us show that the non-negative function β belongs to L1

μ. By (7.8), we have
ϕ̂ ≤ ϕ∗∗ +M ≤ ϕ +M so that gϕ ≥ β − u−M . Thus,∫

X
β dμ≤

∫
X

gϕ dμ+
∫

X
u dμ+M .

The conclusion follows since we assumed that gϕ and u belong to L1
μ.

Remark 7.6 As E(ϕ) coincides with E(ϕ) when ϕ is bounded, the functional E is lower semi-
continuous on Sb(X ) with respect to the �-convergence and E is actually an extension of
E from Sb(X ) to S(X ). Coming back to the original dual problem (P∗) and exploiting the
characterisation of E on S(X )∩ L1

μ+ν , we deduce that

sup(P∗) = sup

{∫
X
ϕ̂ dμ−

∫
X
ϕ dν : ϕ ∈ S(X )∩ L1

μ+ν

}
.

As a consequence of Theorem 7.5, we obtain two corollaries.

Corollary 7.7 Assume that there exists a maximising sequence (ϕn) for (P∗) such that∣∣∣inf
X
ϕn

∣∣∣+ ‖ϕn‖L1
μ+ν ≤C. (7.16)

Then the dual problem admits a solution ϕ ∈ L1
μ+ν .

Proof We can assume that inf ϕn = 0 and, possibly after extracting a subsequence, that ϕn
�→ ϕ

where ϕ ∈ S(X ). Thus by Lemma 7.4, ϕ solves the relaxed problem (Q) meaning that: −E(ϕ)=
sup(P∗)= F(μ, ν). In view of the last assertion of Theorem 7.5 (see Remark 7.6), it remains to
show that ϕ ∈ L1

μ+ν . As (ϕn) is assumed to be non-negative and bounded in L1
μ+ν , by applying

(7.9), we get ∫
X
ϕ d(μ+ ν)≤ lim inf

n

∫
X
ϕn d(μ+ ν)<+∞.

Remark 7.8 Unfortunately it was not possible to establish the upper bound estimate (7.16)
in the general case. Nevertheless, such an estimate can be obtained under specific additional
conditions on the measures μ and ν. For instance if we assume that the Newtonian potentials
Pμ, Pν associated, respectively, with μ, ν are such that Pν − Pμ is non-negative (thus μ≤ ν in
the sense of subharmonic order, see (7.3)) and remains bounded away from 0 in a neighbourhood
of X , then, by adapting the arguments given in the proof of [10, Theorem 6.3], we get that every
maximising sequence (ϕn) is uniformly bounded in X . So the condition (7.16) is fulfilled in this
case and Corollary 7.7 provides the existence of a solution for dual problem (7.6).
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Corollary 7.9 Let γ ∈MT(μ, ν) and let ϕ be of the form ϕ = u+ f with u ∈ S(X )∩ L1
μ+ν and

f ∈ �0(X ). Then γ is optimal for (P) and ϕ is optimal for the relaxed dual problem (Q) if and
only if the condition (7.7) is satisfied.

Proof By Lemma 7.4, the pair (γ , ϕ) is optimal if and only if one has∫
X 2

c dγ + E(ϕ)= 0.

As by Theorem 7.5, it holds E(ϕ)= Iγ (ϕ)= ∫X

(∫
X ϕ dγ x − ϕ̂(x)

)
, the latter condition can be

rewritten as: ∫
X

(∫
X

(ϕ + c(x, ·))dγ x − ϕ̂(x)

)
dμ= 0,

which is equivalent to (7.7) since, by (7.5), the quantity integrated with respect to μ is non-
negative.

Remark 7.10 Example 4.13 fits very well to illustrate the successive steps we performed to
enlarge the class of admissible competitors in the dual problem. We found a solution ψα =−ϕα
where ϕα ∈C([0, 1]) for α > 2 and where ϕα ∈ L1

ν ∩ S([0, 1]) for 3
2 <α ≤ 2. For 1<α ≤ 3

2 ,
we have merely that ϕα ∈ S([0, 1]) with {ϕα <+∞}= [0, 1) and μ({1})= 0. By checking the
optimality condition (7.7), we then deduce from Corollary 7.9 that ϕα is still a solution of a
dual problem, but in its relaxed form (Q) since ϕα /∈ L1

ν . Notice that, in that case and adopt-
ing the notations of Example 4.13, we have ϕα = u+ f with u 1-Lipschitz given by u( y)=∑

n≥1

(|y− xn| − 1
2 |In|

)
1In ( y) and f ∈ �0([0, 1]) given by

f (y)=
∑
n≥1

(
1

2
|In| −ψα(xn)− an( y− xn)

)
1In ( y).

We conclude this section with a challenging open issue: what can we say about the domain of
E(ϕ) and does it exist alternative expressions for representing E(ϕ) when for instance μ({ϕ∗∗ =
+∞})> 0?
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