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Abstract

Cannabinoid signalling modulates several aspects of brain function, including the generation
and survival of neurons during embryonic and adult periods. The present review intended to
summarise evidence supporting a role for the endocannabinoid system on the control of
neurogenesis and neurogenesis-dependent functions. Studies reporting participation of
cannabinoids on the regulation of any step of neurogenesis and the effects of cannabinoid
compounds on animal models possessing neurogenesis-dependent features were selected
from Medline. Qualitative evaluation of the selected studies indicated that activation of
cannabinoid receptors may change neurogenesis in embryonic or adult nervous systems
alongside rescue of phenotypes in animal models of different psychiatric and neurological
disorders. The text offers an overview on the effects of cannabinoids on central nervous
system development and the possible links with psychiatric and neurological disorders such
as anxiety, depression, schizophrenia, brain ischaemia/stroke and Alzheimer’s disease. An
understanding of the mechanisms by which cannabinoid signalling influences developmental
and adult neurogenesis will help foster the development of new therapeutic strategies for
neurodevelopmental, psychiatric and neurological disorders.

Summations

∙ Cannabinoid signalling modulates several aspects of brain function, including
generation and survival of neurons during embryonic and adult periods.

∙ Psychiatric and neurological disorders alter the dynamics of adult hippocampal
neurogenesis by either increasing or decreasing neurogenesis.

∙ Manipulations of cannabinoid signalling may restore or prevent neurogenic deficits in
animal models that mimic some features of psychiatric and neurological conditions.

Considerations

∙ Due to methodological limitations in the field of psychiatric and neurological disorders,
mechanisms linking cannabinoids, neurogenesis and pathophysiology are still unclear.

∙ This review detected the need for studies comparing the effects of acute and long-term
treatment with cannabinoid on neurogenesis and associated functions during different
life stages (mainly the critical periods of neuroplasticity).

∙ This review detected the need for further work to establish the effects of cannabinoids
on dysfunctional neurogenesis in animal models and human studies.

∙ In future studies, a systematic review of the literature should be performed to increase
the value of the evidence.

Introduction

A substantial body of evidence has demonstrated the involvement of cannabinoid signalling in
regulating neurogenesis in embryonic or adult central nervous system (CNS) in physiological
and/or pathological conditions. This is a narrative review intended to summarise the evidence
supporting a role for the endocannabinoid system (ECBS) on the control of neurogenesis and
neurogenesis-dependent functions. We selected studies reporting the participation of canna-
binoids on the regulation of any step of the neurogenic process and showing effects of
cannabinoid compounds on animal models of psychiatric and neurological disorders with
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neurogenesis-dependent features. From the selected literature, we
extracted information regarding how cannabinoid compounds
and manipulations of the ECBS affected the above-mentioned
processes. We also advocated that the influence of cannabinoids
on CNS development may be an opportunity to understand
psychiatric and neurological disorders.

Neurogenesis in embryonic and adult CNS

Neurogenesis is the process by which functional neurons are
produced in the nervous systems of all animals (1,2). In
mammals, including humans, neurons in the peripheral nervous
system and CNS are primarily generated during the embryonic and
early postnatal periods (3). From early to adult life, neurogenesis
remains active only in few discrete regions of the brain (4,5).
Although the functions of neurogenesis in the adult mammalian
brain are controversial, its existence seems undisputed (6).

Newborn neurons have been found in adult rats, mice, non-
human primates and humans (2,4–10). The magnitude of the
renewing of the neuronal population exhibits variations when
compared across species and age of the subjects (11–13). For
example, it has been reported that 0.004% of the dentate gyrus
(DG) neurons are added daily in each human hippocampus, while
in 2-month-old mice is 0.3–0.6% and for 5–16-year-old macaque
is 0.04% per day (14). However, stereological methods have
shown that the neuronal turnover in adult human brains is
reduced as compared to mice and macaques, with an age-
dependent decline of neuroblasts (9,11,14).

In adult or embryonic stages, neurogenesis process encompasses
steps organised in time and space shaping the mammalian nervous
system (15). The adequate balance between cell birth, survival, death
and integration into the circuitries is fundamental for keeping the
regular shape of the CNS and, consequently, for keeping its function

(16–19). For a detailed description of neurogenic processes, we
suggest the reading of Paridaen and Huettner (20) for embryonic
neurogenesis and Bond et al. (21) for adult neurogenesis. For the
purposes of the present review, only selected aspects of neurogenesis
will be described in the following text.

Newborn cells in the embryonic or adult CNS come from
series of divisions of the neural stem cells (NSC). Originated from
embryonic totipotent cells, NSC may proliferate or differentiate
into new lineages by giving rise to progenitors committed to glial
or neuronal phenotypes (22) (Fig. 1). The NSC, as well as the
progenitors, may undergo symmetrical divisions forming two
cells identical to themselves (rapid proliferation) or asymmetrical
divisions generating a clone of itself and a different cell type (slow
proliferation, slow differentiation) or two different cell types
(rapid differentiation) (23) (Fig. 1). Glial or neuronal progenitors
may differentiate into glioblasts or neuroblasts, respectively (24)
(Fig. 1). Glioblasts may proliferate and mature in the place of
their birth or migrate to other regions maturing far away from
their origin (22) while neuroblasts often migrate, mature and
integrate circuits far away from their progenitors (25). The
migration of neuroblasts to their final destinations may be
dependent on the scaffold of radial glia (24,26), or ‘tunnels’ of
astrocytes (27) or chains of neuroblasts (2,28) (Fig. 1).

In embryonic CNS, neuronal progenitors are localised mainly
in the subventricular zone (SVZ) of all ventricles and, strictly
controlled, neurogenesis occurs widespread in the nervous system
(24,29). Under physiological conditions, adult neurogenesis seems
confined to the SVZ-olfactory bulb system (SVZ-OB) and the
DG of the hippocampus. In the SVZ-OB, neuronal progenitors
are found throughout the longitudinal extension of the lateral
walls of the lateral ventricles differentiating into neuroblasts while
moving away of the SVZ through the rostral migratory stream
(RMS) (30). The RMS is like a tunnel, pavement with astrocytes,

Fig. 1. Schematic representation of the steps in embryonic or adult neurogenesis in the central nervous system. Neural stem cells, neuronal progenitors and glial progenitors
may undergo symmetric or asymmetric divisions. Symmetrical divisions produce two ‘daughters’ that are identical to their precursors and each other. Asymmetrical divisions
produce two different ‘daughters’, one that is identical to their precursors and another ‘daughter’ that is different from the ‘sister’ and the precursor. Symmetrical divisions
expand the pool of precursors (proliferation step) more rapidly than the asymmetrical divisions. However, asymmetrical divisions give rise to cells with a new phenotype
(differentiation step). Therefore, neural stem cells may differentiate into progenitors committed to neuronal or glial phenotypes. Neuronal progenitors may differentiate into
neuroblasts, whereas glial progenitors may differentiate into different types of glioblasts. Progenitors also may become quiescent( non-dividing state). Neuroblasts and
glioblasts maintain their self-renewing capacity until maturation. Cell death may occur at any step of the process. For a review and more detailed description of neurogenic
steps, we suggest the studies by Paridaen and Huettner (20) (for embryonic neurogenesis) and Bond et al. (21) (for adult neurogenesis).
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where chains of neural progenitors and neuroblasts (in different
stages of development) migrate towards the OB (31,32). In the
adult hippocampus, the neural progenitors are in the subgranular
layer of the DG from where they migrate in chains while
differentiating into neuroblasts, towards the granular layer of the
DG (2,28). In their final destinations, the neuroblasts will find their
fate by settling, maturing, integrating the existing circuitry or dying
(1,28,33).

A plethora of regulatory mechanisms orchestrates neurogen-
esis in embryos and adults (34). For example, paracrine factors,
neurotransmitters or hormones may favour or disrupt prolifera-
tion, differentiation, migration or maturity by interacting with
receptors in the progenitors or other cells in different levels of
differentiation and commitment (35,36). In addition, diffusible
and membrane-bound factors from target regions may repel or
attract neuroblasts, slowing down or speeding up their maturation
and integration in the circuitry at the final destination (37).
The presence of synthetic and degradation enzymes for the
endocannabinoids as well as cannabinoid receptors in NSC and
progenitor cells suggests that ECBS may play a role in the control
of neurogenesis in embryos and adults (38,39).

Cannabinoids and the ECBS

For decades, the term cannabinoids have described a class of
compounds derived from the plant Cannabis spp. Currently, the
term is essentially used to describe three types of substances:
phytocannabinoids, synthetic cannabinoids and endocannabi-
noids (40). More than 100 phytocannabinoids have been identi-
fied and isolated from the Cannabis sativa, including its two
major components: Δ9-tetrahydrocannabinol (THC), responsible
for the psychological and subjective effects of the plant, and

cannabidiol, the main non-psychotomimetic compound (41,42).
Search for endogenous sites, explaining the effects of THC on
behaviour, led to the discovery of the ECBS. In the late 1980s,
Devane et al. (43) identified a specific protein G-coupled receptor
activated by THC in the rat CNS, which was later cloned and
named CB1 receptor (44). Afterwards, a second cannabinoid
receptor was also described and named CB2 (45). CB1 and CB2
receptors are Gi/o-coupled protein receptors blocking calcium
channels and activating potassium channels reducing cell firing
rate and neurotransmitter release (46) (Fig. 2).

The initial characterisation of CB1 receptors in the CNS
indicated that these receptors are expressed in axons, cell bodies
and dendrites (47). In 2001, Wilson and Nicoll (48) found CB1
receptors located in the axon terminals participating in the
endocannabinoid mediated-retrograde signalling in the hippo-
campus controlling the release of gamma-aminobutyric acid
(GABA). Following the initial finding, activation of the CB1
receptor was shown to inhibit the release of other neuro-
transmitters, such as glutamate, serotonin and dopamine (49,50).
In adult brains, CB1 activation was also associated with the
control of short-term neuronal reactivity in glutamatergic and
peptidergic synapses (48,51,52). CB1 activation also exerts neu-
roprotective effects by reducing glutamate-induced excitotoxicity
(53) and stimulating neuroplasticity (54). Expression of func-
tional CB2 receptors has been found in specific populations of
cells (microglial cells, neurons and NSCs) in the CNS, but at lower
levels than CB1 (55–57). The specific functions and cellular
consequences of CB2 activation in the CNS are still under
investigation but seem also related to the control of the release
of neurotransmitters. For example, the CB2 receptor agonist
JWH133 decreased the amount of dopamine in the nucleus
accumbens of rodents submitted to a cocaine-induced

Fig. 2. Classical representation of endocannabinoid signalling in the adult brain. Anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) are produced ‘on demand’ in calcium
(Ca2 + )-dependent manner (via the previous activation of a metabotropic or ionotropic receptor). After the synthesis of endocannabinoids by specialised enzymes, they act as
retrograde massagers by activating CB1 receptors located at pre-synaptic terminals. CB1 is a Gi/o-coupled receptor, and its activation reduces Ca2 + currents and increases K+

currents, leading to the inhibition of neurotransmitter release. The actions of 2-AG and AEA are terminated by enzymatic hydrolysis; fatty acid amide hydrolase (FAAH) and
monoacylglycerol lipase (MAGL) degrade AEA and 2-AG, respectively. The CB1 receptor is also expressed in astrocytes and microglia and the CB2 receptor is expressed in
activated microglia and putatively expressed in neurons (still under debate). CB1, type 1 cannabinoid receptor; CB2, type 2 cannabinoid receptor; DAGL, diacylglycerol lipase;
NAPE-PLD, N-acyl phosphatidylethanolamine-specific phospholipase D.
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self-administration paradigm (58). In microglial cells, activation
of CB2 receptors reduced the secretion of cytokines that function
as neuromodulators changing neuronal firing and subsequently
neurotransmitter release (57).

The first endogenous ligands for CB receptors were the
arachidonoyl ethanolamide or anandamide (AEA) and
2-arachidonoyl glycerol (2-AG), derived from the hydrolysis of
arachidonic acid (59,60). In the CNS, AEA is synthesised mainly
by N-acyl phosphatidylethanolamine phospholipase D, whereas
2-AG is produced by the α and β isoforms of diacylglycerol lipase
(DAGL). Once produced and released, in a calcium-dependent
manner (61), AEA and 2-AG may interact with CB receptors
located in pre- and post-synaptic membranes or may be hydro-
lysed by the enzymes fatty acid amide hydrolase (FAAH) and
monoacylglycerol lipase (MAGL), respectively (38) (Fig. 2).
Endocannabinoids production and release from postsynaptic
neuronal compartments occur ‘on demand’, upon cell depolar-
isation, being reduced by their own action as retrograde
messengers on pre-synaptic inhibitory CB1 receptors (61) (Fig. 2).
Embryonic and adult regions of the brain with neurogenic
potential express genes coding for receptors and enzymes of the
ECBS system, which may interfere with pre-existing or newly
formed networks (38,62).

Cannabinoids and embryonic neurogenesis

The ECBS seems capable of regulating some features of the
neurogenic process in the embryonic hippocampus and cerebral
cortex (56,63–66). The increase of the intracellular calcium in
embryonic NSC and immature neurons induced the production
of endocannabinoids (67). Growth factors, such as fibroblast
growth factor and nerve growth factor, may increase 2-AG levels
via the activation of phospholipase C or tropomyosin receptor
kinase A receptor (68,69). 2-AG, synthetised approximately 1000-
fold higher than AEA in embryonic brain, seem to favour neural
maturation and cell proliferation (70–72). Indeed, the pharma-
cological inhibition of DAGL, responsible for the 2-AG synthesis,
with RHC-80276 reduced the proliferation of embryonic NSC in

cultures (73). Besides, an isoform of the enzyme DAGL co-
localises with CB1 receptors in developing neurons during the
growth of the axonal cones (72). A role for AEA is unclear once
the inhibition of enzymes for synthesis (74) or degradation- (63)
induced proliferation of embryonic NSC.

Actions of the endocannabinoids on neural development seem
to mediate by CB1 and CB2 receptors, which expressions may
vary over the course of neurogenesis (Fig. 3). Indeed, the receptor
CB2 is more abundant in less committed cells, whereas CB1
receptor is predominantly expressed during neuronal lineage
specification (71,75) (Fig. 3). In addition, cannabinoid receptors
seem functional during the development of the CNS once that
cannabinoid receptor agonist WIN 55,212-2 stimulated the
binding of [35S] GTPγS in the tissue of embryonic brain (76). In
the embryonic cortex, genetic ablation of the CB1 receptor
inhibited proliferation of NSC, favoured neuronal fate commit-
ment and neurite growth (70). Activation of CB1 in cortical
neural precursors with the agonist HU-210 promoted the
expansion of NSC pool and promoted survival by inducing Pax6
and T-box TF (Tbr2) (64). Pax6 is an important transcription
factor involved in regulating cortical progenitor proliferation,
neurogenesis and the formation of cortical layers, whereas Trb2
promotes the generation and proliferation of intermediate pre-
cursors that give rise to pyramidal glutamatergic neurons in the
cortex during neurodevelopment (15). Activation of cannabinoid
receptors by AEA, 2-AG or WIN55-212,2 may also promote
astroglial cell differentiation in vitro (64). Despite their viability,
fertility and normal brain morphology (53), CB1 knockout mice
presented higher mortality, reduced locomotor activity and
hypoalgesia when compared with heterozygous littermates (77).

In humans, the ectopic expression of CB1 and CB2 receptors is
associated with defective development of the cortex (78). Endo-
cannabinoid signalling controls the proliferation of pyramidal cell
progenitors and the radial migration of immature pyramidal cells
in the embryonic cortex (79). The CB1 receptor is expressed in
intermediate progenitor cells (Tbr2 + ) that later differentiate into
pyramidal cells (66,79,80). Zurolo et al. (78) observed unexpect-
edly high expression of CB1 receptors in dysplastic neurons in the

Fig. 3. Schematic representation of the neurogenesis steps in the central nervous system of embryos (a) and adults (b), along with the putative expression of the
endocannabinoid system in different cell populations. 2-AG, 2-arachidonoylglycerol; AEA, anandamide; CB1, type 1 cannabinoid receptor; CB2, type 2 cannabinoid receptor;
DAGL, diacylglycerol lipase; FAAH, fatty acid amide hydrolase; MAGL, monoacylglycerol lipase; NAPE-PLD, N-acyl phosphatidylethanolamine-specific phospholipase D.
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early stages of human corticogenesis associated with cortical
malformations and intractable epilepsy (focal cortical dysplasia).
According to Diaz-Alonso et al. (66), the CB1 receptor is also
involved in organising the cortical layers. In mice lacking CB1
expression in glutamatergic neurons during cortical development,
the expression of the proteins (Ctip2/Satb2) was abnormal and
the cortical layer V disorganised producing severe motor deficits
in adult animals (68,69). Moreover, Alpar et al. (81) observed
enlarged corpus callosum by excessive 2-AG-mediated signalling
suggesting abnormal axonal growth of glutamatergic neurons of
layer V caused by CB1 hyperactivity. CB1 signalling seems also
important to correct placement and integration of GABAergic
interneurons during cortical development (82,83). In fact,
Morozov et al. (84) observed CB1 receptors expressed in
embryonic GABAergic interneurons migrating through a long-
distance pathway to differentiate into CB1/CCK+ or CB1/reelin/
calretinin + GABAergic interneurons. In these cells, CB1 activa-
tion by endogenous or synthetic cannabinoids regulates axonal
growth and the shape of their dendritic arbours (73,82,83).
2-AG-mediated may also control the differentiation of NSCs into
GABAergic neurons and neurite outgrowth in cholinergic
neurons (68) while AEA induced the formation of CB1/TrkB
heterocomplexes, promoting interneuron migration (82). Roles
for CB2 receptors during the different stages of brain develop-
ment remain unclear: the antagonist SR144528 decreased the
basal proliferative capacity of NSCs in vitro (85); agonist HU-308
induced cell cycle maintenance and neural differentiation (86);
2-AG was shown to induce early oligodendrocyte differentiation
via CB2 receptors (81).

Cannabinoids and adult neurogenesis

In the adult brain, the ECBS modulates different steps required
for neurogenesis: cell proliferation, differentiation, maturation
and survival (Fig. 3) (87). Cannabinoid receptors activate different
intracellular pathways, such as extracellular signal-regulated
kinases (ERKs) 1 and 2 (ERK1/2), c-Jun amino-terminal kinases
and PI3K/Akt/mTOR, inducing the production of neurotrophins
such as brain-derived neurotrophic factor (BDNF) and other
molecules that control the proliferation and survival of newborn
cells (39). Voluntary exercise, a positive regulator of adult
neurogenesis, increases AEA levels and promotes cell prolifera-
tion in the hippocampus (88). Pre-treatment with the CB1
receptor antagonist AM251 prevented running-induced adult
hippocampal neurogenesis (88) Facilitation of the effects of AEA
by pharmacological (URB597) or genetic FAAH inhibition
increased hippocampal neurogenesis (66) and prevented its
decrease after trimethylthiazoline exposure (63). Conversely,
Gonçalves et al. (73) observed suppressed proliferation in the SVZ
and cell migration SVZ-OB after treatment with RHC33, an
inhibitor of 2-AG synthesis. In addition, genetic ablation of
DAGLα/β decreases cell proliferation, survival and the number of
cells committed to the neuronal fate in the DG (89,90).

Phytocannabinoids such as THC and cannabidiol might
increase or decrease adult hippocampal neurogenesis (82,91,92).
However, acute or chronic (3 weeks) treatment with THC did not
change cell proliferation in the DG of adult animals (92). In the
study by Wolf et al. (91), adult mice treated with THC (6 weeks)
exhibited decreased proliferation and a simultaneous impairment
in spatial memory performance.

Adult CB1 knockout mice showed lower rates of proliferation,
astrogliogenesis and neurogenesis in the subgranular zone (SGZ)

and SVZ (63,92,93) and kainic acid-induced hippocampal NSC
proliferation (63). However, results obtained in studies using the
treatment with CB1 antagonists or inverse agonists such as rimo-
nabant, are contradictory. For example, rimonabant decreased
doublecortin (DCX) expression in the SGZ of the DG and SVZ (94).
In other studies, a CB1 receptor antagonist/inverse agonist facili-
tated the proliferation and survival of hippocampal neural precursor
cells (90,92,94). Rodents treated with repeated doses of WIN
55,212-2, a CB1/CB2 receptor agonist, exhibit higher proliferation
rates of neural precursor cells in the SVZ and DG (63,73). In adult
CB2 knockout mice, low rates of cell proliferation under basal
conditions or in response to kainate-induced excitotoxicity were
also observed in the DG (82). CB2 inverse agonists, such as JTE 907,
AM630 or SR144528, also reduced NSC proliferation in the SVZ
and SGZ (73,82). These compounds decrease the basal proliferative
capacity of NSCs in culture (82). Repeated administration of a CB2
receptor agonist, HU-308, increases NSC proliferation in the SGZ
via the Akt/mTORC1 pathway (82).

Despite some contradictions, most of the publications examined
here indicated the activation of cannabinoid receptors as the main
mechanisms by which ECBS may regulate neurogenesis in
embryonic and adult mammalian brains. In the next sections, we
will speculate on how cannabinoid receptors modulation may
change neurogenesis repercuting in the pathophysiology of anxiety,
depression, schizophrenia, brain ischaemia and Alzheimer’s disease.

Cannabinoids, neurogenesis and possible implications for
psychiatric and neurological disorders

Mental and neurological disorders comprise a broad range of
disabling syndromes with different emotional and behavioural
symptoms. Aberrant neural development or disruptive mechan-
isms related to the adult neurogenic niches are potential
aetiological factors that precipitate the initial symptoms or the
late-onset of these disorders (95). For example, changes in
the mechanisms associated with the neurogenic process in the
embryonic and adult brain have been reported in patients with
Alzheimer’s disease (AD) (96,97), schizophrenia (98) and mood
disorders (99). In the other way around, psychiatric and neuro-
logical disorders may alter the dynamics of adult hippocampal
neurogenesis by either increasing or decreasing cell proliferation
(97,100). Increased hippocampal cell proliferation has been
observed in animal models of Huntington’s disease (101),
ischaemic brain injury (102) and temporal lobe epilepsy
(103,104). Impairments in hippocampal neurogenesis have been
reported in animal models of AD (105), Parkinson’s disease (106)
and in the postmortem brains of patients with different psychiatric
conditions (107). In addition to the loss of existing neurons, a
decrease in neurogenesis in subjects with these conditions may
indicate that the endogenous capacity of the adult brain for
cell renewal and the putative functions of these neurons are
compromised or even lost (108).

Despite the extensive pre-clinical evidence suggesting that
both exogenous and endogenous cannabinoids may regulate
neurogenesis, which may be affected by mental and neurological
disorders, the link between cannabinoids, neurogenesis and brain
disorders are unclear. The weakness of evidence may come from
the lack of postmortem studies in brains from patients with
neuropsychiatric disorders (108). In the next sections, we present
evidence suggesting that manipulations of cannabinoid signalling
restore or prevent neurogenic deficits in animal models that
mimic some features of psychiatric and neurological conditions.
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Cannabinoids, adult neurogenesis, and depressive and
anxiety disorders

Impairments in hippocampus-dependent functions (e.g. cognitive
deficits, affect lability and dysregulated pattern separation) are
common symptoms of psychiatric disorders such as major
depression, anxiety, schizophrenia and addiction (108–110).
These symptoms may indicate a disrupted function of the
hippocampal DG and dysregulation of adult-generated neurons
(111). Indeed, decreases in hippocampal volume and hippo-
campal neurogenesis have been considered cellular substrates of
major depression (100,107,112), posttraumatic stress disorder
(113–115) and schizophrenia (116). The attenuation of hippo-
campal neurogenesis also facilitates anxiety- and despair-related
behaviours in rodents (105,117). Moreover, adult hippocampal
neurogenesis has been suggested to buffer the stress response
(74,118) and is implicated in the therapeutic effects of anti-
depressants (119,120). Structural changes in the hippocampus are
attenuated or reversed by antidepressants, atypical antipsychotics
and physical exercise, which are known to positively impact
hippocampal neurogenesis (121,122). Therefore, it is likely that
some of the actions of cannabinoids might rescue behavioural
and/or functional deficits impaired by adult neurogenesis
deficiencies.

Despite the extensive pre-clinical evidence suggesting that
both exogenous and endogenous cannabinoids regulate adult
hippocampal neurogenesis, the mechanisms that link cannabi-
noids, alterations in adult neurogenesis and affective disorders are
still unclear. This lack of clarity is at least partially because
postmortem studies of adult hippocampal neurogenesis in brains
from patients with neuropsychiatric disorders are rare, and the
findings have been mostly inconclusive (109). For example, a
decrease (123) or lack of change (124) in hippocampal cell pro-
liferation has been observed in the hippocampus of patients with
major depression. Moreover, depressed patients treated with
tricyclic antidepressants or selective serotonin reuptake inhibitors
showed increased (123) or unchanged (124) hippocampal cell
proliferation.

In rodents, chronic unpredictable stress (CUS) has been used
to mimic some depressive-like behaviours and to investigate the
underlying cellular and molecular mechanisms of depression
(125). CUS not only induces depressive-like behaviours but also
impairs long-term potentiation (LTP) and decreases the number
of BrdU-labelled neural progenitor cells and DCX-positive
immature neurons in the mouse DG (126–128). Otherwise,
blockade of 2-AG degradation by the MAGL inhibitor JZL184
enhanced hippocampal neurogenesis, restored LTP in the DG,
and produced antidepressant-like effects on mice that were
subjected to the CUS model of depression (128) (Table 1). These
effects were attributed to an increase in hippocampal neurogen-
esis that occurred through the activation of the CB1 receptor.
However, so far these effects have not been confirmed by other
groups. In other study, repeated cannabidiol administration
(30mg/kg for 14 days) exerted anxiolytic-like effects, reduced
anhedonia and increased hippocampal neurogenesis in mice that
were subjected to CUS (74). The genetic ablation of proliferating
progenitors in the hippocampus of these stressed mice prevented
the anxiolytic-like actions of cannabidiol. The authors concluded
that repeated cannabidiol administration prevents the effects of
CUS through a neurogenesis-dependent mechanism, favouring
adaptations to stress. This assumption was supported by the
observation that hippocampal adult neurogenesis was not Ta
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required for the antidepressant-like effect of chronic cannabidiol
administration under basal (non-stressed mice) conditions (129).

The behavioural and pro-neurogenic effects of cannabinoids
on stressed mice involve the activation of both cannabinoid CB1
and CB2 receptors, secondary to an increase in endocannabinoid
tone (74). Indeed, hippocampal neurogenesis is impaired in CB1
knockout mice (93). Chronic administration of the full and potent
CB1/CB2 receptor agonist HU-210 increased hippocampal cell
proliferation and produced antidepressant-like effects on rat beha-
viours (130). Accordingly, Lee et al. (94) have shown that repeated
treatment with rimonabant, a CB1 receptor antagonist, caused loss
of antidepressant activity and decreased DCX immunoreactivity in
the mouse hippocampus. However, it is important to mention that
these results have not been confirmed in other studies.

The CB2 receptor-selective agonist HU-308 also exerted
proliferation-enhancing effects on the mouse hippocampus (85).
Furthermore, transgenic mice that overexpress CB2 receptors and
were subjected to CUS presented a decrease in depressive-like
behaviours and increased expression of the BDNF gene in the
hippocampus, suggesting an increase in neuroplasticity (131).

Cannabinoids, neurogenesis and schizophrenia

Schizophrenia is a heterogeneous and multifactorial disease that is
believed to result from complex interactions between genetic,
physiological and environmental factors (132). Based on the
considerable evidence, schizophrenia may involve the abnormal
neurogenesis of embryonic NSCs, a process that would be parti-
cularly vulnerable to a number of genetic and/or environmental
disturbances during early brain development (98,133–136). In
humans, the use of Cannabis for recreational or medical reasons
during pregnancy has been associated with attention deficits,
impaired learning and memory, and behavioural changes related
to schizophrenia in the offspring (136,137). However, the extent
of this association is still controversial (138–140). The effects of
THC (141) or synthetic cannabinoids (142) on embryonic
development are highly variable, depending on the substance.
In rodents, reports supporting and refuting the deleterious
consequences of in utero and postnatal exposure to THC have
been published (67,81,143). Due to the lack of conclusive data,
the American Congress of Obstetricians and Gynaecologists
(http://www.acog.org/) discourages the use of marijuana during
pregnancy or lactation. Excellent reviews have been published on
the topic of Cannabis use and neurodevelopment (67,81,137).

Regarding adult hippocampal neurogenesis, a previous study
reported the higher expression of the polysialylated form of
the neural cell adhesion molecule (PSA-NCAM), a marker of
immature neurons, in the hippocampus of patients with schizo-
phrenia in the absence of changes in total cell number (144).
Other studies reported a decrease in the number of cells positive
for the proliferation marker Ki-67 in the hippocampus of patients
with schizophrenia (124,145). Walton et al. (146) identified an
immature DG (iDG) in patients with schizophrenia. The iDG
is characterised by greater hippocampal cell proliferation, an
increase in the levels of markers of immature neurons (e.g. calre-
tinin and DCX), and the lack of markers of mature neurons
(e.g. calbindin). From a functional point of view, mice with an
iDG exhibit several behavioural traits that reflect both positive
and negative symptoms commonly observed in patients with
schizophrenia, including hyperactivity and deficits in social
interaction, nest building, and working memory (146). Thus,
disturbed hippocampal adult neurogenesis is related to cognitive

deficits and other symptoms observed in patients with schizo-
phrenia (124). Susceptibility genes for schizophrenia, such as
neuregulin-1, disrupted-in-schizophrenia 1 (DISC1), neuronal
PAS domain-containing protein 3 (NPAS3) and fatty acid
binding protein 7 (Fabp7), regulate adult hippocampal neuro-
genesis and are involved in the expression of schizophrenia-like
behaviours in rodents (110). For example, Fabp7-deficient mice
show impaired hippocampal neurogenesis and a decrease in
prepulse inhibition of the acoustic startle reflex (147), indicating
abnormalities in sensorimotor gating. SREB2, an orphan
G-protein-coupled receptor expressed in the DG of patients with
schizophrenia, impairs cognitive function and negatively regulates
hippocampal adult neurogenesis in SREB2 Tg mice (148).
Accordingly, DG-irradiated rats present behavioural abnormal-
ities in social interactions and working memory, which are also
often observed in patients with schizophrenia (149). Therefore,
impaired adult hippocampal neurogenesis might contribute
to hippocampal structural abnormalities and be associated with
the behavioural and cognitive symptoms of schizophrenia
(124,150–153).

Although the effects of antipsychotic drugs on adult hippo-
campal neurogenesis and hippocampus-dependent behaviours are
not entirely clear (154,155), the neurogenic actions of atypical
antipsychotics have been at least partially correlated with bene-
ficial effects on negative and cognitive symptoms of schizo-
phrenia. Haloperidol, a typical antipsychotic drug that controls
positive symptoms of schizophrenia by opposing the excessive
stimulation of D2 receptors, fails to alleviate negative symptoms,
such as flattened affect and cognitive deficits (156), and has no
effect or even decreases hippocampal neurogenesis (157–159).
On the other hand, atypical antipsychotics, such as olanzapine,
risperidone (160), clozapine (161) and ziprasidone (159,162),
increase cell proliferation in both neurogenic regions (i.e. the
hippocampal SGZ and SVZ). Chronic treatment with olanzapine
also increases the number of proliferating cells in the prelimbic
cortex of rats (163). Increased neurogenesis contributes to
neuronal replenishment and might explain the observed amelio-
ration of cognitive and negative symptoms elicited by atypical
antipsychotics.

According to animal and human studies, CB1 and CB2
receptor functions, as well as AEA and 2-AG levels, are involved
in the pathophysiology of schizophrenia (164). CP-55940, a CB1/
CB2 receptor agonist, abolished the oscillatory activity at the θ
frequency and impaired the sensory gating function in the limbic
circuitry of rats, further supporting the connection between
Cannabis abuse and an increased risk of developing schizophrenia
(165). A cross-sectional survey study published in 2004 suggested
that Cannabis abuse during the critical period of neuroplasticity
in adolescence is associated with positive and negative
manifestations of psychosis (166). As mentioned above, the ECBS
regulates fundamental developmental processes such as cell
proliferation, migration, differentiation, synaptogenesis and
survival during patterning of the CNS (67,70,77). Accordingly,
changes in ECBS-related genes have been reported in the brains of
patients with schizophrenia (167–169).

Only a few researchers have explored the link between
neurogenesis, schizophrenia and cannabinoids. In the study by
Bortolato et al. (170), a 2-week administration of the potent
non-selective cannabinoid receptor agonist WIN 55,212-2 (2mg/kg)
to juvenile male Lewis rats increased the survival of new cells,
mainly neural glial antigen 2- or glial fibrillary acidic protein-
positive cells, in the striatum and prefrontal cortex, two key terminal
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fields of dopaminergic pathways. The same treatment increased
striatal dopamine metabolism and turnover in adulthood. The
neurochemical changes were accompanied by behavioural altera-
tions that are potentially related to attention deficits, such as slow
reaction time and increased novelty-seeking behaviours (Table 1).
The authors concluded that cannabinoid receptor agonism by WIN
55,212-2 might impact behaviours related to high dopaminergic
metabolism and alter frontostriatal neurogenesis and gliogenesis.

Cannabinoids, adult neurogenesis and brain ischaemia

Hypoxia or ischaemia during prenatal asphyxia, severe hypoten-
sive shock, atrial fibrillation, cardiac arrest (i.e. global brain
ischaemia), or embolic/thrombotic occlusion of one or more
cerebral vessels [i.e. focal brain ischaemia or stroke (171,172)]
severely impairs brain blood perfusion. The process of patho-
logical ischaemia begins with the breakdown of ion homoeostasis
in the neuronal membrane caused by energy collapse, leading to
anoxic depolarisation, massive glutamate release and oxidative
stress in adjacent postsynaptic cells. These changes occur within
minutes and comprise the acute excitotoxic phase of brain
ischaemia, culminating in necrotic cell death in the infarcted
region. In the subsequent hours to days (i.e. the reperfusion
phase), further neurovascular changes occur when blood and
oxygen re-enter the infarcted area, including membrane degra-
dation, mitochondrial damage, neuroinflammation and apoptosis.
A series of protective mechanisms, including neurogenesis and
angiogenesis, may be activated to counteract these pathological
ischaemic events (173–176). Increased hippocampal neurogenesis
promotes spatial memory recovery after focal (177) and global
(178) brain ischaemia, whereas the inhibition of hippocampal
neurogenesis exacerbates ischaemia-induced cognitive impair-
ments (175,177–179). Nonetheless, a substantial proportion of
newly generated neurons dies after ischaemic insult (174).
Therefore, therapeutic agents protecting against ischaemic brain
injury should, ideally, be able to exert multiple effects on
impeding the ischaemic cascade propagation, as well as stimu-
lating the proliferation and differentiation of new neural cells to
repair damaged areas (175).

Concerning the mechanisms of neuroprotection, CB1 receptor
activation may prevent neuronal death and stimulate neurogen-
esis after brain ischaemia. In a pioneer study, Nagayama et al.
(180), have shown that the synthetic cannabinoid agonist WIN
55,212-2 decreased hippocampal neuronal loss after transient
global cerebral ischaemia and reduced infarct volume after per-
manent focal cerebral ischaemia. These effects were blocked by
the specific CB1 receptor antagonist SR141716A (180). In another
study, WIN 55,212-2 (0.1mg/kg, single doses) enhanced cell
proliferation, oligodendrogenesis and neuroblast generation in the
striatum and SVZ of newborn rats exposed to acute hypoxia-
ischaemia (181).

Using a model of focal brain ischaemia [i.e. middle cerebral
artery occlusion (MCAO)], Sun et al. (142) reported an increase
in the expression of CB1 receptors in the ischaemic penumbra
area 2 h after the ischaemic insult. The administration of WIN
55,212-2 (9mg/kg, i.v.) significantly attenuated brain swelling and
reduced the infarct volume (Table 2). WIN 55,212-2 also pro-
moted the proliferation of NG2-positive cells in the ischaemic
penumbra area and ipsilateral SVZ following the ischaemic insult.
The selective CB1 receptor antagonist rimonabant (1mg/kg, i.v.)
partially blocked the effects of WIN 55,212-2. Moreover, Caltana
et al. (182) reported neuroprotective effects of the CB1 receptor

agonist arachidonyl-2-chloroethylamide (ACEA) on mice sub-
jected to MCAO. An ACEA treatment counteracted the func-
tional impairments and attenuated the astrocytic reaction and
neuronal death in ischaemic mice. ACEA also affected neural
plasticity by increasing dendritic thickness and synaptogenesis in
the brains of ischaemic mice. In contrast, treatment with the CB1
antagonist AM251 decreased these parameters. Thus, CB1
receptors stimulate adult neurogenesis following brain ischaemia.
However, the simultaneous activation of both CB1 and CB2
receptors might be necessary for neuroprotection in response to
ischaemic injuries. For example, Fernández-López et al. (183)
showed that the combined administration of the CB1 antagonist
SR141716 and the CB2 antagonist SR144528 reversed the
neuroprotective effects of WIN 55,212-2 on brain slices from
7-day-old Wistar rats exposed to oxygen-glucose deprivation.

Recently, an important role for CB2 receptor in poststroke
spontaneous recovery has been reported. Bravo-Ferrer et al. (184)
have demonstrated that subacute pharmacological blockage of the
CB2 receptor with SR144528 or after CB2 genetic deletion
inhibited stroke-induced neurogenesis by reducing the migration
of neuroblasts toward the injured cortex, after permanent middle
artery occlusion in mice.

CB1 and CB2 receptors are also associated with postnatal
oligodendrogenesis. CB1 receptor activation increases the number
of glial precursors in the rat SVZ. In addition, CB2 receptor
activation increases PS-NCAM expression, which is required for
the migration of oligodendrocyte precursors (185). Furthermore,
modulation of the inflammatory response by CB2 receptors
reduces damage and increases neuronal survival during the initial
and later phases of ischaemic brain injury (178,183). However,
further studies are necessary to determine the mechanisms
by which CB1 and CB2 receptor signalling contribute to the
neuroplastic effects of cannabinoids on brain ischaemia.

Cannabinoids, adult neurogenesis and AD

AD is the most common form of dementia among the elderly
(132,186). Memory impairments, cognitive and functional dete-
rioration, and olfactory deficits are characteristic symptoms of
this disease. Although a small proportion of AD cases (<5%) have
a genetic basis (familial AD), the majority of cases are sporadic
with an as yet unknown aetiology (187,188). The pathological
hallmarks of AD are the presence of amyloid senile plaques
composed of extracellular deposits of β-amyloid (Aβ) peptide
derived from aberrant processing of the transmembrane amyloid
precursor protein (APP) and the hyperphosphorylation of the
microtubule-associated protein τ, resulting in formation of the
intracellular neurofibrillary tangles that impair inter-neuronal
communication (189–191). The brains of patients with AD show
signs of neurodegeneration, oxidative damage, neuroinflamma-
tion and reduced cholinergic activity in areas related to memory
processing (192). Synapse loss in the hippocampus and neocortex
has been considered the primary structural correlate of cognitive
decline in patients with AD (193,194).

Changes in adult hippocampal neurogenesis have been
reported in AD (97,195). A moderate decline in hippocampal
neurogenesis (196) and a failure in neuronal maturation (197)
have been observed in postmortem brains of patients with AD. On
the other hand, increase in the proliferation of hippocampal
progenitor cells was detected during the onset, middle and
advanced stages of AD (197,198). One study showed an increase
in the levels of several immature neuronal markers, such as DCX,
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Table 2. Cannabinoids agonists increase adult neurogenesis in animal models of brain ischaemia and Alzheimer’s disease

Animal model Behavioural testing
Cannabinoid, dose/concentration,
via, schedule Species/strain* Effects on neurogenesis Effects on behaviour and others References

Aging – CB2 agonists and FAAH inhibitors,
i.c.v., acute

Mice, C57BL/6 (6
and 20 months
old)

↑ Cell proliferation in the SVZ and ↑
new-generated neurons in the OB

– (73)

Aging – WIN 55,212-2 (2mg/kg),† s.c.,
once a day for 21 days

Rats, F-344
(23 months
old)

↑ Newly generated neuroblasts
in DG

– (204)

APP23/PS45
transgenic mice

Morris water maze, fear
conditioning test

HU-210 (10 or 50 µg/kg),† i.p., twice
a day for 10–20 days

Mice, C57BL/6J ↓ Proliferation in DG No effect (220)

Intracerebral
injection of
human Aβ
(1–42)

– Cannabidiol (10mg/kg), i.p., once
a day for 15 days

Rats, Sprague-
Dawley

↑ Immature neurons in the DG – (219)

Acute hypoxia-
ischaemia

– WIN 55,212-2 (1mg/kg), s.c., twice
a day for 7 days after injury

Rats, Wistar
(7-day-old)

↑ Cell proliferation, ↑ newly
generated neuroblasts in SVZ
and striatum

– (181)

Middle cerebral
artery occlusion

– WIN 55,212-2 (9mg/kg), i.p., once a
day for 14 days following
reperfusion

Rats, Sprague-
Dawley

↑ Survival oligodendrocyte
precursors, ↑ differentiation in
peri-infarcted area

↑CB1 expression (142)

Middle cerebral
artery occlusion

– WIN 55,212-2 (9mg/kg), i.v., acute,
2 h after injury

Rats, Sprague-
Dawley

↑ Proliferation in the DG – (142)

Middle cerebral
artery occlusion

Neurological score, Corner test,
Cylinder test

ACEA (1mg/kg)‡ AM251
(1mg/kg),** i.p., acute

Mice, C57BL/6J – ↓ Motor deficits
↓ Astrocytic reaction
↓ Neuronal death
↓ Dendritic loss

(178)

Middle cerebral
artery occlusion

SR144528†† Mice, C57BL/6J – ↓ Neuroblast migration towards injured cortex (184)

Bilateral common
carotid artery
occlusion

Object location test, Y-maze,
elevated zero maze, forced
swim test

Cannabidiol (10mg/kg), i.p., once
a day during 3 days after injury

Mice, C57BL/6J ↑ Neurogenesis in DG ↓ Memory deficits, ↓ anxiety- and despair-like
behaviours, ↑ hippocampal BDNF, ↓ hippocampal
neuronal death

(142)

↓, decreases; ↑, increases; Aβ, β-amyloid; ACEA, arachidonyl-2-chloroethylamide; APP, amyloid precursor protein; BDNF, brain-derived neurotrophic factor; DG, dentate gyrus; FAAH, fatty acid amide hydrolase; i.c.v., intracerebroventricular; i.p.,
intraperitoneal; i.v., intra vascular; OB, olfactory bulb; s.c., subcutaneus; SVZ, subventricular zone.
*All males.
†Cannabinoid receptor agonist.
‡CB1 receptor agonist.
**CB1 receptor agonist.
††CB2 agonist.
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PS-NCAM, neurogenic differentiation factor and TUC-4, in a
cohort of patients with the senile AD (197). In a younger cohort
of presenile patients with a faster and more severe disease course,
however, these results were not replicated (199). Nevertheless,
increased hippocampal neurogenesis in AD patients may repre-
sent a compensatory mechanism for endogenous brain repair and
to counteract disease-related inflammation (97).

The neuropathological and cognitive features of patients with
AD have been successfully mimicked in transgenic models by
manipulating genes involved in the familial AD, such as APP,
presenisilin-1 and presenilin-2, which lead to the production and
deposition of Aβ plaques (200). Interestingly, these genes also
modulate neurogenesis (201). Similar to human patients with AD,
transgenic animal models of AD develop severe cognitive deficits
and hippocampal degeneration (200). However, the results
regarding adult neurogenesis are again highly variable, probably
because of methodological differences in the age of the animals,
transgene expression, Aβ deposition and neurotransmitter levels.
Both decreased and increased hippocampal neurogenesis have
been reported in transgenic models of AD (201).

Several reports point out a possible implication of the ECBS in
AD in the modulation of events occurring during the course of
AD progression evaluated from early- to late symptomatic AD-
likes stages, in postmortem AD brains and genetically modified
mice (202,203,204). In brains of AD patients, the microglial CB1
receptor is increased mostly in plaque-bearing areas (205), while
neuronal CB1 receptor expression is reduced in the hippocampus
and prefrontal cortex (205,206). An upregulation on the FAAH
levels on plaque-associated astrocytes has been also reported in
postmortem AD brains (207). However, other authors have
demonstrated no changes in CB receptors expression in the
hippocampus or cortex of AD patients (208–210). Recent studies
have also not found any difference in the CB1 protein level in the
hippocampus of AD transgenic mice in a pre-symptomatic stage
of AD (211,212). Otherwise, the CB2 expression is increased in
the hippocampus and prefrontal cortex in postmortem brains of
AD patients (207,213) and also in a mouse model of Aβ
amyloidosis (214), suggesting the involvement of CB2 receptors in
the pathogenesis of AD.

Nevertheless, strategies targeting adult neurogenesis with
cannabinoids have been used as a means to mitigate the symp-
toms of AD under several experimental conditions (204,215,216).
The CB1 receptor agonist ACEA at pre-symptomatic or at early
stages reduced the cognitive deficits and decreased inflammatory
response in the vicinity of Aβ plaques in transgenic animals (203).
CB2 receptor agonists also reduced inflammation induced by Aβ
production and deposition, promoted Aβ clearance and increased
cell viability in the presence of Aβ (215,217). Moreover, CB2
selective and CB1-CB2 mixed agonists prevent memory impair-
ments in AD rats and mice after chronic administration
(205,217,218). Finally, treatment with cannabidiol reduced Aβ-
induced neuroinflammation (219,220), rescued spatial memory
deficits and promoted microglial migration, a cellular mechanism
that may enable the removal of Aβ deposits (218).

Considering the role of cannabinoids on adult neurogenesis,
Esposito et al. (219) have shown that 15 days of cannabidiol
(10mg/kg) counteracts the Aβ-induced DCX depletion and sti-
mulates basal neurogenesis in rats injected with Aβ into the
hippocampus. This therapeutic effect was attributed to the
selective activation of PPAR-γ receptors by cannabidiol, since
previous injections of GW9662, a selective PPAR-γ antagonist,
abolished these effects. However, chronic treatment with the

synthetic cannabinoid agonist HU-210 failed to produce any
beneficial effects on APP23/PS45 double transgenic AD mice.
HU-210 treatment did not improve cognitive deficits measured in
the water maze and contextual fear conditioning tasks had no
effect on Aβ generation or plaque formation in the brains of
AD transgenic mice and did not affect adult hippocampal
neurogenesis. Chronic treatment with high doses of HU-210
(20mg/kg) even decreased hippocampal neurogenesis in AD
transgenic mice (220). Further work is necessary to elucidate the
effects of cannabinoids on altered hippocampal neurogenesis
observed in experimental AD animal models.

Conclusions and perspectives

Drugs that are currently available to treat psychiatric and
neurological disorders are frequently associated with delayed and
partial therapeutic responses, as well as substantial side effects
(110). Thus, new and more efficient drugs are required. Based
on the results presented here regarding neurogenesis and the
relevance of the ECBS to CNS functions, pharmacological
approaches based on cannabinoids may offer a promising strategy
to both treat and prevent several brain disorders.

In the present review, we summarised the main lines of
evidence supporting the effects of cannabinoids on CNS develop-
ment, their impacts on proliferative processes in the adult brain,
and the possible implications of ECBS-induced neurogenesis in
psychiatric and neurological conditions. The vast majority the
studies reviewed here examined the role of cannabinoids in adult
hippocampal neurogenesis, probably reflecting the extent of the
literature on the relationship between hippocampal function and
the behavioural and cognitive symptoms of psychiatric and
neurological disorders. However, the effects of these drugs on
CNS embryogenesis and their possible associations with the
pathogenesis of these disorders require further investigation.

Several questions remain to be answered, including the precise
mechanism by which cannabinoids regulate neurogenesis and cell
fate, as well the relevance of non-cannabinoid receptor-mediated
mechanisms (e.g. TRPV1, GPR55, and PPAR-γ receptors).

Notably, although this topic is beyond of the scope of the
present review, studies have reported that disrupted neurogenesis
confers susceptibility to addictive behaviours in rodents. Most
drugs of abuse suppress neurogenesis, and the recovery of drug-
impaired neurogenesis may be an important mechanism to
improve neuroplasticity during abstinence and, therefore, recov-
ery (221). Cannabis is the most commonly used illicit drug
worldwide, and although researchers have been extensively
studied the effects of Cannabis use on neurodevelopment, the
effects of THC or marijuana on adult neurogenesis are still under
debate (137,138). Therefore, new studies comparing the acute and
long-term effects of cannabinoid signalling on facilitating neu-
rogenesis and brain functions during different life stages (mainly
the critical periods of neuroplasticity) are needed.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/neu.2018.11
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