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Abstract Restrictions are given on the dimensions m and k for which there is a map / : Rm -» Efc

whose Jacobian has rank k in a neighbourhood of a singular point if / is either quadratic or even. The
restrictions are shown to be best possible in the quadratic case.
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1. Preamble

Chapter 11 of [8] discusses the class of polynomial maps / : Km —> M.k that satisfy what
we will call Milnor's hypothesis.

Milnor's hypothesis. The derivative d/x : Rm —> M.k of f at x has rank k for every
x in some punctured neighbourhood of 0 G M.m, but d/0 has rank less than k.

Theorem 11.1 of [8] shows that functions that satisfy the hypothesis have several of the
nice geometric properties enjoyed by complex analytic maps Cm —> C having an isolated
critical point at 0. However, Milnor also pointed out that it is not easy to find other maps
that satisfy the hypothesis, although he gave some examples of such quadratic functions
constructed using the quaternions and Cayley numbers. Since then, a number of authors
have found interesting examples when k = 2 (see, for example, [7,9,13]).

The object of this note is to give restrictions on the possible values of m and k for
which maps satisfying Milnor's hypothesis can occur, at least for the case where the map
/ is given by quadratic polynomials or by an even function. Milnor conjectured that there
are no 'non-trivial' examples for m < 2{k — 1). A more precise definition of 'non-trivial'
is given in [7]. Under certain conditions, Theorems 1.1 and 1.2 show that there are no
examples at all in a rather wider range of dimensions, but we give examples to show that
some of the results here are best possible. The method is to reduce the problem to one
closely related to the vector fields on spheres problem solved by Adams in [1]. Indeed,
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results similar to Theorems 1.1 and 1.2 can be deduced from Adams' main theorem, the
precise relationship is discussed in [11] and [12].

Let p(m) denote the Radon-Hurwitz number (see [1,4,10]), which can be denned as

(i) p(mn) = p{rn) if n is odd;

(ii) p(m) = m if m = 1,2,4,8; and

(iii) p(16m) = p(m) + 8 for m ^ 1.

Theorem 1.1. If f : Rm -¥ Rk is an even function that satisfies Milnor's hypothesis,
then k < p(m).

In the special case k = 2, this implies that ra must be even and, more generally, that
m must be divisible by a certain power of 2 that increases with k.

In general, the result of Theorem 1.1 cannot be improved; for example, a quadratic
map R16 -> R9 is described in [8], it satisfies the hypothesis and p(16) = 9. Maps with
similar properties in other dimensions are constructed below using formulae based on
Clifford algebras. It is natural to start by considering maps of low degree. Theorem 1.2
gives the best possible dimensions for the existence of quadratic maps satisfying Milnor's
hypothesis. In some cases (if m = 2sn with n odd and s = 2, 3 mod 4), Theorem 1.2
gives more severe restrictions on the dimension than does Theorem 1.1.

Theorem 1.2. If f : Rm —> Rfc is a quadratic function that satisfies Milnor's hypoth-
esis, then k ^ p(m/2) + 1. (Ifm is odd, then p(m/2) = 0.)

Proof of Theorem 1.1. Choose a small sphere Se centred at 0 £ Rm, such that d/x

has rank k for each x € Se. The map x —> d/x defines

Since / is an even function, one has that d/_x = —d/x. Now consider the map

e : S f x E m - > 5 £ x Rfc,

defined by evaluation, i.e. e(x, y) = (x,dfx(y)).
Let T\ be the involution defined on Se x Rm by T\(x,y) — (—x,—y) and TI be the

involution defined on Sc x Rfc by TI{X, y) = (—x,y). Then e is equivariant with respect
to the involutions TI,T2, and so, by its linearity properties, it defines a map of vector
bundles

Se xTl R m -4 Se xT2 Rk ^ (Se/ ± 1) x Rfc.

By the hypothesis this map is onto each fibre. Hence, by the splitting of epimorphisms
of vector bundles, the bundle mX over R P m - 1 contains a trivial fc-dimensional bundle.
Theorem 1.1 now follows from a refinement of Adams's solution [1] to the vector fields
on spheres problem, due to several authors (for example, Theorem 2.4 of [14] or Theo-
rem 1.10 of [3]). Yoshida's proof is as follows.
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If m is even, the result follows by noting that the Stiefel Whitney class wm-i(m\) is
non-zero. If m is odd, we already have that mA is isomorphic to 77 © e, where e denotes
trivial line bundle and 77 has k—\ sections. Corollary 1.11 of [5] shows that 77 is isomorphic
to the tangent bundle of IRP771"1 and so, by the main result of [1], r\ has at most p(m) — 1
sections, as required. •

Proof of Theorem 1.2. First we show that the linear part of such a quadratic map
must be zero. The following result is partly due to Santiago Lopez de Medrano who
proved it in the case m = k.

Proposition 1.3. If f : M.m —> Mk is a function that satisfies Milnor's hypothesis and
each of its components has the form

±xTAx + aTx,

where A is a symmetric m x m real matrix and a € Rm, then each a vanishes, i.e. f is
purely quadratic.

Proof. Milnor's hypothesis is that the derivative d/x has rank k for all small, non-zero
vectors x but has smaller rank for x — 0. Clearly,

dfx = {xTAx + aj, xTA2 + a j , . . . , xTAk + aj).

Since the rank is less than k at x = 0, the vectors ai, a2,..., at are linearly dependent,
and so we can assume, by using a change of basis in M.k, that a\ = 0. We can also assume
that 02 7̂  0, since, if all the ar = 0, the result would be true. It is also true that A\
is non-singular, since, if not, there would be arbitrarily small non-zero vectors x in the
kernel of Ai and then, for these x, d/x has rank < k.

So, we can assume that ai = 0, a2 ^ 0 and A\ is non-singular. For large values of A,
the matrix A2 — XAi is non-singular, so there is a vector x\ such that

(A2 - \Ai)x\ = -a2.

As A -¥ 00, x\ -t 0 and the rank of dfXx is less than fc for each A; which contradicts
Milnor's hypothesis. •

To continue with the proof, note that the derivative of / gives a map

d/:Mm->Lin(Rm,Rfc).

If f(x) = 1(XTAIX,XTA2X, ... ,xTAkx), where the Ar are symmetric m x m real
matrices, then d/x is given by the matrix [xT Ai, xTA2, •••, xTAk}- If this is non-singular
for every choice of non-zero x, then the non-zero elements of the linear subspace (of
the space of real symmetric m x m matrices) whose basis is {A\,A2,... ,Ak} are all
non-singular. Hence, by the main result of [2], one has that k — 1 ^ p(m/2). •
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Theorem 1.2 is best possible in the sense that for every m, k such that k = p(m/2) +1 ,
there is a quadratic map / : M.m —» Rfe that satisfies Milnor's hypothesis. The required
maps can be described by a number of constructions (see, for example, [2,6]). Following
the ideas of [6], consider (with m = 2r) a set {71 = / , 72, • • •; It) of r x r real orthogonal
transformations that satisfies the following identities:

7? = - / for 2 < i ^ £ and 7,7, + 7j7i = 0 for 2 ^ i < j .

Using these relations, one can see that such a set is a basis for a space of r x r real
matrices in which every non-zero element has maximal rank, and, hence, £ ^ p(r). Such
matrices generate a Clifford algebra with negative definite quadratic form. Lam's explicit
construction of a suitable set of matrices 7$ with £ = p(r) is described with the present
notation in [12].

Now, following [2], let Co be the 1r x 2r matrix

I 0
0 -I

and, for i ^ 1, let C, be the 2r x 2r (symmetric) matrix

kT 0.
The required map / : M2r x R2r ->• R*+1 is given by

f{x,y) = ixTCoy,xTCiy,xTC2y, •••,xTCey).
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