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Propagation characteristics (propagation regions and cutoffs) of parallel propagating
modes (Langmuir, right- and left-handed circularly polarized waves) are studied
for relativistic, weakly relativistic and non-relativistic magnetized electron plasma
using the kinetic model. The dispersion relation for parallel propagating modes in
relativistic electron plasma is investigated by employing the Maxwell–Boltzmann–J üttner
distribution function and the final dispersion relation obtained is more general since
no approximation is used. As the integrals in the relativistic dispersion relation cannot
be done analytically so these integrals have been solved with the numerical quadrature
approach. For η ≤ 1 (ratio of rest mass energy to thermal energy), the increase in the
effective mass of electrons will result in a change in the mass-dependent quantities
(plasma frequency, electron cyclotron frequency, electron sound velocity, etc.) which in
turn significantly affect the propagation characteristics of parallel propagating modes. It
is observed that the propagation region for these parallel propagating modes decreases
and cutoff points are shifted to lower values when we consider a relativistic plasma
environment. Moreover, a low-density and high-temperature plasma is more transparent
as compared with a high-density and low-temperature plasma for these modes.

1. Introduction

Plasma parameters like density, magnetic field and temperature vary over a wide range
in various space and laboratory plasma environments. On the basis of these parameters we
can classify these environments as being non-relativistic, weakly relativistic, relativistic,
degenerate, relativistic degenerate, magnetized, cold and hot plasmas. The characteristics
of the waves (propagation, cutoff and resonance) are modified in these plasma
environments since the plasma frequency, thermal velocity and cyclotron frequency do
not remain the same. In a plasma environment, the relativistic effects become prominent
when thermal energy (kBT) of the particles approaches their rest mass energy (moc2)
(Hazeltine & Waelbroeck 2018) and in turn the linear and nonlinear behaviour of plasma
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waves is strongly influenced (Pelletier & Marcowith 1998; Ghosh et al. 2012). Magnetized
relativistic environments are known to exist in different situations like in active galactic
nuclei (jets produced by the rotation of heavy black holes) (Petropoulou et al. 2019), other
astrophysical objects (such as neutron stars, pulsars, micro-quasars, etc.) (Beskin et al.
1988; Chabrier et al. 2002; Melrose 2017) and Van Allen radiation belts (Horne et al.
2005), and also have primary importance in tokamak plasmas (Bandaru et al. 2019) and
laser–plasma interactions (Banerjee et al. 2002).

Extensive literature is available which discusses parallel propagating waves in
relativistic plasma environments under certain conditions and limitations. Lerche (1968)
discussed these waves in a relativistic environment and found that there will be resonant
diffusion only when relativistic particles are present. He used the assumptions of
ultra-relativistic plasma and high-phase refractive index. Melrose & Gedalin (1999) used
the relativistic plasma dispersion function to derive the properties of these waves in the
extremely relativistic case. Asenjo et al. (2009) used magnetofluid unification formalism to
derive the dispersion relation of circularly polarized waves along a constant magnetic field.
It was concluded that when relativistic effects are larger the electromagnetic wave becomes
a non-dispersive light wave. The particle velocities are assumed to be purely transverse
with respect to the magnetic field which means that no pressure or density fluctuation
is considered. Lazar & Schlickeiser (2006) derived a relativistically correct dispersion
relation of parallel propagating waves in magnetized thermal plasma of non-relativistic
temperature. Schlickeiser (1998) solved the dispersion relation of parallel propagating
waves analytically for the case of superluminal (waves with phase speed greater than
the speed of light) and subluminal (waves with phase speed less than the speed of
light) waves. Abbas et al. (2012) discussed both parallel and perpendicular propagating
waves in weakly magnetized relativistic plasma under various limits and observed that
the propagation region broadens as the plasma environment gets more relativistic. Khan
et al. (2020a) applied the weak magnetic field limit on parallel propagating waves in a
relativistic plasma environment and found a shift in cutoff points towards lower values
of the frequency. Sazhin (1987) presented an approximate analysis of different types of
electromagnetic wave propagation in a weakly relativistic electron plasma. He deduced
that in the vicinity of certain frequencies, relativistic effects on the refractive index of these
waves cannot be disregarded even when the electron energy is quite small. He concluded
that the frequencies corresponding to the cutoffs in a weakly relativistic plasma are shifted
compared with the frequencies corresponding to the cutoffs in a cold plasma, so that the
frequency range of possible wave propagation increases.

We do find research articles where the dispersion relation of parallel propagating
modes in a relativistic plasma environment is derived but, unfortunately, in order to solve
the integral that contains relativistic momentum (which cannot be solved analytically)
certain approximations (ω < kv, ω > kv) are used. However, we have tried to solve these
integrals numerically without using any approximation. There has been extensive work
done by Kepppens et al. to present a relativistically complete two-fluid analysis for a pair
plasma. They discuss the advantages of using the governing 12th-degree polynomial in the
wave frequency ω which represents 12 non-trivial waves and that can be separated into six
pairs of forward- and backward-propagating waves, as the polynomial is sixth order in ω2

(Keppens & Goedbloed 2019; Keppens et al. 2019; De Jonghe & Keppens 2020). But we
know that an ideal two-fluid viewpoint fails to describe wave–particle interactions. So, we
cannot discuss wave propagation for different particle velocities using this model.

The paper is organized as follows. Section 2 consists of the general formalism and
dispersion relation for parallel propagating waves. The numerical approach we use is
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presented in § 3 and § 4 deals with the graphical analysis and discussion. Lastly, § 5
presents the conclusion of our paper.

2. Parallel propagating waves in magnetized relativistic plasma

The generalized expression for the plasma conductivity tensor (Abbas et al. 2012; Khan
et al. 2020a) is given as

σαβ =
∑

s

q2n0

ω

∫ ∞

0

∫ π

0

∫ 2π

0
p2 sin θ dθ dp dφ′ vα

Ω

∫ φ

−∞
dφ′ exp

[
1
Ω

((−iω + ikzv cos θ)(φ − φ′)

+ ikxv sin θ(sin φ − sin φ′))
] [

(ω − k · v)
∂fo

∂pβ

+ vβ

(
k · ∂fo

∂p

)]
. (2.1)

Here q, n0, Ω ,
∑

s and f0 are the electron charge, equilibrium number density, relativistic
cyclotron frequency, sum over species and equilibrium distribution function, respectively.
The velocity v in spherical coordinates is given as

v = (v sin θ cos φ, v sin θ sin φ, v cos θ). (2.2)

The wave vector k for parallel propagation is taken as

k = kzẑ. (2.3)

The relativistic velocity v and the relativistic cyclotron frequency Ω are defined as

v = cp
(m2c2 + p2)

1/2
(2.4)

and

Ω = ωce

γ
, (2.5)

where γ is the relativistic factor given as

γ =
(

1 + p2

m2c2

)1/2

. (2.6)

Here we are considering electron–ion plasma but since the waves under our consideration
are high-frequency waves so ion dynamics is not included. This is the reason why we
drop the summation over the species from now on. To derive the dispersion relation for
parallel propagating waves the following dyadic is used (Montgomery & Tidman 1964;
Schlickeiser 1998):

Rαβ = (ω2 − c2k2)δαβ + c2kαkβ + 4πιωσαβ; (2.7)

and we take propagation vector k in the direction of magnetic field B that is in the z
direction. So the required components of the dyadic are given as

Rxx = ω2 − c2k2 + 4πιωσxx, (2.8)
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Rxy = −Ryx = 4πιωσxy, (2.9)

Rzz = ω2 + 4πιωσzz, (2.10)

where σxx, σxy and σzz are components of the conductivity tensor and are written as

σxx = −q2n0

∫ ∞

0
p2 ∂f0

∂p
dp

∫ π

0

v

Ω
sin3 θ dθ

∫ 2π

0
cos φ

× cos(φ − α) dφ

∫ 0

∞
exp

[−i
Ω

(ω − kzv cos θ)α

]
dα, (2.11)

σxy = −q2n0

∫ ∞

0
p2 ∂f0

∂p
dp

∫ π

0

v

Ω
sin3 θ dθ

∫ 2π

0
cos φ

× sin(φ − α) dφ

∫ 0

∞
exp

[−i
Ω

(ω − kzv cos θ)α

]
dα (2.12)

and

σzz = −q2n0

∫ ∞

0
p2 ∂f0

∂p
dp

∫ π

0

v

Ω
cos2 θ sin θ dθ

∫ 2π

0
dφ

∫ 0

∞
exp

[−i
Ω

(ω − kzv cos θ)α

]
dα. (2.13)

By using the integrals
∫ 2π

0
cos φcos(φ − α) dφ = π cos α, (2.14)

∫ 0

∞
cos α exp

[−i
Ω

(ω − kzv cos θ)α

]
dα = iΩ(ω − kzv cos θ)

(ω − kzv cos θ)2 − Ω2
(2.15)

in (2.11) and after performing θ integration we can write

σxx = −n0 e2 iπ
∫ ∞

0
p2 ∂f0

∂p
dp

1
2k3

z v
2

(
4kzvω + (ω − kzv

− Ω)(ω − kzv − Ω) log
[
ω − kzv − Ω

ω + kzv − Ω

]
+ (ω − kzv + Ω)

(ω + kzv + Ω) log
[
ω − kzv + Ω

ω + kzv + Ω

])
. (2.16)

Similarly, the other two components can also be simplified as

σxy = −n0 e2π

∫ ∞

0
p2 ∂f0

∂p
dp

1
2k3

z v
2

(
4kzvΩ − (ω − kzv

− Ω)(ω + kzv − Ω) log
[
ω − kzv − Ω

ω + kzv − Ω

]
+ (ω − kzv + Ω)

(ω + kzv + Ω) log
[
ω − kzv + Ω

ω + kzv + Ω

])
(2.17)
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and

σzz = −2n0 e2 iπ
∫ ∞

0
p2 ∂f0

∂p
dp

(
ω2

k3
z v

3

(
2

kzv

ω
+ log

[
ω − kzv

ω + kzv

]))
. (2.18)

Classical non-interacting particles at thermal equilibrium can be described by the
Maxwell–Boltzmann distribution whereas to include the relativistic effects we need to use
the Maxwell–Jüttner equilibrium distribution function (MJDF) (Buti 1963; Montgomery
& Tidman 1964; Georgiou 1996; Ali et al. 2019; Khan et al. 2020b,c), given as

f0(p) = 1
4πm3c3

η

K2(η)
exp[−ηγ ], (2.19)

where η = mc2/kBT (ratio of rest mass energy to thermal energy) and K2 is the modified
Bessel function of the second kind of order two.

After substituting the MJDF in (2.16)–(2.18) and using the obtained values of σxx, σxy
and σzz in (2.8), (2.9) and (2.10), respectively, we get

Rxx = ω2 − c2k2
z − ω2

pe

8
ω

ckz

η2

K2(η)

∫ ∞

0
z(1 + z2)1/2

× exp[−η(1 + z2)1/2]

⎛
⎜⎜⎜⎜⎜⎝

4
ω

ckz

z
(1 + z2)1/2

+
(

ω

ckz
− z

(1 + z2)1/2

−ωce

ckz

1
(1 + z2)1/2

)(
ω

ckz
+ z

(1 + z2)1/2
− ωce

ckz

1
(1 + z2)1/2

)

log

∣∣∣∣∣∣∣∣

ω

ckz
− z

(1 + z2)1/2
− ωce

ckz

1
(1 + z2)1/2

ω

ckz
+ z

(1 + z2)1/2
− ωce

ckz

1
(1 + z2)1/2

∣∣∣∣∣∣∣∣
+

(
ω

ckz
− z

(1 + z2)1/2

+ωce

ckz

1
(1 + z2)1/2

)(
ω

ckz
+ z

(1 + z2)1/2
+ ωce

ckz

1
(1 + z2)1/2

)

log

∣∣∣∣∣∣∣∣∣∣∣

ω

ckz
− z

(1 + z2)1/2
+ ωce

ckz

1
(1 + z2)1/2

ω

ckzc + z
(1 + z2)1/2

+ ωce

ckz

1
(1 + z2)1/2

∣∣∣∣∣∣∣∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎠

dz, (2.20)

Rxy = −Ryx = −ι
ω2

pe

8
ω

ckz

η2

K2(η)

∫ ∞

0
z(1 + z2)1/2

× exp[−η(1 + z2)1/2]

⎛
⎜⎜⎝4

ωce

ckz

z
(1 + z2)

−
(

ω

ckz
− z

(1 + z2)1/2
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−ωce

ckz

1
(1 + z2)1/2

)(
ω

ckz
+ z

(1 + z2)1/2
− ωce

ckz

1
(1 + z2)1/2

)

log

∣∣∣∣∣∣∣∣

ω

ckz
− z

(1 + z2)1/2
− ωce

ckz

1
(1 + z2)1/2

ω

ckz
+ z

(1 + z2)1/2
− ωce

ckz

1
(1 + z2)1/2

∣∣∣∣∣∣∣∣
+

(
ω

ckz
− z

(1 + z2)1/2

+ωce

ckz

1
(1 + z2)1/2

)(
ω

ckz
+ z

(1 + z2)1/2
+ ωce

ckz

1
(1 + z2)1/2

)

log

∣∣∣∣∣∣∣∣

ω

ckz
− z

(1 + z2)1/2
+ ωce

ckz

1
(1 + z2)1/2

ω

ckz
+ z

(1 + z2)1/2
+ ωce

ckz

1
(1 + z2)1/2

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠ dz (2.21)

and

Rzz = ω2 + ω2
pe

2
ω3

c3k3
z

η2

K2(η)

∫ ∞

0
z(1 + z2)1/2 exp[−η(1 + z2)1/2]

×

⎛
⎜⎝2

ckz

ω

z
(1 + z2)1/2

+ log

∣∣∣∣∣∣∣

ω

ckz
− z

(1 + z2)1/2

ω

ckz
+ z

(1 + z2)1/2

∣∣∣∣∣∣∣

⎞
⎟⎠ dz, (2.22)

where z = p/mc and ωpe, ωce are the plasma and cyclotron frequency of electrons,
respectively. The integrals involved in (2.21), (2.22) and (3.1) cannot be done analytically,
so these are computed numerically using the trapezoidal rule (Buti 1963; Evans 1993;
Georgiou 1996; Burden & Faires 1997; Yang 2014; Ali et al. 2019; Khan et al. 2020b,c).

3. Dispersion relation

In this section we present the dispersion relation of the parallel propagating waves in
magnetized fully relativistic plasma which can be analysed for relativistic (η < 1), weakly
relativistic (η > 1) and non-relativistic (η � 1) environments.

Langmuir waves. The dispersion relation for Langmuir waves is given as

Rzz = 0. (3.1)

Right- and left-hand circularly polarized modes. The dispersion relation for
R-wave and L-wave is given as

Rxx ± iRxy = 0, (3.2)

where the plus and minus signs represent right and left circularly polarized modes,
respectively. The integrals involved in the dispersion relations cannot be solved
analytically since no explicit anti-derivative exists for these integrals. However, we can
solve these integrals numerically.

4. Discussion and graphical representation

As we know that the Langmuir mode remains unaffected by the magnetic field, so it is
expected to get the same curves as presented in Khan et al. (2020a) for the case of the weak
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FIGURE 1. Dispersion curves showing solutions for Langumir waves in relativistic plasma for
different values of η (η = 0.2, η = 0.4 and η = 0.6).

FIGURE 2. Dispersion curves showing solutions for Langumir waves in weakly relativistic
plasma for different values of η (η = 2, η = 2.5 and η = 3).

magnetic field. However, the propagation of R- and L-waves depends on the magnetic field
so the dispersion curves will be modified as we are not applying the weak field limit.

In figures 1–3, the dispersion curves for Langmuir waves are analysed for different
environments, i.e. relativistic, weakly relativistic and non-relativistic depending on the
value of η = m0c2/kBT . On comparing these three environments, it is found that as
the plasma environment becomes more relativistic the cutoff points are shifted towards
lower frequencies and the propagation region of the Langmuir wave broadens as reported
earlier (Khan et al. 2020a). However, the results presented here are more general since no
approximation is used in deriving the dispersion relation. In figure 4, we tried to retrieve
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FIGURE 3. Dispersion curves showing solutions for Langumir waves in non-relativistic plasma
for different values of η (η = 16, η = 18 and η = 20).

FIGURE 4. Dispersion curves showing solutions for Langumir waves in relativistic and weakly
relativistic plasma for different values of η (η = 0.2 and η = 2).

the results of Melrose & Gedalin (1999). Here we plot the same graph as that given in the
above mentioned reference but now we can discuss the variation in the dispersion curve
for relativistic and weakly relativistic cases. As we decrease the value of η, i.e. we move
towards the relativistic regime, the cutoff point (where the intersection of the relevant
dotted line occurs) shifted to lower values of frequency or we can say that now the waves
of lower values of frequency are allowed to propagate through the plasma.

In figures 5 and 6, the dispersion curves for R-wave are shown where we can observe
that in both of these figures (with different ratio of density to magnetic field) the curves
are shifted to the lower value of frequency as the plasma environment becomes more
relativistic. This shifting of the curves is due to the fact that the cyclotron frequency of
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FIGURE 5. Dispersion curves showing solutions for R-mode in relativistic, weakly relativistic
and non-relativistic plasma by taking ratio of ω2

pe/ω
2
ce = 25.

FIGURE 6. Dispersion curves showing solutions for R-mode in relativistic, weakly relativistic
and non-relativistic plasma by taking ratio of ω2

pe/ω
2
ce = 50.

electrons reduces as the relativistic effects increase. We also observe that the plasma
becomes transparent for the relativistic case much earlier, i.e. at lower values of k, as
compared with the weakly relativistic or non-relativistic cases. Moreover, as the value of
ωp/ωc increases, the density effects come in to play and the wave propagation shifts to
higher values of frequency.

Similarly, the dispersion curves for the L-wave are shown in figures 7 and 8. The
response of the L-wave to the relativistic effects and the ratio of density to magnetic
field is the same as that of the R-wave. The plots presented in figures 9 and 10 show
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FIGURE 7. Dispersion curves showing solutions for L-mode in relativistic, weakly relativistic
and non-relativistic plasma by taking ratio of ω2

pe/ω
2
ce = 25.

FIGURE 8. Dispersion curves showing solutions for L-mode in relativistic, weakly relativistic
and non-relativistic plasma by taking ratio of ω2

pe/ω
2
ce = 50.

ω2/c2k2 versus ω/ωce for a fixed value of ω2
pe/ω

2
ce, a standard way of representing the

propagation region for our wave of interest. Since the wave cannot propagate below
the cutoff frequency,this represents a no-propagation region. The propagation region is
the one where the wave frequency becomes larger than the cutoff frequency. Now with
an increase in the relativistic factor η the cutoff point shifts to lower values of frequency,
so the wave will start propagating at lower values of frequency which are not allowed in
the non-relativistic case. This means that with the increase in the relativistic effects, the
propagation region increases.
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FIGURE 9. Dispersion curves showing the cutoffs of R-modes for relativistic plasma with
ω2

pe/ω
2
ce = 25.

FIGURE 10. Dispersion curves showing the cutoffs of L-modes for relativistic plasma with
ω2

pe/ω
2
ce = 25.

5. Conclusion

In this research work, we focus on relativistic plasmas which exist in many astrophysical
(pulsars, quasars, active galactic nuclei, black holes, white dwarfs, neutron stars and radio
galaxies) and laboratory (fusion experiment) environments. The increase in the effective
mass not only depends on the the value of η but also depends on plasma density. Our
analysis for parallel propagating waves in various relativistic plasma environments is very
useful for scientists working in both space science and the laboratory setting. On the
basis of our calculations, we conclude that the propagation region for parallel propagating
waves is enhanced for relativistic and weakly relativistic plasma as compared with the
non-relativistic plasma which means that now the wave can propagate at lower frequencies
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that were not allowed for propagation in the non-relativistic regime. We also observe that
a low-density and high-temperature (relativistic) plasma environment is more transparent
for the parallel propagating waves as compared with a high-density and low-temperature
(weakly relativistic and non-relativistic) plasma environment.
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