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Abstract

In this, the first of three papers, we examine conditions, derived previously, which
specify the equilibrium solutions of an adjustment process for N players engaged in a
game with continuous (in fact, continuously differentiable) payoff functions, where each
player's strategy is to choose a single real number. It is equivalent to the basic form of
quantity-variation competition between N firms. The conditions are related to a new
optimum which takes account of the ability of firms, or coalitions of firms, to discipline
another firm that tries to increase its own profit. Closely related optima are also
introduced and analysed. The new optima occupy JV-dimensional regions in the strategy
space, and contain the optima of Cournot, Pareto, von-Neumann and Morgenstern, and
Nash as special cases.

1. Introduction

An adjustment process for many firms in competition, with no knowledge of the
payoff structure of the market, was studied by Gates, Rickard and Wilson [3]
(see also [2], [8], [4], [5] and [11]). It was found numerically, for the case of 2
firms, that the adjustment process converges for all sensible initial conditions. In
general, with N firms, all equilibrium states of this process were proved to satisfy
the new condition: there exists a non-zero, positive-semi-definite (psd) matrix Atj

(i,j = 1, 2, . . . , N) such that

N
_2 A,/,, = 0 f o r / = 1,2, ...,N, (1.1)

where J,(p) is the payoff (or profit) to firm / when firms 1 to N produce
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quant i t ies (a , , . . . , aN) = a respectively of the compet ing product (during one
business period) a n d

J0(a) = dJjdoj. (1.2)

Thus, (1.1) restricts the set E of equilibrium outputs a to a set M say; that is,
E QM.

Also, in [3], the duopoly (TV = 2) case of (1.1) was shown to be equivalent to
the new condition

JuJ226et{JIJ)<0, ( 1 3 )

involving only the J/fs. The resulting set of CT'S appeared to coincide with the set
of solutions to which the adjustment process converged numerically, suggesting
that (1.1) not only restricts, but completely defines, the equilibrium states in the
duopoly case; that is, E = M.

We seek an interpretation of (1.3) in terms of the game with payoffs Jl and J2.
The condition

Ja = 0 (1.4)

is just that which maximizes the profit of firm j on the assumption that the other
firm holds its output fixed. Thus the well known Cournot optimum, for which

Jn = J72 = 0, (1.5)

results when both firms adopt this policy. The condition

det(/y) = 0 (1.6)

includes the Pareto optimal solutions of the game and the threat curve of
Mayberry, Nash and Shubik [9]. By definition, a is Pareto optimal if any change
in ax or a2 results in a decrease in Jx or J2 or both. Since no firm wants a
reduction in profit, a Pareto optimum is usually regarded as a. fair or cooperative
solution to the bargaining problem which rational, fully informed (as to 7, and
/j) firms might agree to adopt.

We note that (1.4), (1.5) and (1.6) are all special cases of (1.3), which suggests
that (1.3) may itself have an interpretation as an optimal solution of the game.
We show that this is indeed so.

We further show that, for all N, the matrix equations (1.1) can be related to a
collection of conditions like (1.3) on the JJs; in particular, a point a satisfying
these conditions is always in M. The conditions define a set O^ of a which are
optima of a new type. The boundary points of Of are given by the equations

As = 0 for S C (1, . . . , N), (1.7)

where the As are principal minor determinants of the matrix J,j. They are
therefore related to Pareto optimal, or threat, solutions of games between
subsets of the firms. In the following paper we prove that, for an important class
of J/s, O^ and M coincide.
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These results support the widely held belief (for example, [1]) that firms acting
independently with no knowledge of the profit functions of the market, will
evolve towards an optimal or cooperative solution of the underlying game. Since
much of economic theory is based on beliefs of this sort, mathematical proofs of
their validity are desirable, and this is a motivation for the present work.

Besides the optima O^, we introduce related optima which are more restric-
tive for N > 2, but less restrictive than the Pareto optimum. All our new optima
are based upon observing the consequences which any firm faces if it makes an
adjustment (a small change in its a,) which increases its own profit. If some other
firms can subsequently conspire to make adjustments which restore their own
original profits while reducing the profit of the given firm below its original
value, then the given firm would be disinclined to make the first adjustment. We
call such a firm disciplinable. When all firms are disciplinable they all will tend
not to make adjustments, and so we have a type of optimum.

By contrast the Pareto optimum involves only the immediate losses of firms
when they make adjustments. It makes no allowances for responses to adjust-
ments, a process which is obviously important in real markets. The Pareto
optima comprise a relatively restricted set, being only an (N — 1) dimensional
manifold in the N dimensional set of <r's. The even more restrictive game-theo-
retic optima such as the Cournot optimum, the cooperative optima of Von-
Neumann and Morgenstern [10], and the non-cooperative optima of Nash (see
[9]) with and without side payments, comprise even smaller sets in a-space,
sometimes a unique point, or they may not even exist for pure strategies. They
also assume considerable knowledge on the part of the firms, both of the payoff
functions and of the mathematical complexities of game theory.

For these reasons, the opinion is often expressed that these restrictive optima
have limited application to economic modelling. Rather, they describe theoreti-
cal possibilities open to sophisticated bargainers. To model real economies one
requires much broader optima that include all sorts of bargaining behaviour,
even of the most naive and ill-informed competitors.

Our new optima come closer to meeting this requirement. They form much
larger sets, N-dimensional in fact, and contain all the previous optima including
the Pareto optima. They do not imply nearly as much knowledge or mathemati-
cal expertise on the part of the firms, although they do not exclude it. Firms can,
in a sense, learn that they are in an optimum state of our type through being
disciplined.

The present paper is devoted to general results relating the new optima to the
adjustment equilibria E and to the standard optima for general continuous
games. Only pure strategies are considered.

In the second paper [6] of this series we consider a narrower class of functions
/, with special relevance to competing firms. Much stronger results can then be
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obtained, and the optima can be illustrated. We also study the adjustment
process of [3] for 3 firms numerically, and find that all of the equilibrium
solutions defined by (1.1) appear to be generated. This indicates, as in the 2-firm
case, that (1.1) not only restricts but completely defines the equilibrium states of
the adjustment process.

In the third paper [7] it is shown that the new optima provide an improved
explanation of some bargaining experiments.

2. The extended optima

We begin by defining the concept disciplinable more precisely together with
the new optima based upon it. We suppose throughout that each of the N firms,
i = I, 2, • • • N, has payoff or profit J,(o) which is a continuously differentiable
function of each of the outputs a,, . . . , aN of the firms, and that /,(<r) is not
constant on any interval of a, values. We normally think of the profits and
outputs as applying to one business period (a month perhaps). Firm i has direct
control only over its own output 0,.

DEFINITION 1. The market is said to be in state a when the outputs are given
by a.

DEFINITION 2. A coalition is a subset of the set (1, 2, . . . , N) of firms.

DEFINITION 3. In state a, firm i is said to be disciplinable by a coalition C from
the other firms if

/,(<r+•*,)</,.(*) (2-1)

for every sufficiently small e =£ 0, or if, for every sufficiently small e such that

J£o + ee,) > Jt(p), (2.2)

there are 8j for allj €E C such that

jio+ee, + 2 8A)<J,{a), (2.3)

Jk(a + ee, + 2 ¥J) = y » for a" k G C>

and 5,- —> 0 as e —» 0, for all j G C, where ey- is a vector with 1 in the jth place and
zeros elsewhere.

In other words, a small adjustment by firm i either results directly in a
reduction in profit or can be countered by some coalition from the other firms
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whose members can restore their original profits and leave firm / with a net
reduction in profit. We denote the set of such states a by DiC.

A variety of optima can be based on the concept of discipline.

DEFINITION 4. A state a is a type I optimum // at least one firm can be
disciplined by a coalition from the other firms.

DEFINITION 5. A state a is a type II optimum // at least one firm can be
disciplined by the coalition of all the other firms.

DEFINITION 6. A state a is a type III optimum if every firm can be disciplined
by a coalition from the other firms.

DEFINITION 7. A state a is a type IV optimum if every firm can be disciplined
by the coalition of all of the other firms.

To say that a coalition of all, rather than a subset, of the other firms is
involved is a greater restriction, because it requires that all of the other firms
must be able to restore their original profits.

Our notion of firms forming a defensive coalition seems to be new in game
theory. Previously, coalitions which give a benefit to the partners have been
widely studied following the basic work of von Neumann and Morgenstern [10].

One can see that idealized firms in a bargaining situation and knowing the 7,'s
(that is, playing a game with complete information) would find an optimum
state of type III or type IV acceptable. This is especially true if firms can make
only small changes in their outputs (as is usual in practice). Every firm would be
reluctant to depart from such a state because each would risk a reduction in
short-term profit.

The type IV optimum is the most acceptable to all firms, because here every
firm is not only reluctant to move through risk of being disciplined, but also
belongs to every disciplining coalition and is consequently always protected.

Similar interpretations can be given for the other optima, types I and II. One
imagines that the firms know only that at least one firm can be disciplined, but
not which firm this is. Each firm therefore settles for this optimum in order to
avoid the risk that it might itself be the susceptible firm.

These optima have an important relation to the original adjustment process [3]
as will be seen in the following section (Theorems 5 and 6), and in [6].

We look for conditions for disciplinability which are independent of £ and 5,'s.
We denote the set of all firms (1, 2, . . . , TV) by A, and the determinant of the
submatrix Jip i,j G S, for a subset S C A of the firms, by A5. Thus A, = Ju,
and AA is the determinant of the whole J^ matrix.
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THEOREM 1. (a) If a G DjC then A,AcACu, < 0.
(b) / / A,ACAC y,. < 0 then a G DIJC.

(A proof is given in Section 4).

Ideally one would like a one-to-one characterization of DiC in terms of the
A's, but such a characterization would be extremely cumbersome in the ensuing
applications (one would need to keep account continually of the vanishing of
higher order derivatives of the /,'s). The set where A,AcACui = 0 which is not
wholly identified with DiC has, in any case, zero JV-dimensional volume. To
simplify the presentation we introduce weak and strong versions of DiC.

DEFINITION 8. Player i is said to be weakly disciplinable by C if A,AcACui < 0.

DEFINITION 9. Player i is said to be strongly disciplinable by C if A,ACACU(.
< 0.

The corresponding sets of states a are denoted by DiC
w and DiC

s, so that

D,c
s C D,,c C DitC

w. (2.5)

In typical economic applications one finds that DiC
w comprises simply DiC

and its boundary points, making weakly disciplinable an appealing concept.
Similarly, DiC

s usually comprises DjC without its boundary points. Unfor-
tunately this does not hold in general: for example, if

Jx = ( o , - o2){\ -o2)+\ (2.6)

and J2 — ("2 "" a i ) 0 ~ °i) + 1' o n e obtains

A,A2A12 = 2(1 - a,)(l - o2)(ox - a2f, (2.7)

so that a, = a2 belongs to £>, 2
W but not to the boundary of £>, 2

S.
On the other hand, D, c

s is equivalent to a set of linear constraints.

THEOREM 2. The state a £ DiC
s if and only if for any a, such that

/„.«,. > 0 (2.8)

there exist unique <Xj(j £ C) such that

2 J^j <0 (2.9)

and
Jyo, = 0 for all k G C. (2.10)

(A proof is given in Section 4).
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This theorem is used in the proof of Theorem 5.
Weak and strong optima of types I to IV are defined like their unqualified

counterparts. The corresponding sets Of to 0$ and Of to Of, clearly satisfy

O^QOkQO^, k = I, II, III, IV. (2.11)

3. Results comparing optima and equilibria

It follows immediately from the preceding definitions that the weak optima of
types I to IV are equivalent to the following conditions respectively:

TYPE I. A,AcACu, < 0 for at least one i £ A and at least one , , .>.
C C A - / . '

TYPE II. A,AA_,AA < 0 for at least one /' G A. (3.2)

TYPE III. A,AcACui < 0 for every i e A, and at least one /» ~^
C CA — / for every /'.

TYPE IV. A,AA_,AA < 0 for every i e A. (3.4)

For the strong optima one just replaces < everywhere by < .
It is now straightforward to relate the weak optima to standard optima.

THEOREM 3. The Pareto and Coumot optima are weak optima of all of the types
I to IV.

PROOF. By the definition of a Pareto optimal state a there is no sufficiently
small 8 such that y,(CT + o") > Jiip) for all /, and hence no solution of the
equations HjJ^Sj = Vj if every Vj > 0. Thus a satisfies

AA = 0, (3.5)
which in turn satisfies (3.1) to (3.4). The Cournot optimum satisfies

A,. = 0 for all i e A, (3.6)

which also satisfies (3.1) to (3.4).
In the case of 2 firms, (3.5) yields both a threat curve and a Pareto optimal

curve [9]. These in turn contain a variety of optima or solutions: the von
Neumann and Morgenstern solution, the cooperative solution with side-pay-
ments, the cooperative solution without side-payments, and the threat solutions
of Nash with and without side-payments. Consequently, all of these solutions
are special cases of any of our weak optima, as discussed in Section 1. We are
referring as always to pure strategies.

It is clear also from the above that no Cournot or Pareto optimal state belongs
to any of the strong optima Of to Ofv. However, they are usually boundary
points of these strong optima.
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The connection between our basic (unqualified) optima, Ot to Olv, and the
traditional optima is somewhat deeper. Let PO' denote the set of o-'s which are
Pareto optimal and for which rank Ji}, = N — 1.

THEOREM 4. The Cournot and PO' optima belong to Otv and hence to Ot, On

and Om.

(A proof is given in Section 5).

The points a which are Pareto optimal but not in PO' have relatively zero
measure, since they belong to the sets where AA_,. = 0 for at least one i, which
have an (N — 2)-dimensional intersection with the set where AA = 0. For
example, they comprise only points in the 2-firm case.

We now pursue the relation between the optima and the matrix condition
(1.1). For example, one can easily see that a Cournot optimum satisfies (1.1)
with

and a Pareto optimum satisfies (1.1) with
At] = x,Xj (3.8)

and suitable x/s. These are special cases of the following result.

THEOREM 5. A state a e Of, and consequently any other of our optimal states,
satisfies the matrix condition (1.1).

(A proof is given in Section 6).

For 2 firms one can say much more.

THEOREM 6. For N = 2, weak optimality of types I to IV and the matrix
condition (1.1) are all equivalent, that is Of = O* = O^ = O,y = M.

PROOF. By (3.1) to (3.4) with N = 2, all optima Of to O,y reduce to

A,A2A12 < 0. (3.9)

But the equivalence of (3.9) and (1.1) was proved in Theorem 2 of [3].
An alternative proof of Theorem 6 is given in Section 6. It shows more closely

the relation between production increments and the AJs of (1.1).

As mentioned at the beginning of Section 1, the equilibrium states E satisfy
the matrix condition (1.1), that is E C M. Theorem 6 now implies that E C O™
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(k = I, . . . , IV) in the 2-firm case. The numerical evidence that E = M implies
that E = Of, so that every equilibrium state would be a weak optimum. In the
long-term, myopic adjustment process of [3] yielding E, each firm's sole action is
to maximize a crude estimate of its profit function. Mathematically it is most
surprising that this process leads to optima that seem to imply greater knowledge
and a bargaining between the firms.

On the other hand it supports the kind of belief, which is implicit in much of
economic theory [1], that firms acting independently with little knowledge of the
market structure (the 7,'s) can arrive at an optimum solution of the underlying
market game.

In the 2-firm case one can understand in a superficial way why the adjustment
process of [3] leads to the type I optimum. The adjustment process presumably
has the property that, near such an optimum, it dictates a suitable disciplinary
move to a firm when a profit-increasing move is dictated to the other. (We say
"dictates", because it is not a conscious intention). Consequently it will not
admit any profit changing moves, and hence gives an equilibrium. To under-
stand this properly one would need a deeper analysis of the adjustment process
of [3] but we have not succeeded in this.

For 3 or more firms we have only that Of C M (Theorem 5) and E C M,
which does not necessarily imply any overlap of Of and E. However, a reverse
implication giving Of = M is proved in Theorem 1 of [6] for an important class
of JjS. Thus E C Of in this case, so that equilibria are again optima.

Since Of C M and E C M, in general, the set — M of t^s not in M is a
subset of — Of and — E. Thus a knowledge of — M is useful in finding a's
excluded from Of and E. For general /,'s and TV > 3, we have only limited
results about ~ M.

THEOREM 7. Suppose that JJs satisfy (1.1). Then for any Hx, . . . , HN, the
leading principal minor determinants A(l), . . . , A(iV) of the matrix HjJ^ + HjJ^ are
neither all positive nor satisfy

(-1)'A(1) > 0 for alii. (3.10)

(A proof is given in Section 7).

Making various choices for the //,'s leads to various disallowed regions, as
illustrated after Theorem 8.

We define

Eijk = {\{N - 2)(jjkX + - V r 1 ) } 2 , (3.11)

where

( ( . * ) } 1 / 2 - (3-12)
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THEOREM 8. Assume that the JJs satisfy (1.1).
(a) Suppose also that Jo < 0 for all i ¥=j. Then the region

Bo = {As > Ofor all J c A ) (3.13)

is excluded.
(b) Suppose also that JtJ < 0 for all i ¥*j. Then the regions

Bi = {/,,. < 0, Jn > Ofor allj G A - i,

JjjJkk > EiJk for all (J, k)QA-i,j^k) (3.14)

are excluded.

(A proof is given in Section 8).

The condition Jtj < 0 simply states that firm /'s profit does not increase if firm
j alone makes a small increase in its output a,-. One would expect this to apply
usually.

Part (b) can be extended to include Jtj = 0, but various cases need to be
considered, and we shall not elaborate on these.

If Jjj = KtLj for i ¥=j and some Kt and LJt and if N = 3 then EIJk = JJkJkj and
the condition JjjJkk > EiJk reduces to &Jk > 0. We see therefore that the determi-
nants As play a role in excluding a's as solutions of (1.1). This form of / , arises
naturally in economics, as discussed in [6]. We find (see Theorem 4 of [6]) that
Theorem 8 gives all the excluded o-'s for N = 3 and such 7,'s.

For N > 3 and such 7,'s, Theorem 8 is improved by Theorem 4 of [6].
For example, let / , = a,(l — aT), i = 1, . . . , 4, where aT = 2,a,, and yt =
a,/(l - ar). Suppose yx > 1, y2 < 1, y3 < 1 and _y4 < 1. Then the condition
JjjJkk > ^JjkJkj is satisfied for (J, k) = (2, 4) and (3, 4) if yA is sufficiently small
(that is, if a4 is sufficiently small), and is satisfied for (J, k) = (2, 3) if

y2 + y3 < 1 - 3y2y3. (3.15)

But Theorem 4 of [6] excludes the larger region^ + y3 < 1.
Theorem 7 of the present paper is not easy to apply because it requires a

judicious choice of the //, 's. We shall not examine its general consequences here.
For the above example it gives a stronger result than Theorem 8. One chooses
y2 = y3 = a, / / , = a, H2 = H3 = -yx and Hl = -hyjl for h > 0. One then
eventually finds that all of y2 = y3 < j is excluded, in agreement with Theorem
4 of [6]. From (3.15), Theorem 8 excludes only the subsety2 = y3 < j of^2

 = y*

4. Proofs of Theorems 1 and 2

From the definition of DiC there are two possibilities. The first is that (2.1)
holds, so that A,. = 0, in agreement with part (a) of Theorem 1. Alternatively,
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(2.2), (2.3) and (2.4) hold, which implies that for any a, ¥= 0 such that

/,,«, > 0, (4.1)

we can find ay ^ 0 (/' 6 C) such that

2 /,/«,< 0 (4.2)

and

2 JkjUj = 0 for all k (EC. (4.3)

If A,, Ac or AC u i are zero then part (a) of the Theorem is satisfied. If A,, Ac

and ACu, are non-zero then the inequalities (4.1) and (4.2) must be strict. Putting
-b, where b > 0, for (4.2)'s left side, and formally solving it in combination with
(4.3) for a, gives

a, = -M C /A C U 1 , (4.4)

This yields

A,ACACU/ = - (y,a,)(ACu,)2/6 < 0, (4.5)

by (4.1), which completes the proof of part (a) of Theorem 1.
To prove (b), define the continuously differentiable functions

f/x, y) EE y,(x) - J/a) - yj ( ; 6 C u /) (4.6)

for any a satisfying A,AcACu, < 0, where x, y are vectors with subscripts in
C U /. Note that AC u i must be nonzero. Clearly, fj(tr, 0) = 0 and the Jacobian
of derivatives with respect to x is just AC u / ^ 0. By the implicit function
theorem, then, there are unique continuously differentiable functions er, + 5,.
( y ' E C u i) in the neighbourhood of y = 0 such that

+ 2 Sje) - Jjv) + yr (4.7)
yc ;

Choosing y, = /?, y} = 0 (J G C), where /S > 0 is sufficiently small, we have
(2.3) and (2.4) and, since each 5, is a continuously differentiable function of /?,
these equations hold for any 6, = e sufficiently small and 6, (J E C ) - » 0 as

Further, since ACu, ¥= 0 we may find a, ( j £ C U «). n o t aU zero, satisfying
(4.2) and (4.3) with strict inequality in (4.2). As above, we have (4.4) and deduce
that

y,«,. = -KA,ACACU/)/ (Ac u,)2 > 0. (4.8)

But remember that (4.2) and (4.3) also come from linearization of equations like
(2.3) and (2.4) so we may identify these as with those from such a procedure.
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This shows that e and a, have the same sign, whence

y,,.e > 0. (4.9)

Assume that (2.2) is not true for all e sufficiently small j ; then there must be a
sequence {e'} of e values tending monotonically to zero such that

Jt{a + £'e,)< / » , (4.10)

and this contradicts (4.9). Thus, if A,AcACu, < 0, then, for any e sufficiently
small, we have suitable 5, (J G C) such that (2.2), (2.3) and (2.4) hold; that is,
a G DiC.

The 'only if part of Theorem 2 is effectively proved in the course of the proof
of Theorem l(b); the uniqueness of the a,-, j G C, follows from Ac =?= 0. Con-
versely, assume (2.8), (2.9) and (2.10) hold and let -b be the right side of (2.9). If
we suppose ACu, = 0, then the vectors {Jkj, j G C U 1} for k G C U i are
linearly dependent, that is, there exists \ik (k G C u »), not all zero, such that

2 AtA,=0 t / G C u i ) . (4.11)
c

If n, = 0, then (4.11) implies that Ac = 0 and hence, for given a,, the solution of
(2.9) and (2.10) for a, (J G C) and b cannot be unique. Thus /i, ̂  0 and, if
Xk = -(nk/nt) (k G C), (4.7) becomes

J,j = 2 \Jky (4-12)
/tec

V, = 2 ** 2 V,> (413)
kc yeCu<

This implies that

which contradicts (2.9) and (2.10). Thus ACu, ¥= 0. Now (4.4) holds, implying
(4.5) and completing the proof of Theorem 2.

5. Proof of Theorem 4

We recall that a Cournot optimum a satisfies the condition that

J,(a + ee,) </,(») (5.1)

for every sufficiently small e =£ 0, and all j . From the part (2.1) of the definition
of DIC it follows that a G DiC for all / and C, and hence that a G O,v.

Now choose a G PO'. If

y , ( a+ee I )<y 1 (a ) (5.2)

for any sufficiently small e ^ 0, then a G Dxti_x by (2.1). Otherwise, we can
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choose an arbitrarily small e ¥= 0 such that

J\{p + ee|) > /|(<r), (5.3)

because, by assumption, / , is not constant on any interval of values of a,. By the
definition of PO', AA_, ^ 0. By the implicit function theorem, we can therefore
find 82, . . . , 8N such that

Ji(al + e, a2 + 82, . . . , aN + 8N) = Jt(a), i = 2, . . ., N. (5.4)

But a is Pareto optimal, so that

y,(o, + e, a2 + 82, . . . , aN + 8N) < •/,(<*) (5-5)

for at least one /, which can only be /' = 1. Thus (2.2), (2.3) and (2.4) are satisfied
if C is A - 1, so that again a G D1A_X. Similarly, a G Z>lA_, for all i, and
Theorem 4 is proved.

6. Proofs of Theorems 5 and 6

If a G Ox
w, then a G Z>,wc so that

A,AcACu. < 0 (6.1)

for at least one i and C. If A, = 0, we choose
f 1 if 7 = k = /, .

A,k = { „ . (6.2)Jk \ 0 if not, v '

which is psd and satisfies (1.1). If Ac = 0, we choose

i XjXk fory, k G C,
Jk 1 0 if not,

where the Xj are a non-zero solution of the equations

2 xkjjk = 0 for ally G C. (6.4)

Again Ajk is psd and satisfies (1.1). The case where AC(J, = 0 is treated similarly.
If any combination of A, = 0, Ac = 0 and AC u , = 0 holds, one has a choice of
the corresponding AJks.

The remaining case is A,AcACu,. < 0, which, by Theorem 2, is equivalent to
the relations (2.8), (2.9) and (2.10). From (2.8) and (2.9) there is a q > 0 such
that

2 /,,.a,(l + qStJ) = 0, (6.5)

where 8tJ is the Kronecker delta. Multiplying (6.5) by a,, and the A:th equation of
(2.10) by ak, for all k G C, gives

ye A
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where

f i f * = ; = / ,
ifk&Cui or j g C u i o r both, (6.7)
otherwise,

which is symmetric and psd. Thus Theorem 5 is proved.
Although Theorem 6 was proved in Section 3, it is perhaps useful to give a

simple alternative proof which does not use the determinantal relation (3.9) or
the results of [3]. From Theorem 5 we need prove only that the matrix condition
(1.1) implies the optimum O^. For N = 2 and/412 =£ 0, (1.1) can be written

Jual + J12a2 = - G/U«i)a> (6.8)

y21a, + J22a2 = 0, (6.9)

where

a = (AUA22 - Al2A2l)/A
2
l2 (6.10)

and

a2 = atA22/An, (6-11)

with any a, =£ 0. Now choose a, such that JnOii > 0, so that (6.8) gives
Jnax + Jl2a2 < 0 if detiAjj) > 0. Thus (2.8), (2.9) and (2.10) hold in this case,
so that <T e Dl2

s C DX2
W. If detO4l7) = 0, then a = 0, so that (6.8) and (6.9)

imply that A12 = 0 and so a G ^1,2^ again.
In the case Al2 = 0, (1.1) reduces to A, = 0 or A2 = 0 or both, so again

a G DU2
W.

Similarly one proves that a £ D2l
w and equivalently a S O™, which proves

Theorem 6.

7. Proof of Theorem 7

Suppose, contrary to the assumption of Theorem 7, that the Aw are all
positive. Then the symmetric matrix HfJ^ + HjJ^ is positive definite, and
consequently

i.j

for any JC,, . . . , xN not all zero. Equivalently

y > 0 . (7.2)

https://doi.org/10.1017/S0334270000002642 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002642


11S1 Optima and equilibria for games. I 305

We write AtJ = ~LkBikBjk for the Atj in (1.1), where BtJ is a non-zero matrix. Thus

n2BikHlJ,JBJk>0 for all*, (7.3)
•J

with the strict > holding for at least one k. Then

0 < 2 BKHAJBJ,.

= 2 ^i 2 ^i/2 B,kBJk
I j k

= 2",2V-r (7-4)
' j

But the right side is zero by the condition (1.1), which is a contradiction. Thus
the Aw are not all positive. Similarly they do not satisfy (3.10) since this would
imply that HiJIJ + HjJjt be negative-definite and lead again to a contradiction.
This completes the proof of Theorem 7.

8. Proof of Theorem 8

Let P be the (non-empty) set of i values for which Ah > 0, and now restrict

suffices to P. First suppose that J{J < 0 for all / ¥=j and that the 2 x 2 principal

minor determinants (pmd) of AtJ are non-zero. Then (1.1) implies that

-z, ^ 2 V

using the fact that AtJ = 0 iorj $ P. Since

2 G V . W 2 + LA) = o. (8.2)

yep

it follows that

0 = detOVi,172^1'2 + LAJ) = 2 TSASLP_S, (8.3)
where

Lc = PI L., > 0, (8.4)
isc

r c = II /i,, > o (8.5)
iec

for any C Q P. Here A0 = 1, where 0 is the empty set.
Clearly, the region Bo is excluded in this case.
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If only a subset of the 2 x 2 pmd 's are non-zero, then (8.3) still holds but

Lc > 0 only for C Q T <z P, say. Thus (8.3) effectively becomes

0 = 2 TSASLP_S, (8.6)
SQP-T

which leads to an excluded region that contains Bo. Since the inadmissible <fs
are those which fall in an excluded region for all psd A^'s, the theorem is proved
for non-zero Ju (/' ¥*j).

If some Jjj = 0 (/ =£j) some further Lt may be zero and, as above, this merely
generates excluded regions containing Bo. In the extreme case, for example,
where L, = 0 for all /, (8.3) reduces to TPAP = 0, which implies A^ = 0 and
excludes Bo once again.

Proving part (b) of Theorem 8, we note the assumption J{J < 0 for all / ¥=j.
From each of the conditions in (1.1) excluding the ith we have

,̂7 = 4. = - 2 (AjtJjk/Jj.) (8.7)
keA-i

ior j =fc i. Substituting these in the /th equation gives

JUA» = 2 T 2 JJkAjk > 2 T 2 JJkAJk, (8.8)
yeA-i •//i AeA-i yeA-i "v/ keA-i-j

T Jj

where we have used the condition JJJ > 0 for ally ¥= i, involved in Bt. Since A is

psd we have Ajk < Ajj1/2Akk
l/2. With the negativity of J(J we have

;EA-i
J A x

JjkAkk

= 2 A hi
N-2\"JJj/JJ-"kkJki-'><k)-"JJ "kk XT/*^^*

(8.9)

where J2, is the set {j G A — i, k & A — i,j¥=k). Again using the condition
JJJ > 0 fory e A — / and applying the inequality x + y > 2xi/2yl/2 for x,y >
0 to the term in the first round brackets gives

( j j \l/2r •) ,

•j lk I Z (J J V/2 _ / y _ / y-l
7 / I W ") \JjjJkk) JjkA JkjA '

(8.10)
with X given by (3.12).

Various cases need to be considered. If Au > 0 then Bt is immediately
excluded. If Au = 0 then A}j > 0 for at least oney =£ i: if there is only one suchy
then (1.1) reduces to Jyj = 0, which excludes Bt; if both AJJ > 0 and Akk > 0
then Bj is excluded by the condition JjjJkk > EiJk.

https://doi.org/10.1017/S0334270000002642 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002642


[ 171 Optima and equilibria for games. I 307

Acknowledgement

We are indebted to a referee for a particularly careful reading of the
manuscript and for suggesting that the implicit function theorem be used to
improve the proofs of Theorems 1 and 4.

References

[1] R. H. Day, "Adaptive processes and economic theory", in Adaptive economic models (eds. R.
H. Day and T. Groves), (Academic Press, New York, 1975), 1-38.

[2] D. J. Gates and J. A. Rickard, "Pareto optimum by independent trials", Bull. Austral. Math.
Soc. 12 (1975), 259-265.

[3] D. J. Gates, J. A. Rickard and D. J. Wilson, "A convergent adjustment process for firms in
competition", Econometrica, 45 (1977), 1349-1364.

[4] D. J. Gates, J. A. Rickard and D. J. Wilson, "Convergence of a market related game
strategy", J. Math. Economics, 5 (1978), 97-109.

[5] D. J. Gates, J. A. Rickard and M. Westcott, "Exact cooperative solutions of a duopoly model
without cooperation", / . Math. Economics (to appear).

[6] D. J. Gates and M. Westcott, "Extended optima and equilibria for continuous games. II. A
class of economic models", preprint, second paper of this series (1979).

[7] D. J. Gates and M. Westcott, "Extended optima and equilibria for continuous games. III.
Comparison with experiment", preprint, third paper of this series (1979).

[8] A. P. Kirman, "Learning by firms about demand conditions", in R. H. Day and T. Groves,
loc.cit. 137-156.

[9] J. P. Mayberry, J. F. Nash and M. Shubik, "A comparison of treatments of a duopoly
situation", Econometrica, 21 (1953), 141-154.

[10] J. von Neumann and O. Morgenstern, Theory of games and economic behaviour, 2nd ed.
(Princeton University Press, 1947).

[11] D. J. Seidmann, "The rationality of expections equilibria", preprint, London School of
Economics, 1979.

C. S. I. R. O. Division of Mathematics and Statistics
P. O. Box 1965
Canberra, ACT 2601

https://doi.org/10.1017/S0334270000002642 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002642

