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0. Introduction. In [3], McAlister introduced a class of semigroups, called covering
semigroups, which were shown to play an important role in the theory of E-unitary covers
of semigroups. Strangely, this class of semigroups appears to have received little attention
subsequently. It is the aim of this paper to rehabilitate them and to study their properties
in more detail. As a first step, we have chosen to rename them almost factorisable
semigroups, since they can be regarded as the semigroup analogues of factorisable inverse
monoids. Before discussing the contents of this paper in more detail we recall some
standard terminology.

We assume the reader is familiar with basic inverse semigroup theory. For
convenience, however, we describe here the notation and terminology used which is not
explicitly defined in the text. All semigroups will be inverse. The (generalised) inverse of
an element x will be denoted by x~\ The set of idempotents of a semigroup is written
£(S); if / I c 5 then E(A) = A (1 E(S). The natural partial order is denoted by « . A
semigroup 5 is E-unitary if e ^x and e e E(S) implies x e £(5). An E-unitary cover of an
inverse semigroup S is an E-unitary semigroup P and a surjective, idempotent separating
homomorphism d:P—*S. It is well-known that every inverse semigroup has an E-unitary
cover [7]. If 5 is a monoid then the group of units of 5 will be denoted by U(S). An
inverse monoid S is said to be factorisable if for each s eS there exists g e U(S) such that
s ^g. The minimum group congruence o on a semigroup S is denned by xoy if, and only
if, there exists z e S such that z < x and z^y. If (Q, £ ) is a poset then A c Q is said to
be an order ideal if b < a eA implies that b eA. The set [a] = {b e Q:b <«} is called a
principal order ideal. The trace product of x and y in a semigroup 5 is defined to be xy if
x~lx =yy~l, and undefined otherwise. If A and B are sets then the projections from
A x B to A and B respectively are denoted by nx and jt2. If 6:A^B is a function then
ker 6 denotes the equivalence relation induced on A. Finally, if p is a congruence then p*
denotes the corresponding natural map.

The paper is divided into three sections. In Section 1, we discuss the basic properties
of almost factorisable inverse semigroups and show that they are very closely related to
factorisable inverse monoids. Specifically, we prove in Proposition 1.7 that an inverse
monoid is almost factorisable if, and only if, it is factorisable. In Theorem 1.10, we show
that for every almost factorisable inverse semigroup S there is a factorisable inverse
monoid F such that S is isomorphic to F\U(F). In Section 2, we describe all strongly
E-unitary covers of almost factorisable inverse semigroups. This is achieved in Proposi-
tion 2.3 and Theorem 2.5. In Theorem 2.4, we show that the class of almost factorisable
semigroups is the closure under homomorphisms of the class of strongly E-unitary
semigroups. In the final section, Section 3, we relate arbitrary inverse semigroups to
almost factorisable inverse semigroups. The main result, Theorem 3.8, shows that every
E-unitary cover of an inverse semigroup 5 over a semilattice is associated with an
embedding of 5 into an almost factorisable inverse semigroup F. The embedding of S into
F is of a special kind which we call an enlargement. We conclude the paper with a
reformulation of a question posed by Henkell and Rhodes [9]: we show that an inverse
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monoid S has a finite F-inverse cover if, and only if, S has a finite, almost factorisable
enlargement.

1. Basic properties of almost factorisable semigroups. McAlister's original defini-
tion of almost factorisable semigroups was couched in terms of one-to-one partial right
translations. We prefer to work instead with the theory of permissible subsets, introduced
by Schein [10]. It is well-known (see Petrich [7, Theorem V.2.8]) that the semigroup of all
one-to-one partial right translations is isomorphic to the semigroup of permissible subsets,
but permissible subsets appear to us to be easier to work with. We begin therefore by
recalling their properties.

DEFINITION. TWO elements x and y in an inverse semigroup S are said to be
compatible, written x ~ y, if both xy~x and x~xy are idempotents. A subset A of 5 is said
to be compatible if the elements of A are pairwise compatible.

It is easy to see that the compatibility relation is reflexive and symmetric.

LEMMA 1.1. Let a~b and either b~xb<a~xa or bb~l <aa~\ Then b ^ a.

Proof. Suppose that a~b and b~xb<a~xa. From b~xb<a~xa we obtain bb~xb^
ba~xa, and so b<(ba~x)a. But a ~b implies that ba~] is an idempotent and so
(ba)~xa <a. Hence H o . The other case is proved similarly.

We summarise below the most important properties of the compatibility relation; they are
all well-known and are included for the sake of completeness.

THEOREM 1.2. (i) The compatibility relation is stable with respect to left and right
multiplication.

(ii) The compatibility relation is contained in the minimum group congruence o.
(iii) The compatibility relation is transitive if, and only if, it equals a.
(iv) The semigroups in which ~ and a coincide are just the E-unitary semigroups.
(v) x ~y if', and only if, x and y have a meet x A y = z with respect to the natural partial

order, such that z~xz = x~xxy~xy and zz~x =xx~xyy~l. Furthermore, if x ~y then

x Ay =xx~ly =yy~lx = xy~xy = yx~xx = yx~xy =xy~lx.

Proof, (i) Straightforward.
(ii) Let a~b. Then a~xb = e an idempotent. Hence a{a~xb) = o{e), and so

a{b) = a{a), since o(e) is the identity of SI a.
(iii) If ~ is equal to a then it is clearly transitive. Conversely, suppose that ~ is

transitive. Then by (i), ~ is a congruence. Indeed, it is a group congruence since any two
idempotents are compatible. But by (ii), ~ is contained in a, and so is equal to a, since
a is the minimum group congruence.

(iv) Suppose that 5 is £-unitary and that aob. Then a~lbob~xb, and so there exists
z <a~xb, b~xb. Thus z is an idempotent and, since 5 is £-unitary, a~xb is an idempotent.
Similarly, ab~l is an idempotent. It follows that a~b. Conversely, suppose that ~ is
equal to a and that e^x. Clearly o(e) = o(x). Thus o(x~1x) = o(x), and so by
assumption we have that x~lx~x. We can now apply Lemma 1.1, to obtain x = x~lx.

(v) Suppose that x~y. Put z=xx~ly. Clearly, z^y. But since x~y, x~ly is an
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idempotent so that Z<JC. Now let w<x, y. Then ww~x
 <XJC~' so that w = ww~lw <

.o:"')' = z. Thus : = J : A ) I . Similar arguments show that

xx~ly = yy~xx = xy~xy =yx~lx.

Since x~*y is an idempotent we have that _y~'jc =x~[y. Thus

XK~')> = jty~'jc and yy~{x =yx~ly.

Finally,

z~'z = (xy~iy)~lxy~iy =y~'yx~1x and zz~' = xx~xy(xx~xy)"' = xv~'xy~'-

Conversely, suppose that JC and _y have a meet z such that z~lz =x~lxy~ly and
zz~' =;ur1yy~'. From the definition of the natural partial order, z=xz~iz and
z = zz~ly. Thus z =xy~ly =xx~*y, and so *~1xy~1_y = x~xy, an idempotent. Similarly,
xy~l is an idempotent and so x ~y.

DEFINITION. A permissible subset A of 5 is a compatible order ideal. The set of all
permissible subsets is denoted by C(S).

LEMMA 1.3. If A is a permissible subset of S and a,b eA and either a~xa = b~lb or
aa~l = bb~l then a = b.

Proof. Immediate from Lemma 1.1 and the definition of a permissible subset.

C(S) is an inverse monoid under the usual multiplication of subsets. The set of
idempotents is just the set of order ideals contained in £(5), the identity is E(S), the
natural partial order is subset inclusion, and the inverse of A is A~l (see Petrich [7] and
Schein [10] for details). The semigroup 5 is embedded in C(S) by means of the
homomorphism i :5-» C(S) defined by i(s) = [s]. The group of units of C(S) is denoted
by 2(5).

The following is due to Nambooripad [6].

LEMMA 1.4. Let S be an inverse semigroup in which z <x{ . . . . xn. Then there exist
elements _y, such that _y, ^ xh z = _y, . . . yn and yt . . . yn is a trace product.

DEFINITION. Let A be a subset of an inverse semigroup 5. Then [A] is the order ideal
generated by A.

DEFINITION. A homomorphism 0:5—* T is said to be full if £ ( 7 ) c 6(S).

The following results are well-known.

PROPOSITION 1.5. (i) If A is a compatible subset of S and 6 is a homomorphism from S
to T then 6(A) is a compatible subset of T.

(ii) If A is a compatible subset in S, then [A] is a permissible subset of S.
(iii) If d:S-*T is a homomorphism then C(d):C(S)^>C(T) defined by C(d)(A) =

[6(A)] is a homomorphism which preserves arbitrary joins of compatible subsets.
(iv) / / d:S—>T is a full homomorphism then 0 : 2 ( 5 ) ^ 2 ( 7 ) is a well-defined

homomorphism.
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Proof, (i) Let 6{a), d(b) e d(A). Then 6(a)~]6(b) = 6{a~xb). By assumption a and
b are compatible and so a~xb is an idempotent. Thus 0(a)~'0(b) is an idempotent.
Similarly, 6{a)0{b)~x is an idempotent.

(ii) By definition [A] is an order ideal, so it only remains to check that it is a
compatible subset. Let x, y e [A]. Then there exist elements a, b eA such that x^a and
y<b. By assumption a and b are compatible. Thus a~lb and ab~l are idempotents.
Consequently, x~ly and xy~[ are idempotents, and so x ~y, as required.

(iii) That C(0) is well-defined is immediate from (i) and (ii). To show that C(0) is a
homomorphism we have to show that [6(AB)] = [d(A)][6(B)] for all A, B e C(S). It is
clear that [6(A)][d(B)]c[6(AB)]. Let xe[6(AB)]. Then x < d(ab) = 6{a)6{b) some
(16/1 and fteB. But by Lemma 1.4, there exist u < 0(a) and v < 0(6) such that x = MI/.
But wi; e [6(A)][d(B)], and so JC e [0(/l)][0(£)]. To show that C(0) preserves arbitrary
joins of compatible subsets, we have to show that for any compatible subset {/4, :iel} of
C(S) we have that [0( U A,)] = U [0[A-)]; this is straightforward to check.

(iv) Let /I e 2(5). We claim that C(6)(A) = 6(A) and that 0(/l)e2(71). It is
immediate that 6 (A) c [0(/l)]. Let x =£ 0(a) where a eA. Now 0 is a full homomorphism,
and so there exists e e E(S) such that 6{e) = x~xx. But then 0(ae) = 0(a)0(e) = *. Thus
x e d(A). Finally, since 0 is full, E(S) is mapped to E(T). But E(S) is the identity of
C(S) and £(T) is the identity of C(T). Thus the units of C(S) are mapped to the units of
C(T).

We can now define the class of semigroups with which this paper is concerned.

DEFINITION. An inverse semigroup S is said to be almost factorisable if for each x e S
there exists A e 2(5) such that x e A.

LEMMA 1.6. Let S be an almost factorisable inverse monoid. Then
(i) every left invertible element is invertible;
(ii) every right invertible element is invertible.

Proof. We prove (i), the proof of (ii) is similar. Let geS such that g~'g = l. By
definition g e A for some A e 2(5). But AA~l = E(S), and so there exists h e A such that
hh~l = l. But h~g and gg~[<hh~l and so by Lemma 1.1, we have that g^h. Thus
g = hg~lg, and so g = h.

The following result is essentially Proposition 4.11 of [3].

PROPOSITION 1.7. An inverse monoid 5 is almost factorisable if, and only if, it is
factorisable.

Proof. Let 5 be an almost factorisable inverse monoid, and let x be any element of
5. Then x eA for some A e2(5). Since E(S) = A~lA there exists an element g eA such
that g~lg = 1. But, being left invertible, g is invertible by Lemma 1.6. Furthermore, by
Lemma 1.1, Jt^g. Hence 5 is factorisable. Conversely, suppose that 5 is factorisable.
Then for each x e S there exists an invertible element g such that x^g, and so x e [g]. It
is easy to check that [g] e 2(5). Hence 5 is almost factorisable.

It is worth making explicit a result anticipated in the proof of Proposition 1.7.

LEMMA 1.8. Let F be a factorisable inverse monoid. Then 2(F) = {[g]: g e U(F)}.
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Proof. It is clear that if g e U(F) then [g] e2(F). Now let A eZ(F). Since leA^A,
there exists g eA such thatg~'g = 1. By Lemma 1.6, g is invertible. Let a eA. Then a ~g
and a~'a ^g~'g. Thus by Lemma 1.1, a < g . It follows that A = [g].

DEFINITION. Let 5 be an inverse semigroup and let e and / be idempotents such that
e< / . Define a function ipf e: Lf —* Le by t/y ,,(.*:)= jce. The family of functions {t/y e:e ^f,
e, feE(S)} is called the set of structure mappings of 5. See Petrich [7] for more
information.

Given an inverse semigroup, perhaps by means of a Cayley table, it does not appear
to be easy to determine whether it is almost factorisable or not. In the proposition below
we provide some necessary conditions.

PROPOSITION 1.9. (i) Let S be almost factorisable.
(a) For each x eS and e e E(S) there exists y eS such that y~xy = e and x ~y.
(b) For each x eS and e e £(5) there exists y eS such that yy~l =e andx ~y.
(ii) In any semigroup, (i)(a) and (i)(b) are equivalent.
(iii) A semigroup satisfying (i)(a) has surjective structure mappings.
(iv) Let S be a semigroup which satisfies (i)(a) and has a set of maximal elements M.

Then
(a) x e M if and only if x~lx is a maximal idempotent,
(b) x e M if and only if xx~l is a maximal idempotent,
(c) x e M if and only if x9)e and e is a maximal idempotent.

Proof. (i)(a) Let x e S and e e E(S). Then x e A some A e 2(5). But A~lA = E(S) so
that there exists y eA such that y~xy = e and x ~ y.

(b) The proof is similar to that of (a).
(ii) Suppose (i)(a) holds. Let x be any element and e any idempotent. By (i)(a), there

exists an element z such that z~'z = e and x~' ~ z. But x~' ~ z implies that x ~ z~'. Put
y = z~x. Then yy~x = e and x~y. Thus (i)(b) holds. A similar argument shows that (i)(b)
implies (i)(a).

(iii) Consider the structure mapping xpfe:Lf-^Le and let x e Le. By (i)(a) there
exists y e S such that y~ly = /and y ~x . By Lemma 1.1, x^y and so V/^(^) =x-

(iv)(a) Let e be a maximal idempotent and let x be any element such that x~lx = e.
Suppose that x^y. Then e = x~]x <y~'_y. But e is maximal and so x=y, and x is
maximal. Now let x be maximal. Suppose that x~xx ^e, where e is an idempotent. By
(i)(a), there exists yeS such that y~Ky = e and x~y. By Lemma 1.1, this means that
x^y. Thus x=y, since x is maximal, and so x~xx = e. Hence x~'x is a maximal
idempotent.

(b) The proof of this case is similar to that of (a).
(c) Suppose that x3)e where e is a maximal idempotent. Then x9lyi£e for some

element y in 5. But e a maximal idempotent implies by (a) above that y is a maximal
element, and by (b) above that x is a maximal element. The converse is immediate by (a).

EXAMPLE. The condition (i)(a) above is not a sufficient condition for almost
factorisability; the Munn semigroups of the semilattices E and F in Figure 1 satisfy (i)(a)
but neither is almost factorisable. (I am grateful to Tom Hall for these examples.)

EXAMPLES, (i) Let F be a factorisable inverse monoid with group of units G. Then
F' = F\G is an almost factorisable inverse semigroup.
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Figure 1.

(ii) Let 5 be the semidirect product of a group G and a meet semilattice Y. Thus
5 = Y x G with multiplication given by

(x, g)(y, h) = (x A gy, gh).

S is an inverse semigroup in which the inverse of (x,g) is (g~lx,g~l), the natural partial
order is defined by (x,g) ^ (y, h) iff g = h and x <_y, and (x,g)o{y, h) iff g = h. It is easy
to see that S is £-unitary and so o coincides with the compatibility relation. The elements
of C(S) are thus the subsets of Y x G of the form Y' x {g} where Y' is an order ideal of
Y and g is an element of G. It follows that the elements of 2(5) are the subsets of 5 of the
form Y x {g}. It is now clear that 5 is almost factorisable. Adjoin a maximum element 1
to the meet semilattice (Y, < ) and denote the resulting semilattice by (Y', < ) . The
action of G on Y may be easily extended to Y' by defining g.l = 1 for all g eG. The
semigroup F = Y' x G is factorisable and F\U(F) = S.

DEFINITION. A semigroup isomorphic to a semidirect product of a group and a meet
semilattice will be called strongly E-unitary.

Examples (i) and (ii) above motivate the following.

THEOREM 1.10. (i) Let 5 be an almost factorisable semigroup and F a factorisable
inverse monoid such that F\U(F) = S. Then there is a group homomorphism a: U(F)—*
2(5) such that U a(U(F)) = 5.

(ii) Let S be an almost factorisable semigroup and <*: G —» 2(5) a group homomorph-
ism such that U a(G) = 5. Then there exists a factorisable inverse monoid F with group of
units G such that F\G is isomorphic to S.

Proof, (i) We show first that {[g]\{g} :g e U(F)} c2 (5 ) . Let A = [g]\{g} where
g e U(F). It is clear that A is a permissible subset of S. Let e be any idempotent of 5.
Then a = gee A and a~la = e. Thus A~lA = E(S). A similar argument shows that
AA~l = E(S). Now define *:( / (F)->2(5) by a'(g) = [g]\{g}. Is it clear that a is
well-defined and that U a(U(F)) = S. It remains only to show that a- is a homomorphism.
Thus we need to show that [gh]\{gh) = ([g]\{g})([fc]\{/j}). Let x < g and y < h. Suppose
that xy = gh. Then y~lx~lxy = l. But y~[x~lxy<y~[y. Hence by Lemma 1.6, y = h.
Similarly, x=g. Hence ([g]\{g})([fc]\{M) S \gh]\{gh). Now let x<gh. By Lemma 1.4,
there are elements u and v such that x = uv where u<g, v < h and uv is a trace product.
Suppose that u = g. Then xx~{ = 1 and so by Lemma 1.6, x = gh. Similarly, if v = h then
x = gh. Hence
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(ii) We begin by proving the theorem for the special case where a is the identity map
on 2(5). Put F' = {[s]:s e 5} U2(5). We show first that F' is an inverse subsemigroup of
C(5). It is clear that F' is closed under inversion. Consider the product [s]A where
A e 2(5). Since s~{s e E(S) = AA~* there exists an element a eA such that s~ls = aa~x.
We claim that [s]A = [sa]. Let JC e [JC]. Then x<sa. Thus by Lemma 1.4, there exist
elements u and v such that x = uv, u<s and u < a . It follows that x e [s]A. Now let
x e [s]A. Then x = tb where t < s and b eA. Now f6 = t{t~xtb). Since .4 is an order ideal
t~xtbeA. But

rltb(rltb)~l = rltbb~l<s-'s = aa~\

Thus by Lemma 1.1, we have that t~ltb<a. Thus tb<sa, as required. Similarly,
/4[s] = [as], where a eA is such that a~la =ss~\ It follows that F' is an inverse
subsemigroup of C(5). Clearly the identity of F' is E(S), and so F' has group of units
2(5). Since the order on F' is just inclusion, and since 5 is almost factorisable, it follows
that for each element [s] there exists AeU(F') such that [ s ]<A Hence F' is
factorisable. Clearly 5 is isomorphic to F'\U(F'). We now turn to the general case. Put
F = {[s\. s eS}L)G. The multiplication in F extends that of {[s]: s eS} and G, and define
[s]g = [•$]#(#) and g[s] = <*(g)[s]. The multiplication is clearly well-defined, and as-
sociativity is easy to check. It follows that F is an inverse monoid with group of units G. F
is factorisable, since U a{G) = 5 and [s] <g if, and only if, [s] c a(g).

2. Semidirect product covers of almost factorisable semigroups. In [3, Corollary
4.9], McAlister constructs a functor from inverse semigroups to semidirect products of
groups and semilattices and deduces that the almost factorisable semigroups are just the
homomorphic images of semidirect products of groups and semilattices. We shall prove
this latter result directly below. We begin, therefore, with some results on semidirect
products of groups and semilattices.

DEFINITION. If 6:S—>T is a homomorphism then there are well-defined functions
dc:Le-^L(,ie), for each idempotent eeE(S), obtained by restricting 6 to Le. A
homomorphism 6:S—* Tis said to be 3^-injective (resp. ££-surjective) if all the functions fe

are injective (resp. surjective). A homomorphism is said to be •X'-bijective if it is both
if-injective and ^-surjective.

if-injective homomorphisms are usually said to be Idempotent pure or idempotent
determined. It is easy to show that a homomorphism 8 is j£-injective if and only if 6(x)
an idempotent implies that x is an idempotent.

Most of the following equivalences are well-known, but for the sake of completeness
we prove them all.

PROPOSITION 2.1. Let S be an inverse semigroup. Then the following are equivalent.
(i) 5 is strongly E-unitary.
(ii) 5 is E-unitary and for all a eS and e e E(S) there exists b eS such that e = b~lb

anda-'beE(S).
(iii) 5 is E-unitary and almost factorisable.
(iv) The natural map a :S-*S/o is Z£-bijective.
(v) There is an Z£-bijective homomorphism from S to a group.
(vi) The function 0:5-» E(S) x SI a defined by 6{a) = (a~la, o{a)) is a bijection.
(vii) The function (j):S—> E(S) x S/o defined by (f>(a) = (aa~\ o(a)) is a bijection.
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Proof. ( i )^(i i) . We shall suppose that 5 = E x G where G is a group which acts on
the meet semilattice E by means of order automorphisms. It is clear that 5 is £-unitary.
Let (e,g) be any element of S and (/, 1) any idempotent. Then the element (gf,g) is
such that (gf, gy

l(gf,g) = (/, 1) and (e, g)-\f, g) = (g-*e, g- ' ) ( / , g) = {g~le A g~lf, 1)
an idempotent.

(ii)=>(iii). We shall show that 5 is almost factorisable. Let s e S. Then 5 e o(s). By
Theorem 1.2, a coincides with the compability relation on 5 and so o(s) is a compatible
subset of 5. It is clear that o(s) is an order ideal. We shall therefore have established our
claim if we show that o(s) e 2(S). Let e e E(S) be any idempotent. Then there exists an
element / such that e = t~1t and s~lt=f eE(S). It follows that tas. But then
eea(s)~xa(s). Thus E(S) = o(s)~lo(s). To show that a(5)a(s)~'= £(5), let e e E(S).
By assumption there exists an element u such that e = u~lu and (s~i)~lu = i e E(S).
Thus o(s) = o(u~l). Put v = u~\ Then e = vv~l and sov. Hence o(s)o(s)~1 = £(5).

(Hi)^> (iv). a" is if-injective. For suppose that o(s) - o(t) and s~ls = t~lt. Then s ~ t
by Theorem 1.2. Thus by Lemma 1.1, we have that s = t. Also, a" is if-surjective. For
suppose that e e E(S) and o(s) is given. Then since 5 is almost factorisable there exists
A e2(5) that s eA. Thus there exists a eA such that a~la = e. But a eA implies a ~s
and so a{a) = o{s).

(iv)^(v). Immediate.
(v)=>(iv). Let d:S—>G be an =S?-bijective homomorphism to a group G. Then

ac. ker 0 and it is immediate that a" is i?-injective. To show that a" is if-surjective, let s
be any element of 5 and e any idempotent. There exists teS such that f~'f = e and
d(t) = d(s). Now 8(s~lt) is the identity of G, so that by the fact that 8 is ^-injective we
have that s~lt is an idempotent. Similarly, st~* is an idempotent. Hence s ~t and so sat.

(iv)=£>(vi). Immediate.
(vi)=>(vii). Suppose <p(a) = (p(b). Then aa~l = bb~l and a(a) = a(b). Clearly

9 ( a ~ l ) = 8 { b - 1 ) . T h u s a ' 1 = b ~ l a n d s o a = b . L e t ( e , a ( s ) ) e E x S / o . T h e n s i n c e 8 i s
surjective there exists teS such that 0(0 = (e, o(s~1)). Thus f~'f = e and fas"1. Hence t~]

is such that f ' r a and r ' ( r 1 ) " 1 = e. Thus <^(r') = (e, a(i)).
(vii) => (vi). A similar argument to (vi)^(vii).
(vii)z>(i). We shall use the fact that both the functions (f> and 8 denned above are

bijections. Observe first that 5 is ^-unitary. For suppose that e < a where e is an
idempotent. Then e = ae. Thus o(e) = o(a)o(e) = o{a). It follows that 8{a)- 8(a~xa)
and so a = a~la. We now define an action of S/o on E(S) in such a way that the
semidirect product of E(S) and S/o is isomorphic, via (p, to 5. Put o(s).e = tt~l where
8(t) = (e, o(s)). We check the two defining properties (1) and (2) below for an action.

(1): if o(e) is the identity of S/o then 8{e) = (e, o(e)) and so o(e).e = e.
(2): o(u)(o(v).e) = o{u).aa~^ where 8{a) = (e, o(v)), and o{u).aa~x = bb~x where

8{b) = (aa-\ o(u)). Thus

a~]a = e, aov, b~lb = aa~l and bou.

Now

8{ba) = {{ba)-xba, o(ba)) = {a~la, o{uv)) = (e, o(uv)).

Thus

o(uv).e = (ba)(ba)-1 = bb~l = o(u)(o(v).e).

Hence o(uv).e = o(u)(o(v).e).
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We claim that S/o acts on E(S) by means of order isomorphisms. Let e<f. Then
o(a).e = uu~l and o(a).f = vv~{ where

6(u) = (e,o(a)) and 6(v) = (/ , o(a)).

But e s / means M~'M <v~lv, and uov and so u ~ v since 5 is £-unitary. Thus by Lemma
1.1, we have that u S u and so MM"1 < UU"1. Thus o{a).e < o(a).f.

Now suppose that a(a).e ^ o{a).f. Then o{a).e = MM"1 and o(a).f = m>~' where

0(u) = (e,a(a)) and 0(u) = (/, a(a)).

But MCTU and uu~l ^vv~x implies by Lemma 1.1 that u ̂  v. Hence e < / .
It only remains to prove that <p is a homomorphism. Now

4>{a)<p{b) = (flfl-1, a(a))(Wr', a(6)) = (flfl-'a A a(a).M>-\ a(flfe)).

But ff(fl).Mr' = « " ' where e{t) = {bb~\ o(a)). Thus

whereas

By Theorem 1.2, foa implies that / ~ a , so that, again by Theorem 1.2, tt~]a = at~xt.
Hence a~'tt~' =t~lta~x and so aa~]tt~l = at~1ta~]. But t~xt = bb~\ Thus aa~'«~' =
abb~xa~x = ab(ab)~l. Hence 0 is a homomorphism and so an isomorphism.

The equivalence of (i) and (ii) is the dual of [3, Theorem 4.12].

LEMMA 2.2. Let S be strongly E-unitary. Then 2(5) = {a{s)\ s eS} and the groups
S(5) and S/o are the same.

Proof. Let A e 2(5) and s eA. Then since A is a compatible subset of 5 we have that
Aca(s). Let tos. Now t~[teA~lA and so there exists aeA such that a~xa = t~'t. But
o(a) = o(t) and a~]a = t~U and so by Proposition 2.1(vi), we have that a = t. Thus
A = o(s). On the other hand, given a cr-class a(s) it is a permissible subset of 5 because 5
is £-unitary. Furthermore, o(s)~io(s) = E(S). For let e e E(S). Then by Proposition 2.1,
there exists t eS such that e = Cxt and sot. A dual argument establishes that o(s)o(s)~l =
E(S). To conclude, we have to show that the multiplications in 2(5) and S/o agree. It is
clear that as subsets, o(s)o(t)c o(st). We shall now show that the reverse inclusion
holds. Let xost. Since xx~x e E(S) there exists u e o(s) such that uu~l =xx~l. Thus
u~xxos~lst, and so u~lxot. Put v = u~xx. Then v e o(t). Hence x = uv e o(s)o(t).

In the result below, we construct a family of strongly £-unitary covers of an almost
factorisable semigroup.

PROPOSITION 2.3. Let 5 be an almost factorisable semigroup, and let a: G—»2(5) be a
group homomorphism such that U a(G) = S. Define P(S, G, a) to be the set

P{S, G, a) = {(s,g) eSxG.se a(g)},

equipped with the direct product multiplication. Define ;r, :P(5, G, a)^S by ^i(s,g) = s
and Ji2-P(S, G, a)—>G by Jt2(s,g) = g. Then P(S, G, a) is an inverse semigroup, nx is a
surjective, idempotent separating homomorphism and n2 is a surjective, 5E-bijective
homomorphism. In particular, P(S, G, a) is strongly E-unitary.
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Proof. We check closure first. Let (s,g), (t,h)eP(S,G,a). Then s e a(g) and
tea(h). Thus st e a{g)a{h) = <x(gh), and so (st,gh)eP(S,G, a). A simple argument
shows that P(S,G,a) is closed under inverses. It is clear that JT, is an idempotent
separating homomorphism, furthermore it is surjective because for each s e S there is a
g eG such that s e a(g). It is clear that n2 is a surjective homomophism. We now show
that JI2 is J?-bijective. Suppose that {s,g)Z£{t,h) and Ji2(s,g) = n2(t, h). Then g = h, s,
t e a(g) and SJ&. But a(g) is a permissible subset of 5, so that s = t by Lemma 1.3. Thus
K2 is .X'-injective. Now let g e G and (e, 1) e E(P(S, G, a)). Then e e a(g)~1a(g), and so
there exists s e a(g) such that s~ls = e. Thus (s,g) e/*(S, G, a), (s,g)~ (s,g) = (e, 1) and
ji2(s,g) =g. Hence n2 is if-surjective, and so, by Proposition 2.1, P(S, G, a-) is strongly
£-unitary.

We may now describe the relationship between almost factorisable semigroups and
strongly £-unitary semigroups.

THEOREM 2.4. (i) Homomorphic images of almost factorisable semigroups are almost
factorisable.

(ii) Every almost factorisable inverse semigroup is an idempotent separating homo-
morphic image of a strongly E-unitary semigroup.

(iii) The class of almost factorisable semigroups is the closure under homomorphisms
of the class of strongly E-unitary semigroups.

Proof, (i) Let 6:S—* T be a surjective homomorphism from an almost factorisable
semigroup 5 to a semigroup T. Let t eT and let s e 5 such that 8(s) = t. Since 5 is almost
factorisable there exists A e2(5) such that s eA. By Proposition 1.5, 6(A)e'2(T), since
8 is full, and /e 6{A).

(ii) Let T be an almost factorisable semigroup. By Proposition 2.3, we obtain a
strongly ^-unitary cover by taking G = 2(T) and a to be the identity map.

(iii) We have seen that strongly £-unitary semigroups are almost factorisable by
Proposition 2.1. It follows from (i), that all homomorphic images of such semigroups are
almost factorisable. But from (ii), every almost factorisable semigroup is a homomorphic
image of a strongly £-unitary semigroup.

We now show how to construct all strongly £-unitary covers of an almost factorisable
inverse semigroup, thus completing the analysis begun in Proposition 2.3.

THEOREM 2.5. Let S be an almost factorisable semigroup, and let <f>:P-*S be an
idempotent separating cover of S where P is strongly E-unitary. Then there exists a group
homomorphism $:/Va—»2(S) such that U0(P /a ) = 5, and an isomorphism \p:P—>
P(S, P/o, (f>) such that n^ = (p.

Proof. Since (j> is surjective, it is full, and so induces a homomorphism from 2(P) to
2(5) by Proposition 1.5, which we shall also denote by </>. By Lemma 2.2, we have that
Plo = 1{P) as groups, so we have a homomorphism <^:P/a-»2(5). Let seS. Then
there e x i s t s p e P such that (p(p)=s, and so s e (j)(o(p)). Hence U <j)(P/o) = S. Thus we

can form the semigroup P(S, P/o, <p) according to Proposition 2.3. Define

>) by

This is a well-defined function, for (p(p) e <t>(o(p)). It is clear that \p is a homomorphism.
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i/> is injective. For suppose that y(p)=ip(q). Then (p, q) e ker <p n a. Since <p is
idempotent separating p!£q. But P is £-unitary, so that by Theorem 1.2 and poq, we
obtain p~q. Thus by Lemma 1.1; we have that p = q. Finally, xp is surjective. For if
(s, o(p)) e P(S, P/o, 0) then s e 4>(o(p)). Thus there is q e a(p) such that (p(q) = s. But
then ip{q) = (<p(q), o(q)) = (s, o(p)). It follows that the cover 0 : P—> S is isomorphic to
the cover JT, :P(S, P/O, </>)—» 5 in the sense that ;r,i/> = (p.

3. Arbitrary inverse semigroups and almost factorisable semigroups. In this sec-
tion, we investigate the relationship between arbitrary inverse semigroups and almost
factorisable semigroups. In particular, we shall make precise an embedding first obtained
by McAlister [3], [5].

DEFINITION. A McAlister triple is a triple (G,X,Y) satisfying the following
conditions:

(MT1) G is a group and X a poset on which G acts (on the left) by order
automorphisms.

(MT2) Y is an order ideal and subsemilattice of X.
(MT3) For each x e X there exists y e Y such that y s x.
(MT4) GY = X.
Associated with every McAlister triple (G,X, Y) is an £-unitary semigroup

P = P(G, X, Y) with underlying set

P = {(y,g)eYxG:g-lyeY}.

Such semigroups are called P-semigroups. We refer the reader to Petrich [7] for details.
It can be shown that every £-unitary inverse semigroup is isomorphic to a

P-semigroup [7]. Observe that the inverse semigroup P = P(G, X, Y) is finite if, and only
if, G and X are finite. For suppose P is finite. Then G and Y are finite, but GY = X so
that X is finite. The converse is immediate.

DEFINITION. An £-unitary semigroup is said to be over a semilattice if it is isomorphic
to a P-semigroup of the form P(G, X, Y) where X is also a meet semilattice. An
F-inverse monoid is an E-unitary monoid which is over a semilattice.

£-unitary semigroups over semilattices were introduced by McAlister [4]. An
abstract characterisation of £-unitary semigroups over semilattices is given below, see [4,
Theorem 2.3] for a proof.

THEOREM 3.1. Let S be an E-unitary inverse semigroup. Then S is over a semilattice
if, and only if, for all e, f e E(S) and s eS the set o(s) D eSf has a maximum element.

The proof of (i) below is a standard result in inverse semigroup theory, consult
Petrich [7]. McAlister [4] contains a proof of (ii) below (see also Reilly and Munn [8]).

THEOREM 3.2. (i) Every inverse semigroup has an E-unitary cover. If the semigroup is
finite then it has a finite E-unitary cover.

(ii) Every inverse semigroup has an E-unitary cover over a semilattice.
(iii) Every inverse monoid has an F-inverse cover.

It appears to be unknown whether every finite inverse semigroup has a finite
£-unitary cover over a semilattice. See [9, Problem 3.7, page 462].
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TERMINOLOGY. Throughout this section, all E-unitary covers will be over semilattices,
unless stated otherwise.

We shall show that the problem of finding all E-unitary covers of a semigroup 5 can
be divided into two basic steps. The first step is connected with the notion of enlargement
defined below.

DEFINITION. Let i :S—* T be an embedding. Then T is said to be an enlargement of 5
if the following conditions hold.

(El) £(i(S)) is an order ideal of T.
(E2) If x e T and A:-1*, A;*- 'e£(i(S)) then x e i{S).
(E3) For each e e E(T) there exists / e E(i(S)) such that e3)f.
We shall often assume that i is subsemigroup inclusion.

The conditions above first appeared together in [2]. We were led to formulate them
by considering the semigroup analogue of Ehresmann's Maximum Enlargement Theorem
which is discussed in [1]. Conditions (El) and (E2) were mentioned by McAlister who
calls subsemigroups satisfying these conditions alone heavy [3], [5]. The final condition,
(E3), is mentioned in a remark in [3, Section 6.1.2], but is not used in the paper as a
whole.

The result below is proved in [2]. McAlister [3] had already noted that P was a heavy
subsemigroup of n .

PROPOSITION 3.3. Let P = P(G, X, Y) be a P-semigroup over a semilattice X. Put
PI = P(G, X, X), the semidirect product of G and X. Then FI is an enlargement of P.

A stronger form of the above result is (ii) below.

PROPOSITION 3.4. (i) Let S be strongly E-unitary. Then C{S) is factorisable.
(ii) S is E-unitary over a semilattice if, and only if, S has a strongly E-unitary

enlargement.

Proof, (i) Immediate from the representation of 5 as a semidirect product of a group
and a semilattice.

(ii) Suppose that 5 has a strongly E-unitary enlargement T; to ease notation we shall
suppose that 5 is a subsemigroup of T. Let e, f e E(S) and seS. We shall show that
eSf fl o(s) has a maximum element; the result will then follow by Theorem 3.1. It is clear
that o(s) e C(T), for o(s) is a compatible subset of S and so of T; also it is an order ideal
of 5 and S is an order ideal of T and so o(s) is an order ideal of T. By (i) there exists
A e 2(7) such that o(s) c A. Thus there exists x e A such that x~lx = / . Put y = ex. Then
y eA since A is an order ideal. Now y~[y < / a n d yy~x < c so that y~ly, yy~l eE(S), by
(El). Thus y eS by (E2). Hence yeeSf. But y, seA and so y~s. Thus yos in S. We
claim that y is the maximum element of eSf D a{s). Let z e eSf PI o(s). Since zf = z we
have that z~lz < / . Thus by Lemma 1.1, z ^ x . But then z = ez s ex ̂ y. The converse is
immediate by Proposition 3.3.

The proof of the following is straightforward.

PROPOSITION 3.5. Let T be an enlargement of S and let 6 be a surjective idempotent
separating homomorphism 6:T—*W. Then W is an enlargement of 6(S).
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The proof of the following result appears in [2]. Theorem 3.6 of [3] is a special case.

PROPOSITION 3.6. Let T be an enlargement of S. Then every idempotent separating
congruence p on S extends to a unique idempotent separating congruence r on T such that
r H (5 x S) = p.

PROPOSITION 3.7. (i) Let S cT c U be inverse semigroups. If T is an enlargement of S
and U is an enlargement of T then U is an enlargement of S.

(ii) Let VcT and 6:S—*T a surjective, idempotent separating homomorphism.
Suppose that T is an enlargement of V, then S is an enlargement of U = 6~'(V).

Proof, (i) Straightforward.
(ii) Clearly, U is an inverse subsemigroup of S. Now show (El) holds. Let s < u

where d(u) e V. Then 6(s) < 6{u) e V. But T is an enlargement of V so that d(s) e V.
Thus sell. Next show (E2) holds. Let s eS such that s~ls, ss~l e U. Then d^y^is),
d(s)e(s)-'eV. Hence d(s) e V and so self. Finally, (E3) holds. Let e e E(S); then
d(e)eT. Thus there exists teT such that «"' = 6(e) and t~lteE(V). Let s e 8~\t).
Then 6(ss~l) = tt~l = 6(e). But 6 is idempotent separating and so ss~l = e. Also
©(*-'*) = r V 6 E{V). Thus s~ls e U.

The following theorem establishes a close link between £-unitary covers of a
semigroup 5 over semilattices and almost factorisable enlargements of 5.

THEOREM 3.8. (i) Let F be an almost factorisable enlargement of S and let
/?: G —» 2(F) be a group homomorphism such that U fi(G) = F. Put

P = P(F, G, p, S) = {(s, g)eSxG:se p(g)}.

Then with componentwise multiplication P is an E-unitary semigroup over a semilattice,
nt:P-*S is a surjective, idempotent separating homomorphism, and K2:P-*G is a
surjective, iE-injecdve homomorphism.

(ii) Let P = P(G,X,Y) be an E-unitary cover over a semilattice of the inverse
semigroup S by the idempotent separating homomorphism d:P—>S and let II = P(G, X,
X). Then there is an almost factorisable enlargement T of S and a group homomorphism
a: n / a ^ 2 ( 7 ) with U a(U/o) = T, such that P is isomorphic to P(T, U/o, a, S) by
means of an isomorphism ip: P^>P(T, U/o, a, S) with d = n^.

Proof, (i) By Proposition 2.3, P(F, G, j3) is strongly £-unitary and nx: P(F, G,
P)—*F is a surjective, idempotent separating homomorphism. It is easy to see that
ji\~l(S) = P(F, G, P, S). By Proposition 3.7(ii), P(F, G, P) is an enlargement of P(F, G,
P, S). By Proposition 3.4(ii), P(F, G, P, S) is an £-unitary semigroup over a semilattice.
The rest of part (i) is now immediate.

(ii) By Proposition 3.3, 11 = P(G, X, X) is an enlargement of P. Since ker 6 is an
idempotent separating congruence on P there exists, by Proposition 3.6, a unique
idempotent separating congruence p on U such that p n (P x P) = ker 6. Put T = n /p .
By Theorem 2.4, T is almost factorisable. Put S'= p(P). Clearly, 5 and S' are
isomorphic by means of an isomorphism £:S—>S' given by £(0(/?)) = p\p). From now
on we shall identify S and 5' by means of £. By Proposition 3.5, T is an enlargement of
5'. n is a strongly £-unitary cover of T, thus, by Theorem 2.5, there is a group
homomorphism a:Wo-—*I.(T) such that U a(U/o) = T, where a{a{p)) = p\a(p)).
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There is an isomorphism i/>:II—»P(7\ Yl/o, a) defined by ^p(p)-(p\p), a{p)) such
that nxty - p". We claim that V induces an isomorphism from P(G, X, Y) to P(T, Tl/o,
a, S'). If p e P then p\p) e S'. Thus ip induces a homomorphism from P(G,X, Y) to
P(T, Tl/o, a, S'). On the other hand let (p\p), a(o(q))) e P(T, n/a , a, S'). Then
p e o(q) and p e P. Thus (pk(p), a{o{q))) = tp(p). Hence i/> induces an isomorphism
from P(G, X, Y) to P(T, U/o, a, S').

We may now describe a two step method for constructing all E-unitary covers over
semilattices of an inverse semigroup 5.

(Step 1) Construct all almost factorisable enlargements F of 5.
(Step 2) For each such enlargement F construct all group homomorphisms a: G —*

Z(F) such that U a( G) = F.
Then nx:P{F, G, a, S)->S is an ^-unitary cover over a semilattice, and every ^-unitary
cover of 5 over a semilattice is isomorphic to one constructed in this way.

This approach to E-unitary covers leads to a reformulation of the question of the
existence of finite covers over semilattices.

PROPOSITION 3.9. Let F be an inverse semigroup and let e be an idempotent in F. Then
F is an enlargement of eFe if, and only if', F = FeF.

Proof. Observe first that eFe always satisfies (El) and (E2). Suppose that F is an
enlargement of eFe, and let x e F. Then there exist elements a and b of F such that

aa~l = xx~l, x~lx = bb~x and a~xa,b~xb e E(eFe).

But then x = a(a~lxb)b~l and a~lxb e eFe. Thus x = ae(a~'x) e FeF. Conversely, suppose
that F = FeF, and f e E(F). Then f = xey for some x, y e F. By Lemma 1.4, f = aib
where the product on the right hand side is a trace product, a <x , i^e and b <_y. It is
now clear that f3)i.

PROPOSITION 3.10. For every inverse monoid S there exists an almost factorisable
semigroup F and an idempotent e e F such that S is isomorphic to eFe and F = FeF.

Proof. Immediate by Theorem 3.2(iii), Theorem 3.8 and Proposition 3.9.

We now have the following reformulation of the existence of finite F-inverse covers
of finite inverse monoids.

PROPOSITION 3.11. A finite inverse monoid S has a finite F-inverse cover if, and only
if, S has a finite almost factorisable enlargement.

Proof. Suppose that 5 has a finite F-inverse cover. Then by Theorem 3.8, S has a
finite almost factorisable enlargement. Conversely, suppose that S is isomorphic to eFe,
F = FeF and F is finite and almost factorisable. Without loss of generality, we may assume
that 5 = eFe. Then again by Theorem 3.8, we may construct a finite F-inverse cover of S,
namely P(F, Z(F), t, S) where t is the identity map on 2(F).
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