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Abstract

This note corrects an error in the definition of the rate function in Jacquier, Pakkanen,
and Stone (2018) and slightly simplifies some proofs.
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1. Corrected rate function

Note that the correct rate function also appears in the PhD thesis [3] (see Proposition 1.4.18),
but with a different proof. We first give a slightly simplified proof of [1, Theorem 3.1]. Any
unexplained notation is as in [1].

Let Y: = ∫ ·
0 ϕ(u, ·) dWu be the Gaussian process from that theorem, and KY :C∗ → C its

covariance operator (definition in [2, p. 5]). As noted in [1], Iϕ is injective by Titchmarsh’s
convolution theorem. By the factorization theorem [2, Theorem 4.1] and the discussion in [2,
pp. 32–33], it suffices to verify the factorization identity Iϕ(Iϕ)∗ = KY to conclude that the
reproducing kernel Hilbert space (RKHS) is the image Iϕ

(
L2([0, 1])

)
. By Fubini’s theorem,

we have (Iϕ)∗μ = ∫ 1
· ϕ(·, t)μ(dt) for any measure μ ∈ C∗. We then compute, for μ, ν ∈ C∗,

μ
(Iϕ(Iϕ)∗ν

)=
∫ 1

0

∫ t

0
ϕ(u, t)

∫ 1

u
ϕ(u, s) ν(ds) du μ(dt)

=
∫ 1

0

∫ 1

0

∫ s∧t

0
ϕ(u, t)ϕ(u, s) du ν(ds) μ(dt)

=
∫ 1

0

∫ 1

0
E[YtYs] ν(ds) μ(dt) =E[μ(Y)ν(Y)],

which proves the theorem.
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The second definition in [1, (2.3)] should be replaced by the following one.

Definition 1. For �:R+ ×R
+ →R

2×2, define I�:L2([0, 1],R2) → L2([0, 1],R2) by

I�f : =
∫ ·

0
�(u, ·)f (u) du.

The following theorem replaces [1, Theorem 3.2].

Theorem 1. Let ϕ1, ϕ2 satisfy [1, Assumption 3.1], and define Yi: =
∫ ·

0 ϕi(u, ·) dWi
u, i =

1, 2, where W1 and W2 are standard Brownian motions with correlation parameter ρ ∈
( − 1, 1). Then, the RKHS of (Y1, Y2) is H�: = {I�f :f ∈ L2([0, 1],R2)}, with inner product
〈I�f , I�g〉 = 〈f , g〉, where

� =
(

ϕ1 0

ρϕ2
√

1 − ρ2ϕ2

)
.

Proof. Analogous to the proof above. Injectiveness of I� follows from the Titchmarsh
convolution theorem. We have (I�)∗μ = ∫ 1

· ��(·, t)μ(dt) for any measure μ ∈ (C2)∗. The
factorization identity I�(I�)∗ = KY1,Y2 is verified as above.

Theorem 1 implies the following corollary, which replaces [1, Corollary 3.2].

Corollary 1. The RKHS of the measure induced on C2 by the process (Z,B) is H� , where

� =
(

Kα 0

ρ
√

1 − ρ2

)
.

Consequently, ‖ · ‖H� should replace ‖ · ‖HKα
ρ

in line 4 of p. 1083 and in the proof of [1,

Theorem 2.1] on p. 1088. The special case ρ = 0 requires no separate treatment, and the result
agrees with [1, Section 5].

2. Minor corrections

1. On p. 1079, last line of the introduction: replace
∫ 1

0 by
∫ ·

0.

2. On p. 1084, definition of topological dual: add ‘continuous’ before ‘linear functionals’.

3. On p. 1085, second displayed formula: after the second =, replace f by �(f ∗).

4. In the statement of Theorem 3.4, εμ should be replaced by μ(ε−1/2 · ). The speed ε−β

resulting from the application of the theorem on p. 1088 is correct, though.

5. First line of p. 1089: Replace v1+β

0 by v0ε
1+β . To make the estimate work for t = 0,

confine ε to the finite interval [0,1] instead of R+ in line −4 of p. 1088.
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