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Human diet planning is generally carried out by selecting the food items or groups of food items to be 
used in the diet and then calculating the composition. If nutrient quantities do not reach the desired 
nutritional requirements, foods are exchanged or quantities altered and the composition recalculated. 
Iterations are repeated until a suitable diet is obtained. This procedure is cumbersome and slow and often 
leads to compromises in composition of the final diets. A computerized model, planning diets for humans 
at  minimum cost while supplying all nutritional requirements, maintaining nutrient relationships and 
preserving eating practices is presented. This is based on a mixed-integer linear-programming algorithm. 
Linear equations were prepared for each nutritional requirement. To produce linear equations for 
relationships between nutrients, Linear transformations were performed. Logical definitions for 
interactions such as the frequency of use of foods, relationships between exchange groups and the energy 
content of different meals were defined, and linear equations for these associations were written. Food 
items generally eaten in whole units were defined as integers. The use of this program is demonstrated 
for planning diets using a large selection of basic foods and for clinical situations where nutritional 
intervention is desirable. The system presented begins from a definition of the nutritional requirements 
and then plans the foods accordingly, and a t  minimum cost. This provides an accurate, efficient and 
versatile method of diet formulation. 

Computerized diet planning : Humans 

Diet formulation is generally carried out to date by first defining the food items or groups 
of food items to be used in the diet and then calculating the nutrient composition. If 
nutrient quantities do not fulfil the desired nutritional requirements, food quantities are 
altered or food items are exchanged and the composition recalculated. This is repeated until 
required levels of all nutrients are reached and a suitable diet is obtained. This iterative 
procedure is cumbersome and slow and, if this process is manual, often leads to 
compromises in the composition of the final diets. 

An approach using a part of the formalism of linear programming for pediatric dietetics 
has been recently described by Colavita & D’Orsi (1990). Methodology of operations 
research was used to examine by geometrical representation the ‘feasible region ’ and 
‘objective function ’. 

Linear programming has been used for formulating rations for farm animals for many 
years (Gass, 1969; Sklan & Bondi, 1987), solving a series of linear equations while 
minimizing cost. However, planning animal rations is simpler than using this methodology 
for planning diets for humans. In particular, the need to plan some foods as whole units 
(yoghurts, eggs etc.) and the possibility of using exchange groups and taste preferences 
must be available in any human diet planning. In addition, eating practices must be 
maintained while using automatic diet planning, long-term planning should be available 
and economic considerations cannot be discounted. 
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Algorithms for mixed-integer linear programming have been described (Gomory, 1958 ; 
Land & Doig, 1960), these maintain as whole units the variables defined as integers. These 
algorithms require greater computing resources than the non-integer algorithms and, to our 
knowledge, have not been reported to have been applied to diet formulation. 

This report presents a method of diet planning based on a mixed-integer linear- 
programming algorithm for calculating nutrition at minimum costs for institutions or 
individuals. 

M E T H O D S  

Linear programming solves a series of linear equations to satisfy the conditions of the 
problem while optimizing an objective function, where the objective function is usually the 
cost. Mathematically the problem can be stated as follows. 

Minimize the objective function 

c1 XI + c, x, + c 3 X 3 . .  .. +c, x,: 

where c, is the cost of variable x,. 
Subject to: 

a,, x, + al, x, + U13 X,. . . . +a,, x, > = b,, 
a,, x, + a,, x, + a,, X,. . . . + a,, x, > = b,, 

u,,~,+~,,x,+u,,X ,....+ u,,x, > = b,, 
where a,, is the value of constraint rn in variable x,. 

To solve this set of equations, a version of the Simplex algorithm was used (Ferguson & 
Sargent, 1958; Gass, 1969). A simplex is essentially a n-sided polyhedron, where the 
equation for each constraint defines a face of the polyhedron (Gale, 1960). Theory shows 
that the objective function must reach its minimum value at one of the vertices of this 
polyhedron (Ferguson & Sargent, 1958). The number of vertices is finite and can be readily 
found from the equations. The objective function is evaluated at each vertex and the lowest 
value is the least cost solution to this problem. 

An illustration of such a system applied to a dietary situation is as follows: minimize the 
cost of a combination of the two foods X ,  and X ,  where the price of XI is 3 and of X ,  is 
2. The objective function to be minimized is 3X,  +2X,. The constraints of this problem are: 
(1) that the combination of the two feeds should be less than 100 g. This is an equation for 
the total amount of food and can be written as: XI + X ,  < 100. (2) that total energy should 
be more than 585 kJ (140 kcal) and less than 836 kJ (200 kcal). If X ,  has an energy of 6.3 kJ 
(1.5 kcal) and X, 10.9 kJ (2.6 kcal) then the equations are: 2.6X1+ 1.5X, > 140 and 
2.6X, + 1.5X, < 200. (3) that X ,  be greater than 35 g, (4) that X ,  be more than 40 g. These 
can be stated: X ,  > 35 and X ,  > 40. The polyhedron can then be drawn as shown in Fig. 
1, where the feasible area is shaded. The vertices of the polyhedron are calculated and it can 
be seen that the least cost solution is for 35 g of X ,  and 40 g X,. 

The model used in the present study applies additional integer and bound restrictions to 
some of the variables (Gomory, 1958; Land & Doig, 1960) using the revised Simplex 
algorithm. Upper and lower bounds are available for all variables. Lower bounds are 
handled by transposing the origin of the problem and untransposing the solution. Upper 
bounds are handled by making upper bound substitutions within the Simplex algorithm as 
required. 

The strategy begins by relaxing the original problem and solving it using the revised 
Simplex algorithm as if it was a non-integer linear problem. This solution calculates non- 
integer values for the integer variables. When this has occurred, one of the integer variables 
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look X,+X, < 100 I 

20 

0 
0 20 40 60 ao 100 120 140 

Inclusion of X, 

Fig 1 Polyhedron for intake of two foods (XI and A',) formed by the equations X , + X ,  < 100, 
2 6X1+ 1 SX, > 140, 2.6X, + 1 SX,  < 200, XI > 35, X ,  > 40 (O), Feasible region 

is selected, and two new linear programs are created. In these two programs the integer 
variable is assigned the integer value either above or below the calculated value. These two 
programs are termed branches and, except for the new integer values, are identical to the 
original problem. The program then computes the lower limit of the objective function that 
fulfils all the integer restrictions for each of the branches. This process continues and a 
series of branch problems are created for all the integer variables. When a problem has 
integer values for all the integer variables the branch problem, solution and objective 
function are saved. As additional solutions are encountered they are compared with the 
current best solution, and if better are replaced. If a solution becomes unfeasible it is 
dropped from the list of solutions. If a solution to the non-integer linear program is higher 
than the current best solution, there is no need to develop that branch further. The 
procedure ends when no branches remain to examine and the best solution is then adopted. 
This procedure was used based on a software package (MILP88, Eastern Software 
Products, Alexandria, VA, USA) running on personal computers. 

Nutrient requirements were as described in Recommended Dietary Allowances (Food and 
Nutrition Board, 1989). Nutrient composition of foods was from local quality-control 
laboratories and, when values were not available, from Composition of Foods Handbook 
VIII (1987). 

Application of the model 
The procedure described was adapted for diet formulation, where the variables are in 
general the food items, the restrictions are the nutritional requirements and the objective 
function is the cost of the diet. 

A simple linear program is shown in Table 1, where three foods are shown with equations 
for total amount of food, energy and protein. However, the optimal solution in Table 1 is 
not very suitable with respect to the amounts of bread. A method of regulating amounts 
of any food is shown in Table 2 where upper and lower bounds are assigned to the variables 
and these can be used to ensure that excess quantities of a single food were not planned. 
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Table 1. A simple linear program with three foods used for  diets planned for  humans 

Bread Egg Cheese 
~~ ~ 

Amount (g) 1 .o 1 .o 1.0 > = 100 
Energy 

6'15 1 -47 > 400 
kJ 10.37 6.3 
kcal 2.48 1.5 

Protein (g) 0.09 0.124 0.15 > = 15 
Price (NIS) 0.02 0.06 0.062 
Optimal solution (8) 113.2 78.7 

NIS, National Israeli Shekel. 

Table 2. A mixed integer linear program with bounds with three foods used for  diets 
planned for humans 

Bread IEgg Cheese 

Bounds 
Lower 0 0 0 
Upper 90 1 100 

Amount (8) 1 .o 50.0 1.0 > = 100 
Energy 

6.15 
1.47 > =(':6 kJ 1037 313.5 

kcal 2.48 75.0 
Protein (g) 0.09 6.2 0.15 > = 15 
Price (NIS) 0.02 0.3 0062 
Optimal solution (g) 90.0 1 .o 72.0 

NIS, National Israeli Shekel. 

Table 3. A mixed integer linear program with exchange groups used for diets planned for  
humans 

Bread IEgg Cheese ICereal 1 ICereal 2 

Amount (g) 1 .o 50.0 1 .o 15 18 > = 100 
Energy 

kJ 10.37 313.5 6.15 2508 250.8 > =.{ 1:;; 
kcal 2.48 75.0 1.47 60.0 60.0 

Protein (g) 0.09 6.2 0.15 1.75 2.70 > = 15 
Cereal 1 I = I  
Price (NIS) 0.02 0.3 0,062 0.4 0.45 

NIS. National Israeli Shekel 

In addition, the solution in Table 1 includes 1.65 large eggs. To realize the use of whole 
units, an integer variable for eggs is defined in Table 2. The optimal solution shown is more 
acceptable as a meal and uses one whole egg. 

Exchange groups can be defined by equations limiting numbers of integer units of 
exchange groups available over a specified time-period. This requires that exchange groups 
be linked on a nutritional basis, such as energy content, rather than on a weight basis; this 
is shown in Table 3 for two different cereals. Ratios between nutrients can also be included 
in the programming following a linear transformation of the ratio. Such a transformation 
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Table 4. A mixed integer program with nutrient ratios used for diets planned for humans 

Bread 1% Cheese Protein Energy 

Amount (g) 1 .o 50.0 1 .o > = 100 
Energy (El 

kJ 1037 313.5 6.15 > = { 1:;; kcal 2.48 75.0 1.47 
Protein (P) (g) 009 6.2 0.15 > = 15 
E balance 

kJ 10.37 313.5 6.15 
kcal 2.48 75.0 1.47 - 1  = o  

P balance (g) 0.09 6 2  0.15 -1 = o  
P : E  1 -005 > O  
Price (NIS) 0.02 0.3 0,062 0.4 0.45 

NIS, National Israeli Shekel. 

Table 5. Amounts and energy requirements for meals in the two diets planned for humans 

Diet 

Constraint Low-cholesterol Low-energy 
~ 

Breakfast 
Amount (g) > 200 < 500 

(kcal) > 400 < 300 

Amount (g) > 300 < 700 

(kcal) 700 < 500 

Amount (g) > 250 < 500 

(kcal) > 600 < 400 

Energy (MJ) > 1.67 < 1.25 

Lunch 

Energy (MJ) > 2.93 < 2.09 

Dinner 

Energy (MJ) > 251 < 1.67 

Energy 
Daily (MJ) > 71.1 < 45.9 

(kcal) > 1700 < 1100 
Weekly (MJ) > 497.4 < 321.9 

(kcal) > 11900 i 7700 

is demonstrated in Table 4 where the protein:energy value is restricted to a minimum of 
0.05. 

Nutrient requirements can be defined separately for meals, days or any desired unit of 
time using a structure such as that shown in Table 5. Here foods are allowed at either one 
or several meals, and contribute to daily and weekly total energy. We preferred to define 
amount of food and energy per meal, per day and per week, nutrients such as protein daily, 
and minerals such as Ca on a weekly basis. However, any desired time units can be used. 

R E S U L T S  

Using these considerations a practical program for determining diets was constructed. A 
data base of nutrient content of local foods and their costs was prepared. Foods were then 
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Table 6. Daily nutritional requirements and contents for two diets planned for  humans 
~ 

~ 

Low cholesterol Low energy 

Constraint Constraint Content 

Amount (g) > 2000 2074 
Energy 

(MJ) > 71.1 71.4 
(kcal) > 1700 1708 

Fat (Yo) < 30 23.7 
CHO (Yo) > 50 50.1 
Protein (g) > 70 75.4 
Na (mg) < 3000 2905 
K (mg) < 4000 3796 
Ca (mg) > 1000 1042 
Fe (mg) > 18 18.7 
Cholesterol (mg) < 300 123 
Vitamin A (ug) > 1200 1203 
Thiamin (mg) > 1.1 1.43 

Vitamin E (mg) > 12 I2 393 
Vitamin C (mg) > 45 455 

Fibre (g) > 15 15.1 

CHO, carbohydrate. 

Constraint Content 

> 1500 1594 

< 45.9 45.1 

< 30 24.3 
> 50 56.0 
> 50 546 

< 1100 1079 

< 3000 1854 
< 4000 3174 
> 700 706 

< 300 85 
> 1200 1302 

> 45 505 
> 12 11  322 
> 14 14.0 

> 15 15.8 

> 1.1 1.1 

selected for use in the diets planned, this allowed flexibility and wide applicability for both 
individual and institutional use. 

We demonstrate formulation of two diets using the method described with fifty foods per 
day with the nutritional constraints shown in Tables 5 and 6. The first diet is a low- 
cholesterol diet. The original target was a maximum of 300 mg/d for cholesterol and a 
maximum of 961 kJ (230 kca1)/4.2 MJ (1000 kcal) energy from fat with all other nutrient 
restrictions as recommended dietary allowances. A minimum polyunsaturated fat : satur- 
ated fat of 1.0 was set. Details of nutrient content in the optimal ration are given in 
Table 6. An optimal solution was found with as low as 105 mg cholesterol/d. Minimum 
energy was the limiting factor and fat comprised 685 kJ (140 kca1)/4.2 MJ (1000 kcal). 
Protein, vitamin E, thiamin, vitamin C, Ca and Fe were above minimal requirements. Daily 
menus were planned for 1 week with exchanges for milk products, main courses, seasonal 
vegetables and fruits such that the diet was sufficiently varied. A menu for a typical day is 
shown in Table 7. 

The second diet demonstrated is a low-energy diet. The protein energy relative to total 
energy was set to be at  least 627 kJ (150 kca1)/4.2 MJ (1000 kcal), and the upper limit on 
energy was planned at 5 MJ (1200 kcal) (Table 6). It was possible to achieve an optimal 
solution with 4-7 MJ (1 125 kcal)/d. At this daily energy level protein content was higher 
than the minimum, whereas minimal Fe content was limiting. Minerals and vitamins (not 
shown) were above the planned minimum and did not restrict the solution. The diet was 
planned for 1 week and Sunday’s menu is shown (Table 8) which presents food with 
sufficient volume and variety. The rest of the week was planned at the same energy level 
with different exchange groups for all food items such that meals were varied from day to 
day. 

These two examples of diets were prepared using integers for items eaten by units and 
exchanges for most food items. Using similar methods, diets have been planned for 
institutions for two weekly or monthly periods. 
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Table 7. Menu for I d for  the low-cholesterol diet planned for  humans 

Meal/food item Amount (g) 

Breakfast 
Bread 70 
Cottage cheese 50 
Yoghurt 1 unit 
Tomato 50 
Cucumber 100 
Coffee 5 
Milk, low fat 25 

Lunch 
Turkey light meat 100 
Potato 200 
Cabbage 300 
Onion 50 
Tomato sauce 40 
Banana 1 unit 
Apple I unit 

Bread 50 
Cheese, low fat 100 
Tomato 100 
Pepper 80 
Avocado 50 
Almonds 25 
Orange 1 unit 
Pear 1 unit 

Dinner 

Table 8. Menu,for I d for  the low-energy diet-planned,for humans 

Meal/food item Amount (g) 

Breakfast 
Crackers, diet 50 
Cottage cheese 50 
Yoghurt, low fat 1 unit 
Tomato 50 
Cucumber 50 
Coffee 5 
Milk, low fat 25 

Chicken, breast 100 
Carrot, steamed 100 
Cabbage 200 
Onion 30 
Tomato sauce 35 
Grapes 100 

Lunch 

Dinner 
Bread, light 50 
Soft cheese, low fat 100 
Tomato 140 
Lettuce 80 
Fresh mushrooms 90 
Figs 2 units 
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D I S C U S S I O N  

An automatic iterative process is presented, which allows diet planning according to 
nutritional criteria and at least cost. Using this procedure varied diets can be planned, meal 
by meal, for any convenient period while maintaining nutrient relationships. If special 
eating practices are required, types of foods can be grouped together in particular meals or, 
using specific equations, can be mutually restricted. Essentially, we describe a completely 
automated procedure for diet planning based on the formalism outlined by Colavita & 
D’Orsi (1 990) while overcoming the technical problems involved using the mixed-integer 
algorithm. 

Using the present software the problem size is restricted to 800 equations and 4000 
variables. In our hands this is easily sufficient for 60 d diet planning. Weekly diets utilize 
about one-tenth of these resources and such a diet is solved in seconds on a computer with 
a 80486 microprocessor or slightly longer on computers with earlier microprocessors. 

Since least cost is the objective function, it is usually necessary to utilize the upper bound 
option to keep the quantities of the cheaper foods within eatable limits. On the other hand, 
it is also possible to force a desired food item into the solution by determining a lower 
bound. 

The use of exchange groups linked on an energy basis involves defining a fixed 
relationship between these items as integers are used. In general this detracted little from 
the flexibility of the solution where sufficient foods were available. 

Additional information is available from the solution output, and this includes the 
minimum and maximum values of the constraints which will cause a change in the basis of 
the solution, and the minimum and maximum cost of each food which will cause a change 
in the solution basis. In addition, owing to the ease of altering any parameter and rerunning 
the program, the effects of parametric changes, such as increasing Ca or the protein:energy 
value, can be readily examined. 

We have used this program both to plan diets for many different clinical situations, of 
which some examples have been shown here, and for institutional feeding. The latter 
requires long-term dietary planning and includes a large number of food items and the 
economic implications are especially important. The use of this program allows 
examination of many nutritionally sufficient long-term diets where previously, by manual 
methods, the effort required to plan a single diet was such that few changes were made after 
achieving the first balanced solution. In planning institutional diets we have been able not 
only to improve the nutritional adequacy of diets but, in general, the economic benefits 
have been greater than 5 %. 

The system presented here will only provide solutions where all the nutritional 
requirements as determined by the dietitian are fulfilled. Thus, this is basic to the system 
and is not discussed here in detail. However, any specific nutritional requirements can be 
simply incorporated into the planning and a suitable solution will be computed. 

In the recently described technique of goal programming the coefficients of a set of linear 
equations are adjusted to reach a predefined goal. Such an approach can be used for diet 
formulation but may generate several sets of diets reaching the goal. This technique, 
however, does not determine an optimum for the objective function. 

We have utilized integer variables in the mixed-integer algorithm to allow the use of 
whole units of feeds as well as for defining the use of the exchange groups. This allowed us 
to design a flexible and practical diet formulation program which we have used in both 
clinical and institutional situations. 
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