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We study the existence of positive solutions for the nonlinear Schrödinger equation
with the fractional Laplacian

(−∆)αu + u = f(x, u) in R
N ,

u > 0 in R
N , lim

|x|→∞
u(x) = 0.

Furthermore, we analyse the regularity, decay and symmetry properties of these
solutions.

1. Introduction

We study nonlinear Schrödinger equations with fractional diffusion. More precisely,
we are concerned with solutions to the following problem:

(−∆)αu + u = f(x, u) in R
N ,

u > 0 in R
N , lim

|x|→∞
u(x) = 0,

⎫⎬
⎭ (1.1)

where 0 < α < 1, N � 2 and f : R
N × R → R is superlinear and has subcritical

growth with respect to u. Here, the fractional Laplacian can be characterized as
F((−∆)αφ)(ξ) = |ξ|2αF(φ)(ξ), where F is the Fourier transform.

Equation (1.1) arises in the study of the fractional Schrödinger equation

i∂tΨ + (−∆)αΨ = F (x, Ψ) in R
N ,

lim
|x|→∞

|Ψ(x, t)| = 0 for all t > 0,

⎫⎬
⎭ (1.2)

when looking for standing waves, that is, solutions with the form Ψ(x, t) = e−ictu(x),
where c is a constant. This equation is of particular interest in fractional quantum
mechanics for the study of particles on stochastic fields modelled by Lévy processes.
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A path integral over the Lévy flights paths and a fractional Schrödinger equation
of fractional quantum mechanics are formulated by Laskin [24] from the idea of
Feynman and Hibbs’s path integrals (see also [25]).

The Lévy processes occur widely in physics, chemistry and biology. The sta-
ble Lévy processes that give rise to equations with the fractional Laplacians have
recently attracted much research interest. Nonlinear boundary-value problems in
various settings, including phase transition and free boundary, have recently been
studied by Cabré and Solà Morales [8], Cabré and Roquejoffre [6], Silvestre [32],
Capella et al . [11], Cabré and Sire [7], Cabré and Tan [9], Sire and Valdinoci [33],
Frank and Lenzmann [20] and Brändle et al . [5].

A one-dimensional version of (1.1) has been studied in the context of solitary
waves by Weinstein [37], Bona and Li [4] and de Bouard and Saut [15]. More
recently, Frank and Lenzmann [20] studied the uniqueness of the positive solution
to (1.1) in the one-dimensional autonomous case, and the existence and symmetry
of solutions is sketched in terms of previous works (see also the work by Kenig et
al . [23] and Maris [28] on the Benjamin–Ono equation when α = 1

2 and N � 2).
When α = 1 we have the classical nonlinear Schrödinger equation

−∆u + u = f(x, u) in R
N , u ∈ H1(RN ),

which has been extensively studied in the last 20 years by many authors. We men-
tion here the earlier work by Floer and Weinstein [19], Rabinowitz [31], Wang [36]
and del Pino and Felmer [16] without attempting to review these references here.

Our goal is to study the existence, regularity and qualitative properties of ground
states of (1.1) in the case where 0 < α < 1. Before continuing, we make precise
definitions of the notion of solutions for the equation

(−∆)αu + u = g in R
N . (1.3)

Definition 1.1. Given g ∈ L2(RN ), we say that u ∈ Hα(RN ) is a weak solution
of (1.3) if ∫

RN

|ξ|2αûv̂ dξ =
∫

RN

gv dx for all v ∈ Hα(RN ).

Here, ˆ denotes the Fourier transform and Hα(RN ) denotes the fractional Sobolev
space (see § 2).

When u has sufficient regularity, it is possible to have a pointwise expression of
the fractional Laplacian as follows:

(−∆)αu = −
∫

RN

δ(u)(x, y)
|y|N+2α

dy, (1.4)

where δ(u)(x, y) = u(x + y) + u(x − y) − 2u(x) (see, for example, [35]).

Definition 1.2. Given g ∈ C(RN ), we say that a function u ∈ C(RN ) is a classical
solution of (1.3) if (−∆)αu can be written as (1.4) and equation (1.3) is satisfied
pointwise in all R

N .

Now we state our main assumptions. In order to find solutions of (1.1), we will
assume the following general hypotheses.
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(f0) f : R
N × R → R is such that ξ → f(x, ξ) is continuous for almost every (a.e.)

x ∈ R
N , and x → f(x, ξ) is Lebesgue measurable for all ξ ∈ R.

(f1) f(x, ξ) � 0 if ξ � 0 and f(x, ξ) ≡ 0 if ξ � 0, for a.e. x ∈ R
N .

(f2) The function

ξ → f(x, ξ)
ξ

is increasing for ξ > 0 and a.e. x ∈ R
N .

(f3) limξ→0 f(x, ξ)/ξ = 0 uniformly in x.

(f4) There exists θ > 2 such that, for all ξ > 0 and a.e. x ∈ R
N ,

0 < θF (x, ξ) � ξf(x, ξ),

where F (x, ξ) =
∫ ξ

0 f(x, τ) dτ .

(f5) There exists p > 1 such that p < (N + 2α)/(N − 2α), so that

f(x, ξ) � C(1 + |ξ|)p for all ξ ∈ R and a.e. x ∈ R
N .

(f6) The function f(x, u) is Hölder continuous in both variables.

At this point we state our existence theorem for the autonomous equation, that
is, when the nonlinearity f does not depend on x. This theorem will serve as a basis
for the proof of the main existence theorem for the case where f depends on x.

Theorem 1.3. Assume that 0 < α < 1, N � 2 and that f̄ : R → R is a function.
Then we have the following.

(i) If f̄ satisfies (f1)–(f5), then

(−∆)αu + u = f̄(u) in R
N

has a weak solution, which satisfies u � 0 almost everywhere in R
N .

(ii) If we further assume that f̄ satisfies (f6), then u is a classical solution that
satisfies u > 0 in R

N .

The simplest case of a function f̄ satisfying the hypotheses (f1)–(f6) is f̄(s) = sp
+,

where p is as in (f5) and s+ = max{s, 0}. Naturally, the class of functions satisfying
these hypotheses is much ampler than this homogeneous case.

In the x-dependent case, we have to consider the behaviour of the nonlinearity for
large values of x in order to obtain proper compactness conditions. In the simplest
model case, we may consider the x-dependent nonlinearity f(x, s) = b(x)sp

+, where
b(x) � 1. If this inequality is strict somewhere and lim|x|→∞ b(x) = 1, then we will
prove that a solution of (1.1) exists. However, we could consider a more general
class of x-dependent nonlinearities. We consider the following hypothesis.

https://doi.org/10.1017/S0308210511000746 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511000746


1240 P. Felmer, A. Quaas and J. Tan

(f7) There exist continuous functions f̄ and a, defined in R and R
N , respectively,

such that f̄ satisfies (f1)–(f5) and

0 � f(x, ξ) − f̄(ξ) � a(x)(|ξ| + |ξ|p) for all ξ ∈ R and a.e. x ∈ R
N ,

lim
|x|→∞

a(x) = 0

and

|{x ∈ R
N | f(x, ξ) > f̄(ξ) for all ξ > 0}| > 0,

where | · | denotes the Lebesgue measure.

Now we state our main existence theorem.

Theorem 1.4. Assume that 0 < α < 1, N � 2. Then we have the following.

(i) If f satisfies (f1)–(f5) and (f7), then equation (1.1) possesses at least one weak
solution, which satisfies u � 0 almost everywhere in R

N .

(ii) If we further assume that f satisfies (f6), then equation (1.1) possesses at least
one classical solution that satisfies u > 0 in R

N .

The nonlinear problem (1.1) involves the fractional Laplacian (−∆)α, 0 < α < 1,
which is a non-local operator. A common approach for dealing with this problem was
proposed in [10] (see also [32]), allowing (1.1) to be transformed into a local problem
via the Dirichlet–Neumann map. For u ∈ Hα(RN ), we consider the problem

− div(y1−2α∇v) = 0 in R
N+1
+ ,

v(x, 0) = u on R
N ,

}
(1.5)

from where the fractional Laplacian is obtained as

(−∆)αu(x) = −bα lim
y→0+

y1−2αvy,

where bα is an appropriate constant.
However, in this paper we prefer to analyse the problem directly in Hα(RN ).

This allows us to prove the existence of a weak solution of (1.1), resembling the
case where α = 1 in some ways. This approach could extend many other problems,
known for α = 1, to the general case α ∈ (0, 1).

The proof of theorem 1.3 is done in several steps. First, we prove the existence of
weak solutions of (1.1) by applying the mountain-pass theorem [2] to the functional
I defined on Hα(RN ) as

I(u) = 1
2

∫
RN

(|ξ|2α|û|2 + |û|2) dξ −
∫

RN

F (x, u) dx, (1.6)

where û denotes the Fourier transform of u. However, the direct application of the
mountain-pass theorem is not sufficient, since the Palais–Smale sequences might
lose compactness in the whole space R

N . To overcome this difficulty, we use a
comparison argument devised in [31] for α = 1, based on the energy functional

Ī(u) = 1
2

∫
RN

(|ξ|2α|û|2 + |û|2) dξ −
∫

RN

F̄ (u) dx. (1.7)
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The non-negativity of weak solutions is proved by a version of the weak maximum
principle suitable for our setting.

The next step is to prove regularity of weak solutions. Here we use the usual iter-
ation technique, based on Lp theory for the Laplacian, together with a localization
trick, inspired by ideas in [32]. We believe that the argument may be useful for
other problems, as an alternative to regularity theory for degenerate elliptic equa-
tions [18] that has been used in previous works. Finally, we prove the positivity
of classical solutions by direct use of the integral representation of the fractional
Laplacian (1.4).

Our approach takes advantage of the representation formula

u = K ∗ f =
∫

Rn

K(x − ξ)f(ξ) dξ

for solutions to the equation

(−∆)αu + u = f in R
N ,

where K is the Bessel kernel

K(x) = F−1
(

1
1 + |ξ|2α

)
. (1.8)

Rather than knowing one reference for all the basic properties of the Bessel kernel,
we instead know various different sources. Based on [1, 3, 30, 34], we sketch the
analysis in the appendix for the reader’s convenience. We emphasize that many
properties that we need in what follows are obtained using the kernel, such as the
Rellich–Kondrachov theorem for Hα(RN ) and the basic properties for the fractional
Lp Sobolev spaces. We have attempted to be self-contained.

Our second main theorem concerns the decay of classical solutions for (1.1). We
find suitable comparison functions based on the Bessel kernel K to find out that
solutions of (1.1) have a power-type decay at infinity. More precisely, we have the
following.

Theorem 1.5. Assume that 0 < α < 1, N � 2, f satisfies (f3) and that u is a
positive classical solution of (1.1). Then there exist constants 0 < C1 � C2 such
that

C1|x|−(N+2α) � u(x) � C2|x|−(N+2α) for all |x| � 1.

We see that the solution is bounded below by the power N +2α, in great contrast
with the case where α = 1. As mentioned above, we construct a suitable subsolution
and supersolution and we use a simple comparison argument to obtain the decay
inequalities.

Our third goal is to prove that, when f does not depend on x, the positive
solutions are radial. We have the following theorem.

Theorem 1.6. Assume that 0 < α < 1, N � 2, f does not depend on x and that
it satisfies (f1)–(f5). Moreover, assume that
(f9) f ∈ C1(R), increasing, and there exists τ > 0 such that

lim
ξ→0+

f ′(ξ)
ξτ

= 0.

Then all positive solutions of (1.1) are radially symmetric.
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We give a proof based on the moving planes method as developed recently in
[12, 13, 26]. Their ideas provide an integral approach that is suitable for equations
involving the fractional Laplacian, where the radial symmetry and monotonicity
properties of the kernel K plays a key role. The approach here is different from the
usual moving planes technique originated in [22] for the case where α = 1.

The rest of the paper is organized as follows. In § 2 we prove the existence of a
weak solution for equation (1.1) and obtain part (i) of theorem 1.4. In § 3 we study
the regularity of weak solutions and we complete the proof of theorem 1.4. In § 4 we
find appropriate supersolutions and subsolutions and prove theorem 1.5. In § 5 we
apply the moving planes technique to prove that the solutions of the autonomous
problem are radially symmetric. Finally, in the appendix we sketch some properties
of the kernel and the function spaces that are required for our approach. Although
these results are known, we provide the sketched proofs for the reader’s convenience.

2. The ground state

We seek for solutions of equations (1.1) using a variational approach, based on the
mountain-pass theorem. We consider the Sobolev space

Hα(RN ) =
{

u ∈ L2(RN )
/ ∫

RN

(|ξ|2α|û|2 + |û|2) dξ < ∞
}

,

whose norm is defined as

‖u‖2
α =

∫
RN

(|ξ|2α|û|2 + |û|2) dξ.

On the space Hα(RN ), we consider the functional I defined in (1.6) whose critical
points correspond to the weak solutions of (1.1).

The two basic properties of the Sobolev space Hα(RN ) that we need are sum-
marized in the following lemma.

Lemma 2.1. Let 2 � q � 2�
α ≡ 2N/(N − 2α). Then we have

‖u‖Lq(RN ) � C‖u‖α, ∀u ∈ Hα(RN ). (2.1)

If, furthermore, 2 � q < 2�
α and Ω ⊂ R

N is a bounded domain, then every bounded
sequence {uk} ⊂ Hα(RN ) has a convergent subsequence in Lq(Ω).

Proof. Property (2.1) is the classical Sobolev embedding, which is a particular case
of part (i) of theorem 3.2. The second part is also well known, but we do not know
of a reference of a proof that does not require interpolation machinery. We provide
a sketch of the proof for the reader’s convenience, using standard arguments as
in [17].

The idea is to apply the Arzelà–Ascoli theorem to the mollified sequence uε
k =

ηε ∗ uk. Here ηε(x) = ε−Nu(x/ε), where η is non-negative with support in the ball
B1(0) and with

∫
B1(0)

η(x) dx = 1. If we look at the proof of the Rellich–Kondrachov
theorem in [17], we observe that the main point is to prove that uε

k → uk in Lq(Ω)
as ε → 0, uniformly in k. To do this we consider the sequence fk ∈ L2(RN ) defined
as

fk = (−∆)α/2uk + uk,
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which is bounded. Thus, uk = Kα/2 ∗fk, where 1
2Kα is the Bessel kernel, and whose

properties are summarized in theorem 3.3. Then we have

‖uε
k − uk‖L2 = ‖ηε ∗ uk − uk‖L2

= ‖(ηε ∗ Kα/2 − Kα/2) ∗ fk‖L2 .

Since K ∈ L1(RN ), we have ‖ηε ∗ Kα/2 − Kα/2‖L1 → 0 as ε → 0, and then ‖uε
k −

uk‖L2 → 0 as ε → 0.
Finally, using the Hölder inequality and (2.1), we obtain

‖uε
k − uk‖Lq � 2λ‖uε

k − uk‖1−λ
L2 ‖uk‖λ

Hα ,

with
1
2 (1 − λ) +

λ

2�
α

=
1
q
,

from which the desired convergence follows.

The following lemma is a version of the concentration compactness principle
proved in [14].

Lemma 2.2. Let N � 2. Assume that {uk} is bounded in Hα(RN ), and that it
satisfies

lim
k→∞

sup
ξ∈RN

∫
BR(ξ)

|uk(x)|2 dx = 0,

where R > 0. Then uk → 0 in Lq(RN ) for 2 < q < 2�
α.

Proof. Let 2 < q < 2�
α. Given R > 0 and ξ ∈ R

N , by using the Hölder inequality,
we obtain, for every k, that

‖uk‖Lq(BR(ξ)) � ‖uk‖1−λ
L2(BR(ξ))‖uk‖λ

L2�
α (BR(ξ)),

where
1
2 (1 − λ) +

λ

2�
α

=
1
q
.

Now, covering R
N with balls of radius R in such a way that each point of R

N is
contained in at most N + 1 balls, we deduce that∫

RN

|uk|q dx � (N + 1)‖uk‖(1−λ)q
L2(BR(ξ))‖uk‖λq

L2�
α (RN )

.

Using lemma 2.1 and the assumption, we have uk → 0 in Lq(RN ).

Using the properties of the Nemytskii operator and the embedding given in lemma
2.1, it can be proved that the functional I is of class C1. In the search for critical
values, it is convenient to consider the Nehari manifold

Λ = {u ∈ Hα(RN ) \ {0}/I ′(u)u = 0}.

We observe that if u in Λ, then u+ 
= 0. Thanks to assumptions (f1)–(f4), given
u ∈ Hα(RN ) with u+ 
= 0, the function t ∈ R+ → I(tu) has a unique maximum
t(u) > 0 and t(u)u ∈ Λ. We define

c∗ = inf
u∈Λ

I(u) (2.2)
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and we observe that
c∗ = inf

u∈Hα(RN )\{0}
sup
θ�0

I(θu). (2.3)

On the other hand, we consider the set of functions

Γ = {g ∈ C([0, 1], Hα(RN ))/g(0) = 0, I(g(1)) < 0}

and define
c = inf

g∈Γ
sup

t∈[0,1]
I(g(t)). (2.4)

Under our assumptions, Γ is certainly not empty, and c > 0. The following lemma
is crucial and it uses (f4).

Lemma 2.3. c = c∗.

Proof. Given any u ∈ Λ, we may define a path gu as gu(t) = tTu, where I(Tu) < 0
and obtain that gu ∈ Γ . Thus, c � c∗.

The other inequality follows from the fact that, for any g ∈ Γ , there exists
t ∈ (0, 1) such that g(t) ∈ Λ. To prove this fact, we see that if I ′(u)u � 0, then,
by (f4),

I(u) � 1
2

∫
RN

f(x, u)u dx −
∫

RN

F (x, u) dx

� ( 1
2θ − 1)

∫
RN

F (x, u) dx

� 0.

Thus, if we assume that I ′(g(t))g(t) > 0 for all t ∈ (0, 1], then I(g(t)) � 0 for all
t ∈ (0, 1], contradicting I(g(1)) < 0.

We define Λ̄, Γ̄ and c̄, replacing f by f̄ . The following theorem gives the existence
of a solution in part (i) in theorem 1.3, and it is a crucial step to prove theorem 1.4.

Theorem 2.4. Ī has at least one critical point with critical value c̄.

Proof. By the Ekeland variational principle (see [29]), there is a sequence un such
that

Ī(un) → c̄ and Ī ′(un) → 0.

Using (f4), it is standard to check that, given ε > 0, for sufficiently large n,

c̄ + ε + ‖un‖α � Ī(un) − 1
θ
I ′(un)un �

(
1
2

− 1
θ

)
‖un‖2

α,

so that (un) is a bounded sequence. Then, using lemma 2.1, there is a subsequence
of (un) converging weakly in Hα(RN ) and Lp

loc(R
N ) to u ∈ Hα(RN ). Thus, for such

a subsequence and any ϕ ∈ C∞
0 (RN ),

lim
n→∞

Ī ′(un)ϕ = Ī ′(u)ϕ = 0.
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If we show that u 
= 0, then Ī ′(u) = 0, and then Ī(u) � c̄. On the other hand, using
(f4) again, we see that, for every R > 0,

Ī(un) − 1
2 Ī ′(un)un =

∫
RN

( 1
2 f̄(un)un − F̄ (un)) dx

�
∫

BR

( 1
2 f̄(un)un − F̄ (un)) dx.

Taking the limit as n → ∞, we obtain

c̄ �
∫

BR

( 1
2 f̄(u)u − F̄ (u)) dx.

Then, observing that the inequality holds when the integral is taken on R
N , since

it holds for all R, and as I ′(u) = 0, it follows that Ī(u) � c̄.
In order to complete the proof, we just need to show that u is non-trivial. For

this purpose, by lemma 2.2 it is possible to find a sequence yn ∈ R
N , R > 0 and

β > 0 such that ∫
BR(yn)

u2
n dx > β, ∀n.

In fact, assuming the contrary, we have un → 0 in Lp+1(RN ). But then, for large n
and some constants a > 0 and A > 0, we have

1
2 c̄ � Ī(un) − 1

2 Ī ′(un)un =
∫

RN

( 1
2 f̄(un)un − F̄ (un)) dx

�
∫

RN

a|un|2 + A|un|p+1 dx,

providing a contradiction, since c̄ > 0. Here we have used (f3) and (f5).
Now we define ũn(x) = un(x+yn), and we use the discussion given above to find

that u = w-lim ũn, is a non-trivial critical point of Ī.

Now we prove the following.

Theorem 2.5. I has at least one critical point with critical value c < c̄.

Proof. There exists a sequence un ∈ Λ such that

c = lim
n→∞

I(un).

If gn = gun
, as defined in the proof of lemma 2.3, using the Ekeland variational

principle we find sequences tn ∈ [0, 1] and wn ∈ Hα(RN ) such that

lim
n→∞

I(wn) = c, lim
n→∞

I ′(wn) = 0 and lim
n→∞

‖wn − gn(tn)‖α = 0. (2.5)

Proceeding as in the proof of theorem 2.4, we find a subsequence of wn (that we
keep calling wn), that converges weakly to w and, in order to show that w 
= 0, we
find R, β > 0 and a sequence yn ∈ R

N such that∫
BR(yn)

w2
n dx > β, ∀n. (2.6)
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In yn has a bounded subsequence, then (2.6) guarantees that w 
= 0 and the result
follows. Let us assume, then, that yn is unbounded. We may assume that, for given
R > 0,

lim
n→∞

∫
BR(0)

|wn|2 dx = 0, (2.7)

since the contrary implies that w 
= 0 following the same arguments as above. In
order to complete the proof, we first obtain that

c < c̄. (2.8)

To see this, we use the characterization of c and c̄ as in lemma 2.3. Let w̄ be a
non-trivial critical point of Ī given by theorem 2.4 and let

A = {x ∈ R
N | f(x, ξ) > f̄(ξ) for all ξ > 0}.

Then, by (f7) and the fact that w̄ is non-zero, there exists y ∈ R
N such that the

function wy, defined as wy(x) = w(x + y), satisfies

|{x ∈ R
N/|wy(x)| > 0} ∩ A| > 0,

where | · | denotes the Lebesgue measure. But then

c̄ = Ī(wy) � Ī(θwy) > I(θwy) for all θ > 0.

Choosing θ = θ∗ > 0 such that I(θ∗wy) = supθ>0 I(θwy), we find θ∗wy ∈ Λ and we
conclude that

c̄ > I(θ∗wy) � inf
w∈Λ

I(w) = c,

proving (2.8). Now we see that, for θ � 0, from (f7) we have

I(θun) = Ī(θun) +
∫

RN

(F̄ (θun) − F (x, θun)) dx

� Ī(θun) −
∫

RN

Ca(x)(|θun|2 + |θun(x)|)p+1 dx.

Let ε > 0. Then, using (2.5) and (f7) again, there exists R > 0 such that∫
BR(0)c

Ca(x)(|θun|2 + |θun(x)|)p+1 dx � ε,

for θ bounded. Then, by (2.7) and (2.5),

lim
n→∞

∫
BR(0)

Ca(x)(|θun|2 + |θun(x)|)p+1 dx = 0.

Choosing θ = θ̄ such that Ī(θ̄un) = maxθ�0 Ī(θun), we see that c � c̄ − ε. If ε > 0
is chosen sufficiently small, this contradicts (2.8).

Proof of part (i) of theorem 1.3 and part (i) of theorem 1.4. We only need to
prove that the weak solution found in theorems 2.4 and 2.5 is non-negative. We
use the same argument in both cases. First we observe that∫

RN

(−∆αu)ϕ dx = C

∫∫
RN ×RN

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+2α

dxdy (2.9)
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for all ϕ ∈ Hα(RN ), which follows from the identity∫
RN

(−∆αu)u dx =
∫

RN

|ξ|2α|û|2 dξ

= C

∫∫
RN ×RN

(u(x) − u(y))2

|x − y|N+2α
dxdy,

proved, for example, in [21, lemma 3.1]. Now we claim that

‖u+‖Hα(RN ) � ‖u‖Hα(RN ), (2.10)

where u+ = max{u, 0}. In fact, given u ∈ H1(RN ), it is known that u+ ∈ H1(RN ).
Hence,∫∫

RN ×RN

(u+(x) − u+(y))2

|x − y|N+2α
dxdy =

∫
{u>0}×{u<0}

u(x)2

|x − y|N+2α
dxdy

+
∫

{u<0}×{u>0}

u(y)2

|x − y|N+2α
dxdy

+
∫∫

{u>0}×{u>0}

(u(x) − u(y))2

|x − y|N+2α
dxdy

�
∫∫

RN ×RN

(u(x) − u(y))2

|x − y|N+2α
dxdy.

Therefore, by (2.9), we obtain (2.10) for all u ∈ H1(RN ), and the claim follows by
density. Using u− = u+ − u as a test function, by the positivity of f(x, u(x)) we
obtain ∫

RN

(−∆αu)u− dx =
∫

RN

u2
−,

completing the proof, since the left-hand side is non-positive. In fact, the function
(u(x)−u(y))(u−(x)−u−(y)) = (u(x)−u(y))(u−(x)) is negative on {u < 0}×{u > 0}
and (u(x) − u(y))(u−(x) − u−(y)) = (u(x) − u(y))(−u−(y)) is also negative on
{u > 0} × {u < 0}. Thus,∫

RN

(−∆αu)u− = C

∫∫
RN ×RN

(u(x) − u(y))(u−(x) − u−(y))
|x − y|N+2α

dxdy,

is non-positive.

3. Regularity of weak solutions

In this section we prove that weak solutions of (1.1) are of class C0,µ, for certain
µ ∈ (0, 1). Actually, we obtain estimates of the norm in C0,µ(RN ). These estimates
will be the basis for the qualitative analysis we make in the next section, particularly
to obtain positivity and asymptotic decay of the solutions.

We start the analysis by recalling the definition of the fractional Sobolev spaces
for p � 1 and β > 0:

Lβ,p = {u ∈ Lp(RN )/F−1[(1 + |ξ|2)β/2û] ∈ Lp(RN )}
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and, associated to the fractional Laplacian, the space (see [34])

Wβ,p = {u ∈ Lp(RN )/F−1[(1 + |ξ|β)û] ∈ Lp(RN )}.

The following two theorems are basic results for these spaces that we use later.
The first theorem is on the definition of these spaces and the role of (−∆)α as an
operator between them.

Theorem 3.1. Assuming that p � 1 and β > 0, the following hold.

(i) Lβ,p = Wβ,p and Ln,p = Wn,p(RN ) for all n ∈ N, where Wn,p(RN ) is the
usual Sobolev space.

(ii) For α ∈ (0, 1) and 2α < β, we have (−∆)α : Wβ,p → Wβ−2α,p.

(iii) For α, γ ∈ (0, 1) and 0 < µ � γ − 2α, we have

(−∆)α : C0,γ(RN ) → C0,µ(RN ) if 2α < γ,

and, for 0 � µ � 1 + γ − 2α,

(−∆)α : C1,γ(RN ) → C0,µ(RN ) if 2α > γ.

The second theorem is about embeddings.

Theorem 3.2.

(i) If 0 � s, and either 1 < p � q � Np/(N − sp) < ∞ or p = 1 and 1 � q <
N/(N − s), then Ls,p is continuously embedded in Lq(RN ).

(ii) Assume that 0 � s � 2 and s > N/p. If s−N/p > 1 and 0 < µ � s−N/p−1,
then Ls,p is continuously embedded in C1,µ(RN ). If s−N/p < 1 and 0 < µ �
s − N/p, then Ls,p is continuously embedded in C0,µ(RN ).

Next we recall the main properties of the kernel K, which are useful in what
follows and also for proving some parts of theorem 3.1.

Theorem 3.3. Let N � 2 and α ∈ (0, 1). Then we have the following.

(i) K is positive, radially symmetric and smooth in R
N \ {0}. Moreover, it is

nonincreasing as a function of r = |x|.

(ii) For appropriate constants C1 and C2,

K(x) � C1

|x|N+2α
if |x| � 1 and K(x) � C2

|x|N−2α
if |x| � 1. (3.1)

(iii) There is a constant C such that

|∇K(x)| � C

|x|N+1+2α
, |D2K(x)| � C

|x|N+2+2α
if |x| � 1. (3.2)

(iv) If q � 1 and s ∈ (N − 2α − N/q, N + 2α − N/q), then |x|sK(x) ∈ Lq(RN ).
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(v) If q ∈ [1, N/(N − 2α)), then K ∈ Lq(RN ).

(vi) |x|N+2αK(x) ∈ L∞(RN ).

For the reader’s convenience, in the appendix we provide a sketch of the proof of
the last three basic theorems.

Now we state our main regularity result. The proof of this theorem is based on the
classical Lp theory for second-order elliptic equations together with a localization
technique inspired on an idea in [32].

Theorem 3.4. Suppose that u ∈ Hα(RN ) is a weak solution of (1.1) and f satisfies
conditions (f0)–(f5). Then u ∈ Lq0(RN ) for some q0 ∈ [2,∞) and u ∈ C0,µ(RN ) for
some µ ∈ (0, 1). Moreover, |u(x)| → 0 as |x| → ∞.

Proof. We are given u ∈ Hα = Wα,2, which satisfies (1.1) in the weak sense, then
it satisfies

(−∆)αu + u = f(x, u) (3.3)

in the sense of distributions. Let 1 = r0 > r1 > r2 > · · · , and consider Bi = B(0, ri),
the ball of radius ri and centred at the origin. We define h(x) = f(x, u(x)) and
g(x) = −u(x) + f(x, u(x)). Then, by (f3) and (f5), we have

|g| � C(|u| + |u|p) and |h| � C(|u| + |u|p). (3.4)

Since u ∈ Hα, by Sobolev embedding we have u ∈ Lq0(RN ), where q0 = 2N/(N −
2α). Now we let η1 ∈ C∞ with 0 � η1 � 1, with support in B0 and such that η1 ≡ 1
in B1/2, where B1/2 = B(0, r1/2) with r1 < r1/2 < r0. Let u1 be the solution of the
equation

(−∆)αu1 + u1 = η1h in R
N , (3.5)

then

(−∆)α(u − u1) + (u − u1) = (1 − η1)h in R
N , (3.6)

so that
−u1 = K ∗ {(1 − η1)h}. (3.7)

Since u ∈ Lq0(RN ), using the Hölder inequality and part (ii) of theorem 3.3, we
have, for all x ∈ B1,

|u(x)−u1(x)| � C{‖K‖Ls0 (Bc
1/2)

‖(1−η1)u‖Lq0 +‖K‖Ls1 (Bc
1/2)

‖(1−η1)u‖p
Lq0 }, (3.8)

where s0 = q0/(q0 − 1) and s1 = q0/(q0 − p). In view of this inequality, we have to
concentrate our attention in u1. We have that u1 satisfies

(−∆)αu1 = g1,

where g1 = −u1 + η1h. Since u ∈ Lq0(RN ), by (3.4), and since B0 is bounded, we
obtain that η1h ∈ Lp1(RN ), where p1 = q0/p. Then, since u1 satisfies (3.5), we
have, by definition of the space W2α,p1 , that u1 ∈ W2α,p1 . We note that ‖u1‖W2α,p1

depends on N, α and ‖u‖Hα . At this point we have three cases: p1 < N/(2α),
p1 = N/(2α) and p1 > N/(2α).
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Let us assume that the first case holds. Then we use Sobolev embedding and
(3.8) to see that u ∈ Lq1(B1), where q1 = p1N/(N − 2αp1). Now we repeat the
procedure, but considering a smooth function η2 such that 0 � η2 � 1, with support
in B1 and η2 ≡ 1 in B3/2, where B3/2 = B(0, r3/2) with r2 < r3/2 < r1. Proceeding
as above, with the obvious changes we obtain that

u2 = K ∗ (η2h)

satisfies u2 ∈ W2α,p2 , where p2 = q1/p. Again, at this point we have three cases:
p2 < N/(2α), p2 = N/(2α) and p2 > N/(2α).

While the first case holds, we have that u ∈ Lq2(B2), where q2 = p2N/(N−2αp2).
Repeating this argument, we will define a sequence qj such that

1
qj+1

=
j∑

i=1

pi

(
1
q1

− 1
q0

)
+

1
q1

.

We note that, since 1 < p < (N + 2α)/(N − 2α), q1 > q0, the right-hand side of
the above equation becomes negative for large j. Let j be the smallest natural such
that the sum is non-positive. Then pj+1 = N/(2α) or pj+1 > N/(2α).

In the case where pj+1 > N/(2α), we have that uj+1 ∈ W2α,pj+1 so that, by
Sobolev embedding, we may choose

0 < µ < min{2α − N/pj+1, 1}

so that uj+1 ∈ C0,µ(RN ). From (3.7) and (3.8), for uj+1 and ηj+1 instead of u1 and
η1, we obtain the L∞ estimate for u − uj+1. Using the smoothness of K away from
the origin, we have

|∇(u − uj+1)(x)| �
∫

RN

|∇K(x − y)| |(1 − ηj+1(y))h(y)| dy

� C

∫
RN \Bj+1/2

|∇K(x − y)| |(1 − ηj+1(y))(|u(y)| + |u(y)|p) dy,

(3.9)

for all x ∈ Bj+1. Here we observe that, for x ∈ Bj+1, |x − y| � rj+1/2 − rj+1 > 0
over the integral. Recalling that u ∈ Lq0(RN ), using part (iii) of theorem 3.3 and
the Hölder inequality we find that

|∇(u − uj+1)(x)| � C(N, α, ‖u‖Hα) for all x ∈ Bj+1. (3.10)

Thus, uj+1 ∈ C0,µ(RN ), and then u ∈ C0,µ(Bj+1). The C0,µ norm of u in Bj+1
depends only on N , α, ‖u‖Hα and the finite sequence r0, r1, . . . , rj+1.

In the case where pj+1 = N/(2α), we consider the fact that uj+1 ∈ W2α̃,pj+1 ,
for α̃ < α. Then we have pj+1 < N/(2α̃) and we can make another iteration of the
procedure. If α̃ is sufficiently close to α, we obtain pj+2 > N/(2α̃), and we complete
the argument.

The ball B̄ = Bj+1 or B̄ = Bj+2 is centred at the origin, but we may arbitrarily
move it around R

N . Covering R
N with these balls, we obtain that u ∈ C0,µ(RN ).

Finally, the fact that u ∈ Lq0(RN ) ∩ C0,µ(RN ) implies that u(x) → 0 as x → ∞,
completing the proof.
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Now we are able to complete the proof of theorem 1.4.

Proof of theorems 1.3 and 1.4 (continued). From theorem 3.4, we have that weak
solutions of (1.1) are of the class C0,µ. Since we are assuming (f6), we see that
the function h(x) = f(x, u(x)) is in C0,σ for certain σ > 0. Let η1 be a non-
negative, smooth function with support in B1(0) such that η1 = 1 in B1/2(0). Let
u1 ∈ Hα(RN ) be the solution of (3.5). Then, as proved above, u1 ∈ Lq(RN ) for all
q � 2, then u1 ∈ W 2α,q(RN ) and thus u1 ∈ C0,σ0 for some σ0 ∈ (0, σ).

Now we look at the equation

−∆w = −u1 + η1h ∈ C0,σ0 .

By Hölder regularity theory for the Laplacian, we find w ∈ C2,σ0 , so that if 2α+σ0 >
1, then (−∆)1−αw ∈ C1,2α+σ0−1, while if 2α+σ0 � 1, then (−∆)1−αw ∈ C0,2α+σ0 .
Then, since

(−∆)α(u1 − (−∆)1−αw) = 0,

the function u1−(−∆)1−αw is harmonic, we find that u1 has the same regularity as
(−∆)1−αw. To conclude, we look at (3.9) for 2α + σ0 � 1, and to a corresponding
inequality for the second derivative in the case where 2α+σ0 > 1. See property (iii)
of the kernel K in theorem 3.3.

Thus, we conclude that u ∈ C1,2α+σ0−1 if 2α + σ0 > 1, while u ∈ C0,2α+σ0 if
2α+σ0 � 1. Note that these conclusions hold locally, but the corresponding Hölder
norms depend only on η1, α, N and ‖u‖Hα , so these estimates are global in R

N .
In any case, the regularity obtained above implies that representation (1.4) of

(−∆)αu holds, so that∫
RN

δ(u)(x, y)
|y|N+2α

dy = u(x) − f(x, u(x)).

Assuming that u is non-trivial, and knowing that u � 0 in R
N , we assume that

there is a global minimum point x0 ∈ R
N . Then the right-hand side vanishes at x0,

while the left-hand side is positive there, providing a contradiction.

4. Qualitative properties of positive solutions

In this section we study the asymptotic behaviour of positive solutions of (1.1)
and we prove theorem 1.5. In the following lemma we prove a lower bound on the
behaviour of K complementing part (ii) of theorem 3.3. We have the following.

Lemma 4.1. There is a positive constant c such that

K(x) � c

|x|N+2α
for all |x| � 1.

Proof. The inequality is a direct consequence of (A 4). In fact, if |x| � 1, and using
(A 4), we have

K(x) � c1

∫ |x|α

0
e−t t

|x|N+2α
dt �

(
c1

∫ 1

0
e−tt dt

)
1

|x|N+2α
=

c

|x|N+2α
,

for the appropriate c.
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We remark that, from (A 4), we may also prove that

lim
|x|→∞

K(x)|x|N+2α = C,

for a certain constant C > 0, but we cannot take advantage of this more precise
property.

Now we see two lemmas from which we obtain our subsolution and supersolution.
We start with the following.

Lemma 4.2. There is a continuous functions w in RN satisfying

(−∆)αw(x) + w(x) = 0 if |x| > 1 (4.1)

in the classical sense, and
w(x) � c1

|x|N+2α
(4.2)

for an appropriate c1 > 0.

Proof. We just consider the function w = K ∗ χB1 , where χB1 is the characteristic
function of the unit ball B1. This function clearly satisfies the equation outside B1
and the decaying estimate thanks to lemma 4.1.

Similarly, we have the following.

Lemma 4.3. There is a continuous functions w in RN satisfying

(−∆)αw(x) + 1
2w(x) = 0 if |x| > 1 (4.3)

in the classical sense, and
0 < w(x) � c2

|x|N+2α
(4.4)

for an appropriate c2 > 0.

Proof. In this case we consider the function w = K ∗ χBa
, where Ba is the ball of

radius a = 2−1/(2α). Then, by scaling, wa(x) = w(ax) satisfies equation (4.3) and,
using part (ii) of theorem 3.3, we obtain (4.4).

Proof of theorem 1.5. We consider the function w given by lemma 4.2. By continu-
ity of u and w, there exists C1 > 0 such that W (x) = u(x) − C1w(x) � 0 in B̄1.
Moreover, W (x) → 0 as |x| → ∞, and (−∆)αW � −W in Bc

1. Then, assuming
that W (x) 
� 0 in Bc

R0
implies that there exists a global negative minimum point

x0 ∈ Bc
R0

, but this is impossible, since then (−∆)αW (x0) < 0. This completes the
proof of the first inequality.

Now we use again that u(x) → 0 as |x| → ∞ to find that u satisfies

(−∆)αu + 1
2u � 0 in Bc

R1
,

for some large R1 > 1. Then we consider the function w found in lemma 4.3, which
satisfies (4.3) in Bc

1 and then in Bc
R1

. Using similar comparison arguments, we
conclude the second inequality.
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5. Symmetry of positive solutions

We prove the radial symmetry of positive solutions found in theorem 1.4 by using
the moving planes method recently developed in the context of integral operator
in [12, 13, 26] (see also [27] for the integral equation involving the Bessel kernel
related to (−∆ + id)α, 0 < α < 1).

Let us consider planes parallel to x1 = 0 and define

λ = {x ∈ R
N | x1 > λ}, Tλ = {x ∈ R

N | x1 = λ},

xλ = (2λ − x1, x2, . . . , xN ), uλ(x) = u(xλ).

Define also
λ0 = sup{λ | uλ(x) < u(x) for all Σλ}.

Proposition 5.1. We have uλ0(x) = u(x) for all x ∈ Σλ0 .

For the proof, we will use the following auxiliary lemmas.

Lemma 5.2. If q > r > N/(2α), then there exists a constant C > 0 such that∥∥∥∥
∫

Ω

K(x − y)g(y) dy

∥∥∥∥
Lq(Ω)

� C‖g‖Lr(Ω). (5.1)

This result is valid for any measurable set Ω ⊂ R
N .

Proof. Since K ∈ Ls(RN ) for r′ < N/(N − 2α), by the Hölder inequality with
1/r + 1/(r′) = 1, we obtain∥∥∥∥

∫
Ω

K(x − y)g(y) dy

∥∥∥∥
L∞(Ω)

� C‖g‖Lr(Ω).

Since K ∈ L1(RN ), by using the integral Minkowski inequality we also obtain∥∥∥∥
∫

Ω

g(y − x)K(y) dy

∥∥∥∥
Lr(Ω)

�
∫

Ω

( ∫
Ω

(g(x − y))r dx

)1/r

K(y) dy � C‖g‖Lr(Ω).

On the other hand,∥∥∥∥
∫

Ω

K(x − y)g(y) dy

∥∥∥∥
Lq(Ω)

=
[ ∫

Ω

( ∫
Ω

K(x − y)g(y) dy

)(q−r)( ∫
Ω

K(x − y)g(y) dy

)r]1/q

�
∥∥∥∥

∫
Ω

K(x − y)g(y) dy

∥∥∥∥
(q−r)/q

L∞(Ω)

∥∥∥∥
∫

Ω

K(x − y)g(y) dy

∥∥∥∥
r/q

Lr(Ω)
.

Thus, we conclude using the above inequality.

Lemma 5.3. We have

uλ(x) − u(x) =
∫

Σλ

(K(x − ξ) − K(xλ − ξ))(f(uλ(ξ)) − f(u(ξ))) dξ.
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Proof. It is easy to check that

u(x) =
∫

Σλ

K(x − ξ)f(u(ξ)) dξ +
∫

Σλ

K(xλ − ξ)f(u(ξ)) dξ

and

uλ(x) =
∫

Σλ

K(x − ξ)f(u(ξ)) dξ +
∫

Σλ

K(x − ξλ)f(u(ξ)) dξ.

The fact that |x − ξλ| = |xλ − ξ| implies the desired result.

Proof of proposition 5.1. First we will see that λ0 is finite. Define

Σ−
λ = {x ∈ Σλ | u(x) < u(xλ)}.

By using the fact that |ξ − xλ| � |ξ − x| in ξ ∈ Σ−
λ , K is decreasing, f is increasing

and lemma 5.3, we have

uλ(x) − u(x) �
∫

Σ−
λ

K(x − ξ)(f(uλ(ξ)) − f(u(ξ))) dξ.

Note now that, by (f9) for M := supu, there exists C such that |f ′(x)| � C|x|τ for
all 0 � x � M . Therefore, by the positivity of K and the mean value theorem, we
obtain

|uλ(x) − u(x)| � C

∫
Σ−

λ

K(x − ξ)|(uτ
λ(ξ))(uλ(ξ) − u(ξ))| dξ.

Thus, by lemma 5.2 for q = m and r = 1
2m with m large, such that m > N/α and

mτ � 2, we obtain

‖uλ(x) − u(x)‖Lm(Σ−
λ ) � C

∥∥∥∥
∫

Σ−
λ

K(x − ξ)uτ
λ(ξ)(uλ(ξ) − u(ξ)) dξ

∥∥∥∥
Lm(Σ−

λ )

� C‖uτ
λ(uλ − u)‖Lm/2(Σ−

λ ).

Now using the Hölder inequality, we obtain

‖uλ(x) − u(x)‖Lm(Σ−
λ ) � ‖uλ‖τ

Lmτ (Σ−
λ )‖uλ(x) − u(x)‖Lm(Σ−

λ ).

Then, by choosing λ large (negative), we obtain ‖uλ‖Lmτ (Σ−
λ ) � 1

2 , since mτ � 2.
This implies that, for λ large enough (negative), |Σ−

λ | = 0, hence, Σ−
λ is empty.

That is, there exists λL such that λ < λL,

u(x) � uλ(x), ∀x ∈ Σλ.

On the other hand, since u decays at infinity, it is clear that there exists λ+ such
that u(x) < uλ+(x) for some x ∈ Σλ+ . From here, we obtain that λ0 is finite.

Suppose now that u(x) � uλ0(x), but u(x) 
≡ uλ0(x) in Σλ0 . Using the mono-
tonicity of f and lemma 5.3, we see that, in fact, u(x) > uλ0(x) in Σλ0 . Then we
can move the plane further to the right. More precisely, there is an ε depending on
N , α and the solution u, satisfying u(x) � uλ(x), on Σλ for all λ ∈ [λ0, λ0 + ε). In
fact, if u(x) < uλ(x) in Σ−

λ for λ ∈ [λ0, λ0 + ε), then a similar approach gives

‖uλ − u‖Lm(Σ−
λ ) � C‖uλ‖τ

Lmτ (Σ−
λ )‖uλ − u‖Lm(Σ−

λ ). (5.2)
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Since mτ � 2, there exist ε1 > 0 and R large such that, for all λ ∈ [λ0, λ0 + ε1), we
have C‖uλ‖τ

Lmτ (Bc
R(0)) � 1

4 . Now, using the continuity of u and the strict positivity
of u − uλ0 in Σλ0 , we see that |Σ−

λ ∩ BR(0)| is small for ε2 sufficiently small, and
we can obtain

C‖uλ‖τ
Lmτ (Σ−

λ ∩BR(0)) � 1
4 .

Then we deduce from (5.2) that, for λ ∈ [λ0, λ0 + ε) with ε := min{ε1, ε2}, Σ−
λ has

measure zero.

Proof of theorem 1.6. By translation, we may say that λ0 = 0. Thus, we have that u
is symmetric about the x1-axis, i.e. u(x1, x

′) = u(−x1, x
′). Using the same approach

in any arbitrary direction implies that u is radially symmetric.

Appendix A.

We devote this appendix to proving some properties of the kernel K, and some
properties of Sobolev spaces and embeddings among them. All of these properties
are known, but we provide some proofs for the reader’s convenience.

The proof of the properties of K is based on [1, 3]. We start defining the heat
kernel for 0 < α < 1, t > 0 and x ∈ R

N as

H(x, t) =
∫

RN

e2πix·ξ−t|ξ|2α

dξ, (A 1)

which satisfies the following rescaling property:

H(x, t) = t−N/2αH
(

x

t1/2α
, 1

)
,

which can be easily seen by changing variables in (A 1). Then we define the kernel
K as

K(x) =
∫ ∞

0
e−tH(t, x) dt. (A 2)

This is the kernel K2α defined in (A 5). In fact, for φ ∈ S, we have

〈K, φ〉 =
∫

RN

∫ ∞

0

∫
RN

e2πix·ξe−t(1+|ξ|2α)φ(x) dξ dt dx

=
∫

RN

∫ ∞

0
e−t(1+|ξ|2α)

∫
RN

e2πix·ξφ(x) dxdt dξ

=
∫

RN

1
1 + |ξ|2α

∫
RN

e2πix·ξφ(x) dxdξ

=
〈

1
1 + |ξ|2α

,Fφ

〉
.

Lemma A.1. The kernel K is radially symmetric, non-negative and non-increasing
in r = |x|.

Proof. Being the Fourier transform of a radially symmetric function, H is radially
symmetric in x and so is K. In order to prove the other two properties, we extend
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the arguments in [1], with some details for completeness. We define the radially
symmetric non-negative function f as

f(x) = A

(
1

|x|N+2α
χRN \B1(0)(x) + χB1(0)(x)

)
,

where A is such that
∫

RN f(x) dx = 1. Here and in what follows, χB denotes the
characteristic function of B. We have that

F(f)(ξ) =
∫

RN

cos(2πξ · x)f(x) dx

= 1 + A

( ∫
B1(0)c

cos(2πξ · x) − 1
|x|N+2α

dx +
∫

B1(0)
(cos(2πξ · x) − 1) dx

)

= 1 + A|ξ|2α

∫
|y|�|ξ|

cos(2πξ̂ · y) − 1
|y|N+2α

dy

+ A|ξ|−N

∫
|y|�|ξ|

(cos(2πξ̂ · y) − 1) dy.

If we define

c = −A

∫
RN

cos(2πξ̂ · y) − 1
|y|N+2α

dy,

then we see that F(f)(ξ) = 1 − c|ξ|2α(1 + ω(ξ)), where ω(ξ) → 0 if ξ → 0. Now we
define, for n ∈ N,

fn(x) = nN/(2α)(f ∗ f ∗ · · · ∗ f)(n1/(2α)x),

then

F(fn)(ξ) =
(

F(f)
(

ξ

n1/(2α)

))n

=
(

1 − c|ξ|2α

n

(
1 + ω

(
ξ

n1/(2α)

)))n

.

The right-hand side converges to e−c|ξ|2α

pointwise. Moreover, since ‖fn‖L1 = 1,
|F(fn)(ξ)| � 1 for all ξ ∈ R

N , and then

F(fn)(ξ) → e−c|ξ|2α

in S ′.

From here, it follows that fn converges in S ′ to H(x, c). Since fn is non-negative
for all n, we conclude with the non-negativity of H(x, c) and, by scaling, of H(x, t)
for all t > 0.

The monotonicity is obtained by the fact that f is non-increasing in r = |x| and
the following property of convolution.

Lemma A.2. If f and g are L1(RN ), radially symmetric functions, non-negative
and decreasing in r = |x|, then f ∗g is radially symmetric and decreasing in r = |x|.
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Proof. If it is clear that f ∗g is radially symmetric, then we study the monotonicity
in r > 0 of

(f ∗ g)(re1) =
∫

RN

f(re1 − y)g(y) dy.

Next we assume that f and g are of class C1 and have compact support. Then

(f ∗ g)(re1) =
∫

RN−1

∫
R

f(r − y1, y
′)g(y1, y

′) dy1 dy′,

and we only need to look at the monotonicity (in r ∈ R+) of the one-dimensional
convolution of the functions F (y1) = f(y1, y

′) and G(y1) = g(y1, y
′), with y′ ∈

R
N−1 fixed, that is,

(F ∗ G)(r) =
∫

R

F (r − z)G(z) dz

and we may use the arguments in [1] that we repeat for completeness. We observe
that F and G are even, non-negative and decreasing in R+. Since G is even, G′ is
odd and we have

(F ∗ G)′(r) = F ∗ G′(r) =
∫

R

F (r − z)G′(z) dz

=
∫ ∞

0
G′(z)(F (x − y) − F (x + y)) dz. (A 3)

Given r > 0, we have two cases. First, if 0 � z � r, then 0 � r − z � r + z,
and then F (r − z) � F (r + z). Second, if z � x, then 0 � r − z � −z, and so
F (r−z) � F (−z) = F (z). But we also have 0 � z � r+z, and so F (z) � F (r+z).
Consequently, F (r − z) � F (r + z).

In any case F (r − z) � F (r + z), and since G′ � 0 in R+, we obtain from (A 3)
that (F ∗ G)′(r) � 0 for all r � 0.

By approximation, we extend the property for every f and g.

The decay properties of the kernel are obtained in [3] using the basic idea of [30].
Specifically, it is proved in [3] that

lim
|x|→∞

|x|N+2αH(x, 1) = C

for a positive constant whose value is computed in [3]. Using this property and the
scaling property of H, we easily obtain that

c1 min{t−N/2α, t|x|−N−2α} � H(x, t) � c2 min{t−N/2α, t|x|−N−2α}. (A 4)

From here, we can prove (3.1) and (3.2).

Proof of (3.1). Using (A 4), we have that, for |x| � 1,

K(x) =
∫ ∞

0
e−tH(x, t) dt � C1

|x|N+2α
,

https://doi.org/10.1017/S0308210511000746 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511000746


1258 P. Felmer, A. Quaas and J. Tan

and, for 0 < |x| � 1,

K(x) �
∫ |x|2α

0
e−t t

|x|N+2α
dt +

∫ ∞

|x|2α

e−tt−N/(2α) dt � C2

|x|N−2α
.

Proof of (3.2). In order to prove (3.2), we consider the definition of K using radial
symmetry. We write K(x) = K(r), so we have

K(r) =
2π

r(N−2)/2

∫ ∞

0

∫ ∞

0
e−t(1+s2α)J(N−2)/2(2πrs)sN/2 ds dt,

where J(N−2)/2 is the Bessel function of order (N −2)/2. Differentiating K, we find
that

K′(r) = −N − 2
2r

K +
2π

rN/2 I,

where I is defined as

I =
∫ ∞

0

∫ ∞

0
e−t(1+s2α)J ′

(N−2)/2(2πrs)2πrs(N+2)/2 ds dt.

Integrating by parts in the variable s, we obtain

I = −1
2 (N + 2)K(r) +

∫ ∞

0

∫ ∞

0
J(2πrs)e−t(1+s2α)(2αts2α)sN/2 ds dt

and integrating by parts in t, we obtain

I = (− 1
2 (N + 2) + 2α)K(r) − 2α

∫ ∞

0
te−tH(r, t) dt.

We estimate the last term using (A 4):

∫ ∞

0
te−tH(r, t) dt �

∫ |x|2α

0
t2e−tr−N−2α dt +

∫ ∞

|x|2α

te−tt−N/2α dt

� C

rN+2α
.

Putting the pieces together, we obtain (3.2).

In order to prove theorems 3.1 and 3.2, we define two kernels associated to the
spaces Lβ,p and Wβ,p, for a given β > 0 and p � 1. First we consider

Kβ(x) = F−1
(

1
1 + |ξ|β

)
(A 5)

associated to Wβ,p and

Gβ(x) = F−1
(

1
(1 + |ξ|2)β/2

)
, (A 6)
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associated to Lβ,p. Then we define two other kernels associated to the composition
of elliptic operators

µβ(x) = F−1
(

|ξ|β
(1 + |ξ|2)β/2

)
and Φβ(x) = F−1

(
(1 + |ξ|2)β/2

1 + |ξ|β − 1
)

.

It was shown in [34, pp. 133–134] that µβ is a finite measure and that Φβ ∈ L1.

Proof of theorem 3.1. Given u ∈ Wβ,p, there exists f ∈ Lp(RN ) such that

(1 + |ξ|β)û = f̂ .

Then we have

(1 + |ξ|2)β/2û =
(1 + |ξ|2)β/2

(1 + |ξ|β)
f̂ = ĝ,

where

g = F−1
(

(1 + |ξ|2)β/2

(1 + |ξ|β)

)
∗ f = (Φβ + δ) ∗ f.

Since Φβ ∈ L1(RN ), we find that g ∈ Lp(RN ), proving that u ∈ Lβ,p. To prove the
reciprocal statement, we proceed similarly, but considering

F−1
(

(1 + |ξ|β)
(1 + |ξ|2)β/2

)
= µβ(x) + Gβ(x).

Since µβ is a finite measure and Gβ is in L1(RN ), the result follows. This completes
the proof of part (i).

In order to prove part (ii), we consider u ∈ Wβ,p and f ∈ Lp(RN ) such that
(1 + |ξ|2)β/2û = f̂ . Then we have

(1 + |ξ|2)β/2−αF((−∆)αu) =
|ξ|2α

(1 + |ξ|2)α
f̂ = F(µ2α ∗ f).

Since µ2α is a finite measure, µ2α ∗f is in Lp(RN ), and we conclude that (−∆)αu ∈
Wβ−2α,p.

For part (iii), given u ∈ C0,γ(RN ), we have that

w(x) = (−∆)αu(x) =
∫

RN

δ(x, z; u)
|z|N+2α

dz,

where δ(x, z; u) = u(x + z) + u(x − z) − 2u(x). Since u ∈ C0,γ(RN ), we have

|δ(x, z; u) − δ(y, z; u)| � C|x − y|γ

and

|δ(x, z; u) − δ(y, z; u)| � C|z|γ .

Then we have

|w(x) − w(y)| �
∫

Br

C|z|γ
|z|N+2α

dz +
∫

Bc
r

C|x − y|γ
|z|N+2α

dz � C|x − y|µ

for an appropriate constant C and with r = |x − y|.
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For part (iv), we use part (iii) and the commutation of ∆α with differentiation.
For part (v) we assume first that α < 1

2 , and we use that if u ∈ C1,γ(RN ), we
have

|δ(x, z; u) − δ(y, z; u)| � C|x − y|γ |z|

and

|δ(x, z; u) − δ(y, z; u)| � C|z|γ+1.

Then we use the same argument as in part (iii), and we obtain the result. If α > 1
2 ,

we use two times the last properties with ∆α1(∆α2), where ∆α = ∆α1(∆α2) and
αi < 1

2 .
For the proof of property (vi) we refer the interested reader to [34].

Proof of theorem 3.2. The first embedding is a consequence of the Sobolev inequal-
ity valid for 0 < β < N , 1 < p < q < ∞ and 1/q = 1/p − β/N . Then

‖u‖Lq � C‖(−∆)β/2u‖Lp , ∀u ∈ Lβ,p,

which is proved in [34].
In order to obtain the second embedding, we only need to prove that ∆s/2u = f

with f ∈ Lp(RN ), then u ∈ C0,µ(RN ). For that, we observe that ∆(∆s/2−1u) = f ,
and thus ∆s/2−1u ∈ W 2,p(RN ) by the regularity of ∆. Then, by the Morrey inequal-
ity, u = ∆1−s/2g with g ∈ C1,γ(RN ) with γ = 1 − N/p. Thus, in the case where
2(1 − s/2) > 1 − N/p, we use part (v) of theorem 3.1 to obtain u ∈ u ∈ C0,µ(RN )
with µ = s − N/p. The case where 2(1 − s/2) > 1 − N/p is similar and we have
more regularity, since we use part (iv) of theorem 3.1.
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