
J. Austral. Math. Soc. Ser. B 33(1992), 507-530

NONLINEARLY CONSTRAINED OPTIMAL
CONTROL PROBLEMS

K. L. TEo'and K. H. WONG2

(Received 23 February 1990; revised 2 May 1991)

Abstract

In a paper by Teo and Jennings, a constraint transcription is used together with
the concept of control parametrisation to devise a computational algorithm for
solving a class of optimal control problems involving terminal and continuous state
constraints of inequality type. The aim of this paper is to extend the results to a
more general class of constrained optimal control problems, where the problem
is also subject to terminal equality state constraints. For illustration, a numerical
example is included.

1. Introduction

In [19], a general class of optimal control problems involving inequality and
terminal inequality state constraints is considered. This class of optimal con-
trol problems can be solved using the gradient-restoration algorithms due to
Miele et al. (see [5] and [9-11]). It can also be solved by the algorithms
of [4] and [18], where a simple constraint transcription is used to convert
the continuous inequality constraints into equivalent constraints in canoni-
cal form. However, that constraint transcription has the disadvantage that
equivalent equality constraints so obtained fail to satisfy the usual constraint
qualification. Thus, convergence is not guaranteed and some oscillation may
exist in numerical computation. This difficulty is overcome in [19] via a
new constraint transcription. However, some practical problems may also be
subject to additional terminal equality state constraints. In this paper, the
computational algorithm of [ 19] is extended to this more general class of con-
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strained optimal control problems, and the convergence properties similar to
those reported in Theorem 4.2 and Theorem 4.3 of [19] are also shown to
be valid under additional conditions. For illustration, a numerical example
is considered.

Note that many interesting theoretical results for the class of problems
considered in this paper may be found in [2-3]. For earlier work on control
parametrisation, we refer the reader to [6-7], [14-18] and [20-21]. Finally,
we wish to note that a general purpose software package known as MISER3
(cf. [8]) is now available for solving constrained optimal control problems
including the one considered in this paper.

2. Problem Statement

Consider a process described by the following system of differential equa-
tions on the fixed time interval (0, T].

(la)

where x = [ x , , . . . , x J T e l " , and u = [M, , . . . , ur]
T e Rr are, respectively,

the state and control vectors; f = [fx, ... , fn]
T e M." ; and the subscript

denotes the transpose.
The initial condition for the differential equation (la) is:

x(0) = x ° 6 E " . (lb)

Define

l/ = {T = [ « , , . . . , t ; r ] T € R l ' : a , < «,. <fin i = 1 r } , (2)

where a( and /?,, i — \, ..., r, are real numbers. Clearly, U is a compact
and convex subset of Rr .

Any measurable function defined on [0, T] with values in U is called
an admissible control. Let % be the class of all such admissible controls.
Let L ^ denote the Banach space ^ ( [ O , T], Kr) of all essentially bounded
measurable functions from [0, T] into Rr. Its norm is defined by

1/2

||u||oo=esssuPmM/.(0)2

For each u e L^ , let X(|M) be an absolutely continuous function defined
on [0, T] which satisfies the differential equation (la) almost everywhere on
[0, T] and the initial condition (lb). This function is called the solution of
system (1) corresponding to the control u e Lr .
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[3] Nonlinear optima] control 519

The terminal state inequality and equality constraints, and continuous
state inequality constraints are specified as follows:

<£,.(x(7»)<0, i=l,...,Nn (3a)

^ ( x ( 7 » ) = 0 , i=l,...,NE, (3b)

g i ( t , x ( t \ u ) ) < 0 , t e [ 0 , T ] , i = l , . . . , N (3c)

where <f>., i = I, ... , Nn and y/t, i = 1, . . . , NE, are real-valued functions
denned on M." ; and gt, i = 1, . . . , N, are real-valued functions denned on
[0, 3T] xR" .

Let & be the set which consists of all those elements of % such that the
constraints (3) are satisfied. Elements from &~ are called feasible controls,
and & is called the class of feasible controls.

We may now state the optimal problem as follows.

PROBLEM (P). Given the system (1), find a control « e / such that the cost
functional

/(u) = O0(x(7») + [T3>0(t,x(t\u),u{t))dt (4)
Jo

is minimised over &, where O0 and .2^ are given real-valued functions.
We assume that the following conditions are satisfied throughout.

(Al) f : [ 0 , r ] x i " x I r - t K" is piecewise continuous on [0, T] for each
(x, u) € Rr x E." and is continuously differentiable with respect to
each of the components of x and u for each t e [0, T]; further-
more, there exists a constant K > 0 such that

for all (x, u) G R" X U, where | • | denotes the usual Euclidean norm;
(A2) for each i - I, ... , Nr, <p(: R" —> R is continuously differentiable;
(A3) for each i - \ , ... ,NE, y/t: R

n -> R is continuously differentiate;
(A4) for each i=l,...,N, gt: [0, T] x M." -> R is continuously differ-

entiable;
(A5) O0: R" -> R is continuously differentiable;
(A6) ^ : [0, T] x R" x R -> R is piecewise continuous on [0, T] for each

(x, u) € R" x Rr and is continuously differentiable with respect to
each of the components of x and u for each t e [0, T].

REMARK 2.1. From the theory of differential equations, we recall that the
system (1) admits a unique solution x(|u) corresponding to each u e L^ ,
and hence for each n e ^ .
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3. Control Parametrisation

As in [4] and [18], the control parametrisation method will be used to
solve the problem (P). To be more precise, let {•^p}^Ll be a sequence of
partitions of the interval [0,T] such that J^ has np + \ elements, J^+, is
a refinement of J^ and ||J^|| —> 0 as p —> oo, where | | Jp is the length of
the largest interval in the partition J^ . In this paper, we assume that

where

Then

where l(Ip) = ^ - ?}_x.
Let %p be the subset of admissible controls which are piecewise constant

and consistent with the partition J^ . It is clear that ir° e %p can be written
as:

k=\

where ap
k e Rr, and ^ denotes the characteristic function of Ip. This

means that each control vP £f/p can be identified uniquely with a control
parameter vector ap and vice versa, where

Thus, when no confusion can arise, we interchangeably refer to vF e %p and
a" e %p.

Given a particular control parameter vector ap € %p , let X(|<TP) be the
solution of the differential equation:

x = f(t,x(t),<ip)

with initial condition:

x(0)=x°,

where f is obtained from f in an obvious way.
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Let

d" = \ap G Wp: <t>Ax{T\ap)) < 0, i = 1, . . . , N.;

(5)

and let
fp = {<jpeep:¥i(x(t\<TP)) = 0, i=l,...,NE}. (6)

We define the approximate problem (P(p)) as follows:

PROBLEMS (P(P) ) . Find a control vector ap e ^p such that the cost func-
tional

f ^x{t\ap),ap)dt (7)
o

is minimised over ^p , where £?0 is dotained from .2^ in an obvious way.

4. Constraint Approximation

For each i = I, ... , N, the corresponding continuous state inequality
constraint (3c), when restricted to the space %fp , can be written as:

),gi(t,x(t\tTP))}dt = O (8)

which is, however, nonsmooth. For convenience, let the approximate prob-
lem (P(p)) with (3c) replaced by (8), be again denoted by (P(p)). As in [19],
we replace the nonsmooth functions max{0, gj(t,x(t\op))} by the smooth
ones given by gt e(t, x(t\ap)), where

( gi(t,x(t\<rp)), ifgi(t,x(t\<rp))>e,

gie(t,x(t\ap))= I (gi(t,x(t\ap)) + e)2/4e, if \gt(t, x{t\<rp))\ < e,

l o , ifgi(t,x(t\<rp))<-e.
(9)

For each i = \, ... , N, define

Gie(° )= / giE{t,*{t\<JP))dt. (10)
Jo

We now define two related approximate problems which will be referred
to as Problems (Pe(p)) and (Pe >y(p)) •

PROBLEM (Pe(p)). Problem (P(p)) with the continuous state inequality con-
straints (8) replaced by

G,.f,(«O = 0, i=U...,N. (11)
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Let ^ be the feasible region of (Pe(p)), defined by

y,i(x(T\op)) = 0, i=l,...,NE}. (12)

Then, it is clear that
^"cF". (13)

Note that the equality constraints (11) fail to satisfy the usual constraint
qualification. Thus, we may encounter numerical difficulty. To overcome
this difficulty, we consider the second approximation problem as follows:

PROBLEM (P£ y(p)). Problem (P{p)) with (8) replaced by

Gie(a")<y, i=l,...,N. (14)

For a given problem (P), we propose to solve the problem via solving a
sequence of problems (P£ y(p)) as follows:

(1) Choose a positive integer value for p (say, p = 10) and hence obtain
the problem (P(/?)).

(2) Construct the problem (Pg y{p)) with e > 0 and y > 0 (say, e =

10"3 and y = 10~4).
(3) Solve the problem (P£ (/?)) with decreasing y. It will be shown that

for each e > 0 , there exists a y0 > 0 such that for each y, 0 < y <
y0, the optimal control vector of the corresponding problem (P£ y{p))
is a feasible control vector of the problem (P(p)). Consequently, it
gives rise to a suboptimal control to the problem (P).

(4) Reduce e > 0 (say, by taking e — lO^e) , and go back to (2). From
our numerical experiences, we found that there is no need to reduce
e below 10"6 .

(5) Increase the value of p (say, by taking p = 2p), and go back to (1).
Again from our numerical experiences, we found that it suffices to
take p = 20. In some exceptional cases, we may need to increase the
value of p to 40.

The approach proposed above works very well in practice. In fact, the
general purpose software package MISER3 (cf. [19]) is developed using this
idea for solving the problem (P). The rigorous justification is, however, rather
involved. We need to introduce several auxiliary problems. Note that there
is no need to solve any of these auxiliary problems; they are introduced solely
for the purpose of establishing the relationship between the problem (P) and
the problem (Pe y(p)). In fact, only the approximate problem (Pg y(p))
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is required to be solved in practice. Let us proceed further to define the
first two auxiliary problems. They are called the 5-tolerated version of the
approximate problems (P(p)) and (Pe(p)) • We shall refer to them as the
problems (PS(p)) and (PS

e(p)), respectively.

DEFINITION 4.1. A control vector ap e (P is said to be <5-tolerated if it
satisfies the constraints

d, i=l,...,NE. (15)

Let ^p's be the subset of 6P such that the 8-tolerated constraints (15)
are satisfied. Let int(«!?"p' ) be the interior of the set &p' in the sense that

pe&p: 0,.(x(7>p)) < 0, i = 1 , . . . , N,;

-5< yri{*.{t\ap)) <S, i = 1, ... , NE J . (16)

Furthermore, let

9 ? ' * = {<xp e Wp: GUt{a>) = 0 , i = l , . . . , N ;

}- (17)

In view of (13), (12), (16) and (17) it is clear that

nrP ,— <3"P r- <3~P»^ / i o \
£ " \ 1

and

We can now define the 5-tolerated version of the approximate problem
(P(p)) and (Pe(p)) as follows:

PROBLEM (Ps(p)). Find a control vector ap e t^"p'<5 such that the cost
functional (7) is minimised over ^p's .

PROBLEM (Pf (/>)). Find a control vector ap e ^p'6 such that the cost
functional (7) is minimised over &p's .
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Let ap'* and of'* be optimal controls of the approximate problems

(P(p)) and (Pe(p)), respectively. Let a"'3'* and of'*'* be optimal controls
of the corresponding ^-tolerated version of these problems.
We make the following additional assumptions.

(A6) There exists e, > 0 such that for each a" G^"'3 (d > 0), there
exists a control o^ e vax(9^p'3) n^" such that

ao"+ (1-0)0* ewt(rp'')n&Z, a € ( 0 , 1].

(A7) For any e{ > 0, there exists p{ > 0 such that

lim/(<'<5'*) = / (</*) (20)

uniformly with respect to p > pl.
(A8) For each px > 0 and e, > 0

lim/(af;'<5'') = / « " * ) . (21)

REMARK 4.1. The assumption (A6) roughly implies that the feasible set &p'3

contains a non-empty interior and is locally convex. It is to ensure that the
problem to be solved is "well-posed". This assumption is clearly not easily
verifiable. However, in the absence of this assumption, the feasible region
may contain a subregion with empty interior. Such problems are obviously
extremely difficult, if not impossible, to solve numerically.

REMARK 4.2. The assumptions (A7) and (A8) roughly mean that small viola-
tions in the terminal equality constraints will not produce significant changes
in the cost value. This type of assumption is, in fact, rather reasonable, be-
cause exact satisfaction of the equality constraints is simply impossible in a
computer.

Further to the comments made in Remark 4.1 and Remark 4.2, we note
that it is possible to construct examples which fail to satisfy these assump-
tions. However, the practical value of such examples might not be too sig-
nificant.

LEMMA 4.1. For each p > 0, let {<rp '*} be a sequence in e of the optimal
control parameters of (Ps(p)). Then

{ e ) J { ) (22)

where ap' * is the optimal control parameter vector of the problem
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PROOF. Let 5 > 0 be given. Let ap's'* be the optimal control of the
problem (PS(p)). Then, by (A6), there exists a control CT* e
such that

a '*'* e int(^p J ) n ^ , a £ ( 0 , 1].

For any c> 0, there exists a, € (0, 1) such that

J(o"-J ' ') < / ( < ) < /(»*•'••) + <?. (23)

Since <rp e inX{9'p's) n^/ c ̂ p><5, we have

/«;'••)<•?(<), (24)

where op's'* is an optimal control of the problem (P^ (p)). Thus, form

(23) and (24) and the definitions of ap's'* and op'6'*, we obtain

J{ap'*'m)<J{ap
t;

i'')< Itf'*'*) + c. (25)

Taking limit as 6 -> 0 in (25), it follows from (A7) and (A8) that

J(op'*) < / (< /*) < J(<rP'*) + c. (26)

On the other hand, for any e, 0 < e < e,, we have

J{ap>*) < / ( < • * ) < / ( < / * ) . (27)

Thus, from (26) and (27), we obtain

J(<TP'*)<J(^'*)<J(OP'*) + C (28)

for all e, 0 < e < e{. Hence,

7(CTP>*) < lim.7(of'*) < J(ap'*) + c. (29)

Since c > 0 is arbitrary, the conclusion of this lemma follows easily from
(29).

LEMMA 4.2. There exists a yo(e) > 0 such that for all y, 0 < y < yo(e), any
feasible control \ector ap of problem (Pe y{p)), i.e.,

, , « < , ) < ? , i = l , . . . , AT, (30)

4>j(x(Ttft7))<0, i=\,...,Nn (31)

^ ( x ( r | o f > ? ) ) = 0 , i=\,...,NE (32)
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is also a feasible control parameter vector of the problem (P(p)).

PROOF. The proof is similar to that given for Lemma 3.3 of [19].

REMARK 4.3. In view of Lemma 4.2, it is clear that Algorithm A2 of [19]
can be easily modified so that we can use it to generate a sequence {ap'*}
of control parameter vectors in e such that each element is in the feasible
region of (P(p)).

REMARK 4.4. From Remark 4.2 of [19], the problem (Pe y(p)) is essentially a
nonlinear mathematical programming problem in control parameters, which
can be solved by any standard optimisation software package such as NLPQL
(see [13]).

The following Theorem is a direct consequence of Theorem 4.1 of [19].

THEOREM 4.1. Let {<rp'*} be a sequence in e of control parameter vectors
produced by the algorithm. Then,

where ap'* is an optimal control of Problem (P(p)). Furthermore, any ac-
cumulation point of {trp'*} is a solution of Problem (P(p)).

5. Some Convergence Results

In this section, we shall investigate some convergence properties of the
sequence of approximate optimal controls to the true optimal control.

Let {ap '*}™=l be a sequence of optimal control vectors to the sequence of
finite-dimensional problems {(PQ?))} ; and let {vf'*}^ be the correspond-
ing sequence of controls in ^ . Clearly,

A control u e 6 is said to be 5-tolerated feasible if it satisfies (15) with
ap being replaced by u. Let y 5 be the subset of 0 which consists of all
those <5-tolerated feasible controls. Let int(^" ) be defined from in t (y 5 ' p )
by replacing ^p and ap in (lb) by ^ and u, respectively. Let the 8-
tolerated version of the original problem (P), denoted by (Vs), be defined
from (Pd(p)) by replacing ap and &~P'S in the definition of (PS(p)) by u
and y 5 , respectively. Let u5'* and u* be optimal controls of (P*5) and
(P), respectively.

https://doi.org/10.1017/S0334270000007207 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007207


[11] Nonlinear optimal control 527

We need the following additional assumptions:

(A9) For each u € &s , there exists a control u e int(J?" ) such that

au + ( l - a ) u e i n t ( i r < 5 ) , a € ( 0 , l ] .

(A10) ^ 0

Note that similar comments made for (A7) and (A8) are applicable to (A9)
and (A 10).

REMARK 5.1. The problems (PS(p)) and (P"5) involve only continuous state
inequality constraints. Hence, they have the same structure as the problem
(P{p)) and (P) in [19], respectively. Thus the convergence result of Theorem
4.2 of [19] can be applied to the problem (Ps(p)) as p —> oo.

THEOREM 5.1. Let vf'* be an optimal control of the approximate problem
(P(/?)). Suppose that u* is an optimal control of the problem (P). Then,

lim J(vp'*) = J(u).
p—>oo

PROOF. From (A 10) and (A7), it is clear that for any c > 0, there exists
3 > 0 such that

0<J(u*)-J(u'*)<c (33)

and
0 </(«"'*) -J(^J'*)<c (34)

for all p > /?,. On the other hand, in view of Remark 5.1 and Theorem 4.2
of [19], we have

lim J(up-S'*) = J(uS'*). (35)

(36)

p—>oo

Thus, from (33), (34) and (35), we get

lim
p—>oo

Since c > 0 is an arbitrary constant, we have l i m ^ ^ J(vf'*) = J(u*). This
completes the proof.

THEOREM 5.2. Let ir0'* be an optimal control of Problem (P(p)). Let u* be
an optimal control of the problem (P). Suppose that

lim up'* = u, a.e. on[0,T].
p—»oo
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Then, u is an optimal control of the problem (P).

PROOF. Since vf'* - • u a.e. in [0, T], it follows from Lemma 4.4 of [21]
that

lim /(a"'*) = /(B). (37)
p—>oo

An argument similar to that in the proof of Lemma 3.2 of [19] shows that u
is a feasible control of problem (P). However, from Theorem 5.1, we get

lim 7(up'*) = /(u*). (38)
p—>oo

Thus, the proof of this theorem follows easily from (37) and (38).

6. A Numerical Example

To demonstrate the applicability of the proposed approach for solving the
constrained optimal control problem (P), we consider a problem of trans-
ferring containers from a ship to a cargo truck. The container crane is driven
by a hoist motor and a trolley drive motor. The aim is to minimise the swing
during and at the end of the transfer. Note that this problem was originally
formulated in [12].

Without going into the details of the modelling aspect, we summarise the
problem after appropriate normalisation as follows:

minimise LQ = 4.5 j\(x3(t)f + (x6(t))
2]dt\ (39)

subject to the dynamical equations

Xl(t) = 9x4(t),

x2(t) = 9xs(t),

where

17.2656*3 W,

+ 27.075<Sx3(0 + 2*5(0*6(0]/*2<

= [ 0 , 2 2 , 0 , 0 , - l , 0 ] T ,

= [ 1 0 , 1 4 , 0 , 2 . 5 , 0 , 0 ] T

(40a)
(40b)

(40c)

(40d)

(40e)

:o, (40f>

(41a)

(41b)
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and

Nonlinear optimal control

|u,(OI< 2.83374, W e [0 ,1 ] ,

-0.80865 <M2(r)< 0.71265, W e [0,1]

with continuous state inequality constraints

| J C 4 ( 0 | < 2 . 5 , W e [0 ,1 ] ,

|xs(OI<l.O, W e [0 ,1 ] .

Define

h2(t,x(t)) = 2.5-

1.0,

and

Furthermore, let

529

(42a)

(42b)

(43a)

(43b)

(44a)

(44b)

(44c)

(44d)

(45)

where for each i — 1 , . . . , 4 , J^ e(t, x(t)) is constructed from ht{t, x(t))
according to (9), and ht{t, x(t)), i = 1, . . . , 4 , are defined by (44a)-(44d),
respectively. The results are summarised in the following table.

TABLE 6.1. Numerical Results

e

io-3

io-4

io-5

io-6

4

4

4

7

io-4

x 10"5

x 10"6

x 10~7

0.5385 x

0.5452 x

0.5381 x

0.5361 x

)

io-2

io-2

io-2

io-2

IO-2'

0.49 x

-0.50 x

-0.50 x

-0.50 x

edt

io-2

io-3

io-4

io-5

/ o .m k

-0.41

0

0

0.10 x

,<,{/, , 0}«*

x 10"8

io-1 2

reason for
termination

normal

normal

normal

normal

As can be seen from Table 6.1, we experienced good convergence behaviour
of the optimisation routine with the normal stopping condition. Note that
the obtained numerical results are superior to those reported in [4] and [12].
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