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Abstract
Understanding the physical and evolutionary properties of Hot Stellar Systems (HSS) is a major challenge in astronomy. We studied the
dataset on 13 456 HSS of Misgeld & Hilker (2011, MNRAS, 414, 3 699) that includes 12 763 candidate globular clusters using stellar mass
(Ms), effective radius (Re) and mass-to-luminosity ratio (Ms/Lν), and found multi-layered homogeneous grouping among these stellar
systems. Our methods elicited eight homogeneous ellipsoidal groups at the finest sub-group level. Some of these groups have high overlap
and were merged through a multi-phased syncytial algorithm motivated from Almodóvar-Rivera &Maitra (2020, JMLR, 21, 1). Five groups
were merged in the first phase, resulting in three complex-structured groups. Our algorithm determined further complex structure and
permitted another merging phase, revealing two complex-structured groups at the highest level. A nonparametric bootstrap procedure was
also used to estimate the confidence of each of our group assignments. These assignments generally had high confidence in classification,
indicating great degree of certainty of the HSS assignments into our complex-structured groups. The physical and kinematic properties
of the two groups were assessed in terms of Ms, Re, surface density and Ms/Lν . The first group consisted of older, smaller and less bright
HSS while the second group consisted of brighter and younger HSS. Our analysis provides novel insight into the physical and evolutionary
properties of HSS and also helps understand physical and evolutionary properties of candidate globular clusters. Further, the candidate
globular clusters (GCs) are seen to have very high chance of really being GCs rather than dwarfs or dwarf ellipticals that are also indicated
to be quite distinct from each other.
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1. Introduction

Over the past many decades, astronomers have identified com-
monalities in clusters of stars ranging from small groups to large
galaxies. Hot stellar systems (HSS) are a class of celestial objects
consisting of globular clusters, nuclear star clusters, compact
ellpitical galaxies, giant elliptical galaxies, ultra compact dwarf
elliptical galaxies, nuclear star clusters and so on. These HSS are
very important to understand processes such as the formation of
stars or black holes, evolution of galaxies and so on. Indeed, the
physical properties of these objects have been directly linked to
galaxy interactions and have been extensively studied. One of the
most useful concepts (Burstein et al. 1997; Bernardi et al. 2003;
Kormendy et al. 2009; Misgeld & Hilker 2011) in studying these
objects is the set of fundamental plane relations (Brosche 1973).
These planes are typically constructed with parameters such as
luminosity, surface brightness, stellar magnitude or central veloc-
ity dispersion and help understand important properties of these
stellar systems. Different HSS sub-groups typically have different
fundamental planes, photometric properties and other types of
interpretations (Kormendy 1985; Djorgovski 1995; McLaughlin &
van der Marel 2005; Meylan et al 2001; Forbes et al. 2008; Harris,
Pritchet, & McClure 1995; Webbink 1985; Ichikawa, Wakamatsu,
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& Okamura 1986; Kormendy et al. 2009; Bender et al. 1992). But
the origins of these relations, the underlying evolutionary pro-
cesses involved and the statistical reliability of these results are
not well understood and remain as significant challenges. A huge
volume of data has been collected and catalogued in the last fif-
teen years to effectively address these challenges. For example
Jordán et al. (2008) catalogued and studied 12 763 candidate glob-
ular clusters (GCs) from the Virgo Cluster Survey during the
eleventh Hubble Space Telescope observation cycle. A more com-
prehensive catalogue was compiled by Misgeld & Hilker (2011)
which included 693 additional HSS along with those of Jordán
et al. (2008). Chattopadhyay & Karmakar (2013) pointed out that
several studies have previously compared stellar systems such as
globular clusters and dwarf spheroidals using two-point corre-
lations between different projections of the fundamental plane
of galaxies. Given our lack of understanding about HSS groups,
their evolution and relationships, an important step forward is a
firm understanding of which groups are demonstrably different in
observational parameter spaces, and which may be more closely
related. These important questions can be answered by modern
multivariate statistical analysis methods, and one effort to do so
was by Chattopadhyay & Karmakar (2013) who used k-means
clustering with the jump statistic (Sugar & James 2003) and found
five and four homogeneous groups in the 693 non-candidate and
the larger 13 456 HSS datasets.

Clustering (Kettenring 2006; Xu &Wunsch 2009; Everitt 2011)
is an unsupervised learning technique that groups observations
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without a response variable. While there are many kinds of clus-
tering algorithms, most of them can broadly be categorised into
hierarchical and non-hierarchical approaches. Hierarchical clus-
tering algorithms yield a tree-like grouping hierarchy while non-
hierarchical algorithms, such as from k-means or model-based
clustering (MBC) methods, typically optimise an objective func-
tion using iterative greedy algorithms—these algorithms typically
require a specified number of groups. The objective function
is often multimodal and requires careful initialisation (Maitra
2009). A detailed review on MBC is provided, for instance, in
McLachlan & Peel (2000) or Melnykov &Maitra (2010); addition-
ally, Chattopadhyay & Maitra (2017) reviewed it in the context
of astronomical applications. Even though model-based meth-
ods are an improvement over traditional hierarchical and non-
hierarchical methods, they are still mostly limited to finding
regular-structured groups. For example, the most common tech-
nique of Gaussian-mixturesMBC (GMMBC) assumes spherical or
ellipsoidally structured spreads in their groups. Very often, how-
ever, the underlying groups in a dataset are irregular in shape
and do not all neatly fit the assumptions underlying MBC. Thus
advanced methods are necessary to identify and analyse complex-
structured groups. Almodóvar-Rivera &Maitra (2020) proposed a
novel method of identifying such groups by using syncytial cluster-
ing which incorporates the results from standard clustering meth-
ods and then merges them to reveal the complex general structure
in data. Specifically, their approach reveals a multi-layered group
structure that provides insight into not just the groups but also
their underlying sub-group structure, which may have regular
structure at some level. We analyse the 13 456 HSS of Misgeld
& Hilker (2011) that is briefly summarised in Section 2 using
syncytial clustering methods (introduced in Section 3) with ini-
tial clustering results obtained using t-mixtures MBC (tMMBC).
We analyse the HSS using these methods in Section 4. Further,
in all such investigations involving astronomical data, parame-
ter estimation in statistical clustering algorithms is accompanied
by uncertainty in those estimates and careful assessment of these
estimates is often required to judge their results and their impact
on the obtained groupings. We analyse this uncertainty by using
a nonparametric bootstrap procedure (Efron 1979) to calculate
the confidence of classification of each data point into a group.
The paper concludes with some discussion about the physical
properties of the obtained groups and to pointers for future work.

2. The HSS dataset

The dataset used in our analysis was compiled from different
sources by Misgeld & Hilker (2011) and contains measurements
on 13 456 HSS of different types: globular clusters (GC), giant
ellipticals (gE), compact ellipticals (cE), ultra compact dwarf galax-
ies (UCD), dwarf globular transition objects (DGTO), nuclear
of star clusters (NuSc), bulges of spiral galaxy (Sbul) and nuclei
of nucleated dwarf galaxies (dE,N). There are 12 763 HSS in
this dataset that are candidate GCs (GC_VCC) from the Virgo
Globular Cluster survey meaning it is ambiguous if these systems
are GC’s or not. Chattopadhyay & Karmakar (2013) primar-
ily excluded these candidate GCs from their analysis, focusing
mainly on the 673 stellar systems consisting of confirmedGC’s and
other different types of stellar systems. We call these 673 systems
non-candidate HSS. The main parameters in Misgeld & Hilker
(2011) are stellar mass (Ms), effective radius (Re), mass surface
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Figure 1. Pairwise scatterplots, estimated densities and correlation coefficients of the
logarithm (base 10) of the parameters in the HSS dataset. Here Ms denotes mass, Re
effective radius and R the mass-luminosity ratio. In the scatterplot, orange indicates
the non-candidates and blue the candidates. For the density plots the blue curves rep-
resent the non-candidates. Note that the calculated correlations are for all 13 456 HSS
in the dataset (including the non-candidates and candidates).

density averaged over projected effective radius (Se) and abso-
lute magnitude in the V band (Mν). Following Chattopadhyay &
Karmakar (2013) we use the logarithm (base 10) of Ms, Re and
mass-to-luminosity ratio (Ms/Lν) in solar luminosity (Ms,�) units
in our analysis. The Ms/Lν ratio was obtained using the standard
magnitude-luminosity relation.

Ms

Ms,�
= −2.5

(
Lν

Lν,�

)
(1)

where Lν,� denotes the luminosity of the sun. The parameter
log10 Se is taken into account while interpreting the results but,
as in Chattopadhyay & Karmakar (2013), is not used in the clus-
tering mechanism. Figure 1 provides pairwise scatterplots of the
three parameters for both candidate and non-candidate objects
along with density plots of the parameters used in clustering.
From Figure 1 we see that the densities of the non-candidates dis-
play moderate univariate bimodality, and especially in the context
of effective radius and mass-luminosity ratio. There is therefore
evidence of grouping, certainly so at the univariate level. Also,
the correlation values indicate that Ms and Re are moderately
positively correlated, as expected in stellar objects. But mass-
luminosity ratio has a weak linear association with both Ms and
Re. It therefore points to complex structure in the dataset and so
in the coming sections, we outline methodology to uncover and
understand it from astronomical perspectives.

3. Statistical methodology

In this section we briefly describe our methodology for analysing
the 13 456 HSS. Our methodology is a model-based analogue of
the syncytial clustering algorithm of Almodóvar-Rivera & Maitra
(2020). Our procedure involves an initial clustering of the data
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using tMMBC followed by merging of the tMMBC mixture com-
ponents using pairwise overlap measure and generalised overlap,
calculated using Monte Carlo methods, as described next.

3.1. Initial MBC using amixture of multivariate-t densities

MBC provides a principled way to find homogeneous regular-
shaped groups in a given dataset. It scores over classical clustering
algorithms like k-means due to its ability to better model hetero-
geneity in groups. As pointed out by Chattopadhyay & Maitra
(2017) assuming spherically dispersed homogeneous groups when
such assumption is not valid can lead to erroneous results. In
MBC (Melnykov & Maitra 2010; McLachlan & Peel 2000) the
observations X1, X2, . . . , XN are assumed to be realisations from
a G-component mixture model (McLachlan & Peel 2000) with
probability density function (PDF)

f (x; θ)=
G∑

g=1

πg fg(x; ηg) (2)

where fg( · ; ηg) is the density of the gth group, ηg the vector
of unknown parameters and πg = Pr[xi ∈ Gg] is the mixing pro-
portion of the gth group, g = 1, 2, . . . ,G, and

∑G
g=1 πg = 1. The

component density fg( · ; ηg) can be chosen according to the spe-
cific needs of the application—the most popular choice is the
multivariate Gaussian density (Chattopadhyay & Maitra 2017;
Fraley & Raftery 1998, 2002). Another useful family of mixture
models proposed by McLachlan & Peel (1998) specifies fg( · ;ηg)
to be the multivariate-t density. That is,

fg(z; μg ,�g , νg)

= �(νg/2+ p/2)
�(νg/2)νg

p
2 πg

p
2 |�g | 1

2

[
1+ 1

νg
(z − μg)T�−1

g (z − μg)
]
, (3)

for z ∈R
p, where μg denotes the mean vector, �g the scale matrix

and νg the degrees of freedom, all for the gth mixture component,
g = 1, 2, . . . ,G. Our analysis uses, instead of a Gaussian mixture
model (GMM), the multivariate-t mixture model (tMM) (Goren
& Maitra 2022) because the multivariate-tMM better allows for
thicker tails in the component mixture densities. Subsequent steps
in clustering involve obtaining maximum likelihood (ML) esti-
mates of the parameters ηg , g = 1, 2, . . . ,G using the Expectation-
Maximisation (EM) algorithm (Dempster, Laird, & Rubin 1977;
McLachlan & Krishnan 2008; Chattopadhyay & Maitra 2017;
Chattopadhyay & Maitra 2018) and assigning each individual
observation based on the maximum posterior probability that
it belongs to a given group. We use the Bayesian Information
Criterion (BIC) (Schwarz 1978; Chattopadhyay & Maitra 2017) to
decide G.

3.2. Mergingmixture components using overlap

After obtaining the parameter estimates of (2), mixture com-
ponents can be merged using one of several criteria described
in Melnykov (2016). Here we use the pairwise overlap measure
(Maitra & Melnykov 2010; Melnykov & Maitra 2011; Melnykov,
Chen, & Maitra 2012). The pairwise overlap takes value in [0, 1]
and provides us with a sense of the distinctiveness between groups
obtained using a particular clustering method, with values closer
to 1 indicating that the two groups are poorly separated. We now
provide details on how to obtain these overlap measures.

3.2.1. Pairwise overlap between simple groups

A simple group (Almodóvar-Rivera & Maitra 2020) is obtained
from the initial classifications, in our case by tMMBC. For a
G-component tMM (2), the probability that an observation X,
originally from a mth component distribution (that is, belonging
to themth group) gets misclassified to the nth group is

ωn|m = P(πnfn(x; μn,�n, νn)> πmfm(x; μm,�m, νm)) (4)

where fg(x; μg ,�g , νg) has density as in (3). The pairwise overlap
(Maitra &Melnykov 2010) between themth and nth group is then
defined as

ωmn = ωn|m + ωm|n (5)

For illustration, we display in the appendix (Figure A.1) sam-
ple two-component three-dimensional distributions with varying
degrees of overlap.

Unlike in the case of GMM, the misclassification probability
ωn|m cannot be readily calculated using analytical methods, so we
use Monte Carlo methods as follows:

1. Generate M realisations x∗
i , i= 1, 2, . . .M from the density

fm(x; μm,�m, νm).
2. ωn|m can then be approximated as

ω̂n|m

= 1
M

M∑
i=1

I{πnfn(x∗
i ; μn,�n, νn)> πmfm(x∗

i ; μm,�m, νm)}
(6)

where I( · ) is the indicator function, that in this case is 1 for
a given i if πnfn(x∗

i ; μn,�n, νn)> πmfm(x∗
i ; μm,�m, νm) and 0

otherwise.

The pairwise overlap provides us with a sense of the distinc-
tiveness between groups obtained using a particular clustering
method. As mentioned earlier, these values lie inside [0, 1] with
values near zero indicating perfect separation between groups
and those closer to unity indicating poor separation. Melnykov &
Maitra (2011) used methods developed in Maitra (2010) to define
the generalised overlap ω̈ to summarise the G×G matrix � of
pairwise overlaps which is given by (λ� − 1)/(G− 1) where λ� is
the largest eigenvalue of �. Typically, smaller values of ω̈ indicate
distinctive groupings while larger values indicate more overlap
between groups.

3.2.2. Pairwise overlap between composite groups

Let Gp and Gq be two composite groups having probability densi-
ties

∑
hεGp

πhfh(x; μh,�h, νh) and
∑

rεGq
πrfh(x; μr ,�r , νr) respec-

tively, possibly formed by merging one or more components of
(2). The probability of an observation X actually from Gp being
misclassified to Gq is

ωGq|Gp = P

( ∑
rεGq

πrfr(x; μr ,�r , νr)∑
hεGp

πhfh(x; μh,�h, νh)
> 1

)
(7)

where fg(x; μg ,�g , νg) has density given by (3). The pairwise over-
lap between Gp and Gq, denoted by ωGpGq , is then computed as
ωGq|Gp + ωGp|Gq . The misclassification probability ωGq|Gp can be
estimated as follows:
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(a) (b) (c)

Figure 2. From left to right: (a) Original Gaussian mixture model clustering solution according to BIC. (b) Five clusters obtained after first phase merging. (c) Final clustering
solution obtained after second phase merging.

1. Generate M samples x∗
i , i= 1, 2, . . .M from the density∑

hεGp
π∗
h fr(x; μh,�h, νh), where π∗

h is a standardised probabil-
ity obtained as π∗

h = πh/
∑

hεGp
πh.

2. ωGq|Gp can then be approximated as

ω̂Gq|Gp = 1
M
∑M

i=1
I

{ ∑
rεGq

πrfr(x∗
i ; μr ,�r , νr)∑

hεGp
πhfh(x∗

i ; μh,�h, νh)
> 1

}
,

(8)
where I( · ) is the indicator function, as before.

3.3. Themodel-based syncytial clustering algorithm

Our syncytial clustering algorithm consists of three phases, the
tMMBC phase, the initial overlap calculation phase and the merg-
ing phase:

1. The initial clustering phase: This phase fits a G-component
tMM to the data using the EM algorithm (McLachlan & Peel
2000), with G chosen using BIC (Schwarz 1978).

2. Merging Phase: This phase gets triggered only if the generalised
overlap ω̈(1) of the original clustering solution is not negligible,
that is if ω̈(1) �≈ 0 and atleast one pairwise overlap of the original
clustering solution is greater than ω̈(1). Specifically this phase
involves the following steps:

(a) Find the pairwise overlaps between ith and jth groupωij for
theG(G− 1)/2 pairs of groups using themethod described
in Section 3.2.1. Also find the generalised overlap ω̈.

(b) Merge the ith and jth groups if ωij > κω̈, with κ as dis-
cussed shortly, and relabel the merged groups, as needed.

(c) Calculate the updated pairwise overlaps of the newly
formed composite groups using the method described in
Section 3.2.2. Also calculate ω̈ of the new clustering solu-
tion. Repeat Step (b) with the updated pairwise overlaps
and the generalised overlap.

3. Termination Phase: Terminate the merging in Step 2. if the gen-
eralised overlap of the current phase clustering solution, or its
change, is negligible (in this paper defined to be ≤ 10−3): that

is, if ω̈(l) ≈ ω̈(l−1) or ω̈(l) where ω̈(l−1) is the generalised overlap
of the previous phase clustering solution.

Selection of κ: The parameter κ determines the propensity of
merging, and hence the characteristics of the composite groups
formed at each merging phase. With larger values of κ, few pairs
merge at each phase while smaller values of κ mean that many
components are merged simultaneously at each phase. A data-
driven approach proposed by Almodóvar-Rivera & Maitra (2020)
for selecting κ, that we also adopt, runs the algorithm for several
values of κ and uses the final clustering solution with the smallest
terminating ω̈.

Choice of mixture model: The description of our algorithm uses
tMMBC in the initial clustering phase, however, our algorithm
applies to other mixture models with appropriate modifications.
Indeed, in our paper, we have used tMMBC (which by default,
includes GMMBC, when the degrees of freedom for each mixture
component are infinite), with degrees of freedom also estimated,
and then decided on the initial clustering solution with the
higher BIC.

3.4. An illustrative example

We illustrate our model-based syncytial clustering algorithm on
the synthetic 2D Bananas-Arcs dataset in Almodóvar-Rivera &
Maitra (2020). From Figure 2 it is evident that this dataset has four
complex-structured clusters. We fit both GMMBC and tMMBC to
this dataset using the methods in Chattopadhyay & Maitra (2017)
and (2018) and selected the best clustering solution as well as the
number of groups using BIC. For this dataset, GMMBC with 15
groups provided the best solution (Figure 2a) with ω̈ = 8.2× 10−3.
The first of the merging phases (with the best κ = 3) provided
the five clusters of Figure 2b with ω̈ = 1.4× 10−4. Therefore this
merged solution provides a more distinctive grouping than the
Gaussian mixture model solution. The second phase of merging
resulted in the four groups of Figure 2c with ω̈ = 1.368× 10−4.
Since the generalised overlap of this phase is nearly indisinguish-
able from that obtained at the end of the first phase of merg-
ing, the merging terminates here. This example clearly illustrates
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Figure 3. BIC for each G upon performing G-component tMMBC with 13 456 HSS from
Misgeld & Hilker (2011).

the effectiveness of syncytial clustering over regular methods
in capturing complex structure and irregular-shaped clusters.
Additionally, the multi-staged solution provides us with the abil-
ity to understand each of these complex structures in terms of
their component (simpler) homogeneous groups. Our data-driven
approach results in a terminating ω̈ that is much smaller than the
original tMMBC solution indicating a preference for the complex-
structured solution in providing distinctive groups. We now
analyse the 13 456 HSS using our syncytial clustering algorithm.

4. Characterisation of HSS

4.1. Cluster analysis

4.1.1. The initial clustering phase

WeperformedG-component tMMBC, forG ∈ {1, 2, . . . , 9} onMs,
Re and Ms/Lν , all in the log10-scale, of the 13 456 HSS. Figure 3
indicates that a eight-component tMMBC provides an optimal fit,
as per BIC. The eight-component tMMBC solution was better, as
per BIC, than the optimal GMMBC solution. Our results here are
different from that of Chattopadhyay & Karmakar (2013) who,
upon using k-means with the Jump statistic (Sugar & James 2003),
found five groups when excluding the candidate GCs of Jordán
et al. (2008) and four groups on the full HSS dataset.

Figure 4 shows the pairwise overlaps of the eight groups
obtained using tMMBC. A 3D scatterplot of the eight tMMBC
groups is also provided in Figure 5. Table 1 provides the group
means and standard deviations for the eight groups. The com-
position of the eight groups in terms of the different kinds of
stellar objects are in Table 2. Since tMMBC assumes ellipsoidally
dispersed groups (with fatter tails) some of the groups exhibit
substantial overlap (Figure 4). These large overlap values point
to the possibility of complex group structure in the data that is
not accounted for by using tMMBC (or GMMBC). We there-
fore explore if we can use our algorithm to reveal this potentially
complex structure.

4.1.2. The merging phases

The first phase: Based on the pairwise overlap map of Figure 4,
and for κ = 1 (determined to be the solution with the lowest
terminating ω̈), Groups 1-4, 7 and 8 all merge into one group.
Thus, at the end of this merging phase, we have three groups and
a generalised overlap of ω̈ = 0.13. To facilitate easy reference, we
relabel the erstwhile Groups 5 and 6 as the merged (first phase)
Groups (i)-5 and (ii)-6 respectively and the merged entity as
Group (iii), with the component individual groups as Group (iii)-
1 through Group (iii)-4 and Group (iii)-7 and Group (iii)-8. A

8
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1 2 3 4 5 6 7

0.59 0.06 0.03 0.08 0 0.03 0.01
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0.11 0.19 0.14

0.09 0.01

0

Figure 4. Pairwise overlap measures between any two groups obtained by our eight-
component tMMBC solutions.

3D scatterplot of the three first-phase merged groups is provided
in Figure 6, while Tables 3 and 4 summarise the mean parameter
values and the types of objects in the three merged groups. The
pairwise overlap between Groups (i) and (ii) is 0.01 and between
Groups (ii) and (iii) is 0.1. the overlap between Groups (i) and
(iii) is negligible. Figure 6 immediately points out how the first
phase mergers based on the pairwise overlaps have been able to
capture the non-ellipsoidal structure present in the data. But the
pairwise overlaps and the generalised overlap (and the logic of our
method) suggest that there might be additional structure which
might have been missed in the first phase merge. So we proceed
with another merging phase.

The second phase: In the second phase, Groups (ii)-6 and (iii)
merge to yield two complex-structured groups. We label the
newly-merged group as Group II—with component merged sub-
groups as Groups II-(ii) and II-(iii), and correspondingly down the
hierarchy—and the original group as Group I (with sub-groups
classification of Group I-(i) and Group I-(i)-5, to indicate the
three-stages of classifications). A 3D scatterplot of the two new
groups is given in Figure 7, with numerical summaries provided
in Tables 5 and 6. The scatterplot clearly depicts that the second
merge has captured the complex general-shaped group structures
in the dataset well and also obtained to a good extent the two well-
separated groups. The pairwise overlap between these two groups
is 0.0013. Since the pairwise overlap between Groups I and II is
very close to 10−3 the algorithm terminates at this stage.

4.2. Measuring uncertainty in the obtained groupings
through bootstrapping

We assess the uncertainty in the parameter estimates in each phase
and the corresponding classification using a nonparametric boot-
strap technique where we repeatedly resample from the dataset
with replacement and analyse each resample to obtain estimated
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Table 1. Mean and standard deviation (in brackets) of parameter values for each of the eight groups obtained
using tMMBC.

Group Ms Re Mν Mν/Lν Se

1 6.184 (0.539) 0.331 (0.194) −9.107 (1.510) 0.609 (0.119) 4.723 (0.321)

2 5.134 (0.361) 0.641 (0.117) −6.432 (0.844) 0.630 (0.113) 3.053 (0.211)

3 5.744 (0.294) 0.408 (0.057) −8.609 (0.715) 0.369 (0.026) 4.131 (0.3)

4 5.100 (0.326) 0.470 (0.153) −6.905 (0.783) 0.406 (0.044) 3.362 (0.387)

5 8.817 (1.939) 3.032 (0.501) −16.049 (4.546) 0.465 (0.153) 1.954 (1.282)

6 5.803 (1.442) 0.991 (0.345) −9.711 (2.515) −0.013 (0.707) 3.023 (1.342)

7 5.313 (0.445) 0.475 (0.164) −7.651 (1.090) 0.320 (0.022) 3.565 (0.452)

8 5.556 (0.363) 0.348 (0.120) −7.577 (0.987) 0.593 (0.098) 4.062 (0.405)

Figure 5. Three viewing angles of the scatterplot of the full dataset with different colours representing different groups, and intensity of the colour indicating the underlying
confidence in that particular grouping. Darker shades indicate higher confidence of classification of that particular object.

properties of the parameters of interest. Refer to Efron (1979) for
a detailed study on the bootstrap.

In our scenario, the parameters of interest are the group mem-
berships. Here, a well-done cluster analysis is expected to produce
the same group memberships for most of the observations at
each bootstrap replicate. We now describe the steps to obtain the

confidence of classification of each observation for the original
clustering solution using tMMBC.

(i) First we perform tMMBC on the original 13 456 HSS as
described in Section 2. This matches the analysis so far and
yields eight tMMBC groups.
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Table 2. Types of objects in each of the eight groups obtained by tMMBC.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

cE 1 7

dE 212

dE,N 11 4 15 14 1

DGTO 4 1

Dwarf 22 2

GC 1 1 5 17 1 58 65 5

GC_VCC 482 872 1 516 2 814 10 3 660 3 409

gE 150

NuSc 6 1 12 3

Sbul 18

UCD 14 3 30 8 1

Total 515 873 1 525 2 831 418 127 3 748 3 419

Table 3.Mean and standard deviation (in brackets) of parameter values for each of the three groups after phase
one merging. The third group is the merged group.

Group Ms Re Mν Mν/Lν Se

(i)-5 8.817 (1.939) 3.032 (0.501) −16.049 (4.546) 0.465 (0.153) 1.954 (1.282)

(ii)-6 5.803 (1.442) 0.991 (0.345) −9.711 (2.515) −0.013 (0.707) 3.023 (1.342)

(iii) 5.404 (0.467) 0.438 (0.160) −7.557 (1.159) 0.450 (0.139) 3.731 (0.556)

Figure 6. Two viewing angles of the scatterplot of the full dataset after the first stage merging. Here, different colours representing different groups: intensity of the colour
indicates the degree of underlying confidence in that particular grouping. Darker shades indicate higher confidence of classification of that particular object.

(ii) Sample, with replacement, 13 456 HSS from the dataset and
again cluster the resampled data using the classifications
obtained in Step (i) as the initial estimates for the groupings.
Repeat this procedure B times to obtain B sets of classifica-
tion estimates. Let us denote these B sets by C1, C2, . . . , CB.
Also let Cij be 1 if the classification of the jth data point
in the ith bootstrap replicate is the same as the original
classification of the jth datapoint and 0 otherwise, where
i= 1, 2, . . . B and j= 1, 2, . . . , 13 456.

(iii) The classification probability for the jth HSS is obtained as

pj = 1
B

B∑
i=1

Cij (9)

where j= 1, 2, . . . , 13 456. In our analysis, we took B= 1 000,
that is, we resampled 1 000 times from the dataset.

In each merging phase, the confidence of classification is
obtained by relabeling each of the B bootstrap replicates to the
solution obtained from the original clustering results and then
repeating Steps (i)-(iii) of our algorithm with the relabelled
bootstrap replicates. Table 7 gives the number of HSS in each class
having confidences in seven intervals (0, 0.30], (0.30, 0.60], (0.60,
0.85], (0.85, 0.90], (0.90, 0.95] and (0.95. 1], at the two merging
stages. The fact that the majority of HSS have a high confidence
of classification in both the stages provides reassurance in our
clustering results for the 13 456 HSS.

We end our discussion in this section by noting that we could
have also obtained an estimate of the confidence of classification
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Table 4. Types of objects in each of the three groups after phase
one merge.

Group (i)-5 Group (ii)-6 Group (iii)

cE 6 1

dE 212

dE,N 15 30

DGTO 4 1

Dwarf 22 2

GC 2 58 94

GC_VCC 10 12 753

gE 150

NuSc 1 12 9

Sbul 18

UCD 3 30 23

Total 418 127 12 911

Table 5. Mean and standard deviation (in bracket) of parameter values for each
of the two groups after phase twomerging. The second group is the newmerged
group.

Group Ms Re Mν Mν/Lν Se

I 8.617 (1.939) 3.032 (0.501) −16.049 (4.546) 0.465 (0.153) 1.954 (1.282)
II 5.408 (0.487) 0.443 (0.172) −7.577 (1.199) 0.445 (0.161) 3.724 (0.573)

Table 6. Types of objects in each of the two groups after the
phase twomergers.

Group I Group II

cE 6 1

dE 212

dE,N 45

DGTO 4 1

Dwarf 22 2

GC 2 152

GC_VCC 0 12 763

gE 150

NuSc 1 21

Sbul 18

UCD 3 53

Total 418 13 038

based on the posterior probability of classification. However, we
use a nonparametric bootstrap technique for estimating the clas-
sification probabilities in order to account for the uncertainty in
the modelling and to account for possible model misspecification.
The choice of the nonparametric bootstrap technique provides us
withmore robust estimates of the confidence of classification com-
pared to using the posterior probability of classification because it
accounts for possible model misspecification in the calculation of
the classification confidence.

4.3. Analysis of results

4.3.1. Properties of identified groups

Table 2 gives the numbers of different types of HSS in each of
the tMMBC groups and Tables 4, 6 give the numbers of different
types of HSS in each group at each phase of the algorithm. The
means and standard deviations of the parameters for the tMMBC
solution are provided in Table 1 while those for each group at each
of the merging phases is in Tables 3 and 5. Additionally, different
colours in Figures 5, 6 and 7 indicate the group to which each
HSS belongs, with different shades indicating the confidence of
that particular HSS. Darker shades indicate higher confidences for
that particular HSS. From the figures and Table 7a and b it is clear
that most of the HSS have high confidence coefficients, indicating
that the classification method has worked well in identifying the
non-ellipsoidal structure that was demonstrated after the initial
clustering using tMMBC. After the first mergers, the most notable
groups are Groups (i)-5 and (iii) which have most of the HSS.
Most of the GC_VCCs are in Group (iii) after the first merge
and only ten are in Group (ii)-6. The stellar systems in Group
(ii)-6 have lower confidence compared to the other two groups
due to which inferences about the HSS in this group will be more
uncertain compared to the HSS in other groups. From Table 6
we see that after the second phase, all the candidates (GC_VCC)
were classified to Group II. All the GCs were also classified to this
group, as also a number of UCDs and dE,Ns. These group compo-
sitions and means can help us infer about the kinematic properties
of these stellar systems. After the final merge, Group I has a larger
Ms and a much larger Re than Group II. The effective magnitude
is also significantly larger for the second group. TheMs/Lν ratio is
quite similar for both groups. We now interpret our results.

4.3.2. Interpretations

In this section, we understand the physical and evolutionary prop-
erties of the objects in each of the two groups after the final merge
using stellar mass surface density and absolute magnitude. To
analyse the two complex-structured groups at the end of the final
merge, we carefully look at the properties of the ellipsoidal groups
obtained by tMMBC and group structures obtained with the orig-
inal eight-group clustering solution and after the twomergers, and
obtain deeper insight into the evolutionary and physical properties
of these celestial objects.

From Table 2 it is evident that Group 7 is the largest group
obtained by tMMBC and also contains the maximum number
of GC_VCCs. Table 1 indicates that the HSS in this group have
moderate mass and a low effective radius. The surface density is
towards the higher side compared to other groups like Group 5
and this group also has a moderate mass-luminosity ratio. Thus
intuition dictates that the HSS in this group are bright and newer
compared to other groups like Groups 1, 4 and 8. Indeed, the
last group, which is mostly composed of GC_VCCs has a higher
mass-luminosity ratio and surface density compared to Group 7
indicating that that the HSS in these groups are older compared to
that of Group 7 and also brighter. But the HSS in this group are
typically smaller compared to those of Group 7 and also heavier
which gives some indication as to why the HSS in this group are
brighter even though they are older compared to those of Group 7.
Group 4 which is composed of only globular clusters (both candi-
date and non-candidate HSS) have properties similar to those HSS
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Table 7. Number of candidate HSS (C) and non-candidate HSS (NC) having confidences in each of the seven intervals for each of the (a) three
groups after the first merge and (b) two groups after the second merge. Here (α, β] denotes the interval with left endpoint α (not included) and
right endpoint β (included). Entries in the table are left blank when there are nomembers in that group.

(a) Number of candidates (C) and non-candidates (NC) in having confidences after the first merge.

Group (0, 0.30] (0.30, 0.60] (0.60, 0.80] (0.80, 0.85] (0.85, 0.90] (0.90, 0.95] (0.95, 1]

NC C NC C NC C NC C NC C NC C NC C

(i)-5 1 1 1 415

(ii)-6 8 5 13 2 11 2 28 12 46 1

(iii) 5 4 7 3 1 3 3 3 4 3 138 12 737

(b) Number of candidates (C) and non-candidates (NC) in having confidences after the secondmerge.

Group (0, 0.30] (0.30, 0.60] (0.60, 0.80] (0.80, 0.85] (0.85, 0.90] (0.90, 0.95] (0.95, 1]

NC C NC C NC C NC C NC C NC C NC C

I 1 1 1 415

II 13 9 20 5 12 4 31 3 16 3 184 12 738

Figure 7. Two viewing angles of the scatterplot of the entire dataset after the final merging stage with different colours representing different groups and intensity of the colour
signifying the underlying confidence in that particular grouping. Darker shades indicate higher confidence of classification of that particular HSS.

in Group 7. The same can be said about Group 3. This similarity
in terms of kinematic properties also indicates this group having
a high overlap as seen in Figure 4. Group 1 also exhibits similar-
ity with Group 8 with respect to kinematic properties. The HSS
in Group 2 exhibit kinematic properties that are close to that of
Group 4 but are somewhat smaller since they have a higher mass-
luminosity ratio than that in Group 4. Thus it is very clear that
many of the eight tMMBC groups exhibit a good degree of simi-
larity in terms of kinematic properties which satisfies the intuition
of many of the groups getting merged to reveal only two complex-
structured groups with a low overlap.We now study the kinematic
properties of the complex groups obtained at each merging phase.

At the end of the final merge, Group 1 is essentially Group 5
of the tMMBC solution. From Table 5, we see that the HSS in
this group have higher mass and effective radius compared to the
second group. The mass-luminosity ratio for this group is slightly
higher compared to the second group which indicates that the stel-
lar systems in this group have probably lost most of their massive
stars and are mostly composed of low-mass stars, further indicat-
ing that these HSS are typically older than those in the second

group. Since this group is similar to Group 5 from the tMMBC
solution, and did not change during the merging phases, we con-
clude that there is no complex structure present in this group as
compared to Group II. The conclusions for this group might be a
little uncertain for one stellar object that has a low confidence of
classification.

Group II is much larger in size than Group I and as mentioned
earlier, contains all the GC_VCCs and GCs, dE,Ns and most of the
UCDs, with many of the HSS assignments having low confidence
of classification, mainly because this group is formed by merging
Groups (ii)-6 and (iii). So, it would be more helpful to anal-
yse this group by separately looking at the properties of Groups
(ii)-6 and (iii) to get a better understanding of the properties of
this group.

For Group (iii) at the end of the first merging phase, it can be
inferred that the GC_VCCs in this group (and also Group (ii)-6)
are typically smaller HSS compared to that of Group I (or Group
(i)-5). Also the HSS in this group have a higher surface density
compared to the other groups formed after the first phase, indi-
cating that these objects are typically brighter compared to objects
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in the first group. These inferences are a little uncertain for the
sixteen HSS with low confidence of classification.

The stellar systems in Group (ii)-6 have slightly higher mass
compared to Group (iii). The effective radius is also higher for the
HSS in this group which indicates that these stellar systems are
larger compared to the objects in Group (iii). Themass-luminosity
ratio is significantly low compared to the other two groups formed
in the first merging phase,and indicates that these stellar systems
are relatively young as compared to other HSS. A marginally low
surface density compared to that of Group (iii) indicates that these
HSS are not as bright as those in Group (iii) although they are
substantially brighter than those in Group (i)-5. These inferences
are highly uncertain since a good number of stellar systems in this
group have low confidence of classification.

An important aspect of our analysis is how our algorithm is
able to capture the actual number of well-separated groups present
in this dataset. Previous analyses like those of Chattopadhyay &
Karmakar (2013) indicated that there are four spherically dis-
persed groups but Figures 5, 6, 7 clearly show that the actual num-
ber of well-separated groups is two. The additional groups found
by Chattopadhyay & Karmakar (2013) (and even tMMBC in our
initial stage) is due to the inability of k-means and tMMBC to
detect complex group structures. Our algorithm is able to capture
this complex structure through an effectivemergingmechanism in
multiple (here, two) phases. Another important aspect is the con-
fidence of classification for each HSS that allows us to assess how
well our clustering algorithm performed for this dataset. The fact
that most of the HSS have high confidence of classification indi-
cates that our clustering algorithm has been able to reliably capture
the complex structure present in the data.

5. Conclusions

Chattopadhyay & Karmakar (2013) performed statistical cluster
analysis on 673 HSS from Misgeld & Hilker (2011) to determine
the homogeneous groups present in the HSS data. Using the
k-means clustering algorithm together with the jump statistic
(Sugar & James 2003), they arrived at five optimal groups whose
properties were explored using fundamental plane relations and
other physical parameters. Their main analysis excluded the can-
didate GCs (GC_VCCs), because of concerns that including them
would render the data unfit for clustering. Their analysis hinges
on an assumption of homogeneous spherically dispersed groups,
that underlies the k-means algorithm, and that may not be appro-
priate and can lead to erroneous results, especially when there is
a complex structure present in the underlying statistical groups
as found in our analysis. We initially grouped all 13 456 HSS of
Misgeld & Hilker (2011) using tMMBC and BIC to optimally find
eight groups. Motivated from a syncytial clustering technique
developed by Almodóvar-Rivera & Maitra (2020), we objectively,
in a data-driven manner, merged components of the tMMBC
solution which revealed two complex-structured groups. Using
a nonparametric bootstrap technique, we further determined the
confidence of classification for each of the 13 456 HSS at each
stage of merging to quantify how correctly the stellar systems
have been assigned to their correct groups. We then studied the
physical and evolutionary properties of the objects in each of the
two groups by analysing their mean stellar mass, surface density
and effective radius. We found that Group I (that is, Group 5 from
the original tMMBC solution) typically consists of large and old

stellar systems. Group II which is made up by merging Groups
1-4, 6-8 of the original tMMBC solution consists of younger
stellar systems which are brighter than those of Group I and also
smaller in size compared to those in Group I. All the GC_VCCs
were classified to this group along with all the GCs and some other
HSS. Our results point to the fact that the GCs are indeed different
from elliptical galaxies which includes the dwarf ellipticals (dEs).
These results support earlier conclusions (Kormendy 1985). Our
results also confirm that the GC_VCCs are most likely to be GCs
and that there is very less chance that these are dwarfs.

A reviewer has asked whether our merging stages can, for
instance, result in erasing of correlations between parameters that
may have physical meaning, and whether this presents a limitation
for our method. We note that correlation only measures linear
association (or relationships) and is inadequate for describing
other kinds of relationships. The possible reduction or erasure
of the correlation between parameters in complex-structured
groups formed by merging, is a consequence more of the complex
structure of the well-separated groups: note also that relationships
(including linear ones) continue to be described, as necessary, at
the appropriate sub-group level. Therefore, we do not necessarily
consider our methodology to have a limitation here: rather,
we feel that it provides a more nuanced understanding of the
group structure present in the HSS data. Finally, we note that
the goal of clustering is to find different groups of homogeneous
observations. How the clustering is done is dependent on the
resolution (which is analogous to the merging level) and the
properties that we would like our clusters to portray. For instance,
if we want ellipsoidally shaped groups, then the eight-component
tMMBC solution provides a good description of the HSS. At the
same time, we can see which of these groups of HSS are closer (or
more similar) to each other, at the different resolution levels, and
how they form into more generally shaped groups. Our approach
here formally helps determine the groups that combine (i.e.,
are similar) at each level and provides an objective approch to
describe where the groups are distinct enough to require separate
consideration and understanding of their properties. As we see
in Section 4.3.2, this sort of understanding of the underlying
complex group structure can better inform our understanding of
the characteristics of the different kinds of HSS.

There are a number of issues that merit further investigation.
For example it would be useful to explore if the logarithmic trans-
formation used on the parameters is plausible or is detrimental
to the objective of finding groups of HSS. It is possible that some
other transformation may lead to better-separated groups. Our
analysis may also be extended to larger and more comprehensive
data sets than in this study, in order to analyse whether similar
results hold for the HSS from other sources. Also with addi-
tional information like temperature and colour indices of the stars
present in the system, it might be possible to obtain deeper under-
standing of the evolution of these systems possibly through HR
diagrams. Apart from this it would also be interesting to analyse
how fundamental plane relations hold in conjunction with these
results. Thus we see that while our analysis has provided some
interesting insights into the different types of HSS, additional
issues remain that deserve further attention.
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Appendix 1. Illustration of the pairwise overlap

In this section, we demonstrate the kinds of 3D distributions
that may be obtained with specification of different pairwise
overlap measures. Using the R (R Core Team 2017) package
MIXSIM (Melnykov et al. 2012), we simulated 1 000 observa-
tions from two-component GMMs with pairwise overlap ω =
10−5, 0.001, 0.01, 0.05, 0.1, and 0.5. The simulated data are dis-
played in Figure A.1. Each component distribution is also specified
by means of its 95% ellipsoid of concentration. The figure shows
very good separation with ω = 10−5, and even with ω = 0.001,
modest separation for ω = 0.01, substantially poor separation for
ω = 0.05, and worsening separation with higher values of ω.

Figure A.1. Realisations from sample two-component Gaussianmixture distributions having pairwise overlapmeasures of (a)ω = 0.00001, (b)ω = 0.001, (c)ω = 0.01 (d)ω = 0.05,
(e) ω = 0.1 and (f) ω = 0.5. For each component, we also provide the 95% ellipsoid of concentrations.
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