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ON THE NUMBER OF ZEROS OF EXPONENTIAL
POLYNOMIALS AND RELATED QUESTIONS

A.J. VAN DER POORTEN AND I.E. SHPARLINSKI

We apply Strafimann's theorem to p-adic power series satisfying linear differential
equations with polynomial coefficients and note that our approach leads to our
estimating the number of integer zeros of polynomials on a given interval and
thence to an investigation of the number of p-adic small values of a function on
such an interval, that is, of the number of solutions of a congruence modulo pr .

0. INTRODUCTION

We extend the scope of the p-adic method based on Strafimann's theorem for
estimating the number of zeros of exponential polynomials (and hence of recurrence
sequences) applied in [3, 5, 6].

Accordingly, let K be an algebraic number field and p ^ 3 a rational prime.

Firstly, we show that Strafimann's theorem can be applied in a broad class of
situations, namely to the class of function satisfying p-adic linear differential equations
with polynomial coefficients. We provide a general bound for the number of zeros of
such functions.

The class of functions under consideration includes generalised exponential poly-
nomials

with roots <j>i in K, polynomial coefficients Fi(z) in K[z], and exponents Si(z) in Z[z].
Such functions are considered in [13], where bounds for their number of zeros in a given
disc in the complex plane are stated. We get a bound for the total number of their
integer zeros.

The idea of our method is to reduce the given function to a product of a polynomial
and a function without zeros in the ring of p-adic integers Zp . Thus our problem
becomes that of bounding the degree of the polynomial factor, since that plainly bounds

Received 18th November, 1991
Work supported in part by giants from the Australian Research Council

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 SA2.00+0.00.

401

https://doi.org/10.1017/S0004972700012065 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012065


402 A.J. van der Poorten and I.E. Shparlinski [2]

the number of integer zeros of the function. Moreover, we remark that we readily move
from those considerations to the problem of estimating the number of integer zeros of
polynomials on a given interval and thence to the question of finding the number of
p-adic small values of a function on such an interval, that being the number of solutions
of a congruence modulo p n .

We consider in greater detail the interesting special case of recurrence sequences
(a/,) of integers

(2) ofc+n = sxdh+n-! + ... + snah, h-1,2,... .

We confine ourselves to nondegenerate recurrence sequences, those being nonzero se-
quences with characteristic polynomial

S(X) = Xn- 81X
n~1 sn € Z[X],

with an ^ 0 and so that no quotient on/aj of two of its distinct zeros is a root of unity.

Upper bounds for the number of solution of a general congruence o^ = 0 (mod o),
with h — 1 , . . . ,H and a an integral ideal of K are known; [8, 11]. However, the
estimates proved here are new for interesting ranges of the parameters.

We conclude by giving some applications of our bounds to an asymptotic formula
for the average value of the p-adic order of the terms of a recurrence sequence.

Throughout K is an algebraic number field of degree d over Q, and p a prime
ideal of K lying over the rational prime p. We denote by e and / , respectively
its ramification index and the residue class degree. As usual Qp denotes the p-adic
completion of the field of rationals Q, and Cj, the completion of its algebraic closure;
Kp is the completion of K at p. We write in terms of the additive valuation ordp<
normalised by ordj, p = 1, and will suppress the subscript henceforth. The ring of
p-adic integers Zp is the set {t G Qp : ordi ^ 0} and Zp = {t € Kp : oidt ^ 0}. We
denote the unit disc {t £ Cp : ordf ^ 0} by Up.

1. ZEROS OF SOLUTIONS OF DIFFERENTIAL EQUATIONS

oo
We consider power series f(t) = 52 fhth with coefficients />, in Zp, converging in

h=o
the unit disc Up, and satisfying a differential equation

m - l

«=0

of order m with polynomial coefficients g;(t) G Zp[<] of respective degrees n.j.

Let M = M(F) denote the number of zeros of / in the ring Zp. Our main tools
to bound M. are the following two statements:
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LEMMA 1 . (Strafimann's Theorem) Let

be a power series with coefficients in Tip and converging on the unit disc Up. Suppose
(as we may after multiplying by a nonzero constant if necessary) that some coefficient
gi, say, has ord gi = 0. Set

M = max{h : ordgn = 0} .

Tien there is a factorisation
g(t) = P(t)U(t)

where P(t) £ Zp[t] is a polynomial of degree M and the series U(t) satisfies oidU(t) =
0 forte Up.

REMARK. This is just the p-adic Weierstrafi preparation theorem as stated by Strafimann
[12]. There is an elementary proof in [3]; see also [6] and [5].

Set n = max{m — j + rij : j = 1,. . . , m}.

LEMMA 2 . For each k £ Zp the function g(t) = f(pt + k) satisfies the conditions
of Lemma 1 with M ^ n(p — l)/(p — 2).

PROOF: It is easy to check that g(t) satisfies the differential equation

m - l

(3) dmg(t)/dtm =

of order m with polynomial coefficients

ri(t)=pjy£lp
itiq<ji\k)/i\ e Zp[t], j = 1 , . . . , m .

Indeed, in the sequel we need only that rj(t) = 52 a«,î * with orda^j ^ i + j .
i=0

The function g(t) can be represented in the form

where the multiplier b is choosen such that min{ordgh : h = 0 , 1 , . . . } — 0. Set
Cfc = ghh\ . Then

h=0
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Prom equation (3) we get the recurrence relation

m-l nj

j=0 »=0

Thus for ft = 0 ,1 , . . .

ord Ch+m ^ min (ord ch-i+j +m+i- j),

or
(4) ordcfc ^ min (ordcft_m_i+

Now set

A = max{Jfc — ord c* : k = 0,.. . , n — 1}.

Since for any h we have ordc^ ^ ord<7& ^ 0, then A < n. Furthermore, by (4) and
induction, we get

/i — A, h = n,n + l , . . . .

But it is well known that ord ft! ̂  h/(p - 1). Hence

^ ord ch - h/(p -1)> h(p - 2)/(p - 1) - A > ft(p - 2)/(p - 1) - n > 0

for ft ^ n(p — l)/(p — 2), and we are done. D

THEOREM 1. If M < oo then we have the bound

PROOF: It is evident that each < 6 Zp can be uniquely represented in the form
t = px + k where x € Zp and k is taken from a complete residue system of Zp modulo

P-
Accordingly, we fix k and consider the function g(t) = f(px + k). By Lemma 2

we see that the function g(i) has at most n(p — l)/(p — 2) ^ 2n zeros. But a complete
residue system modulo p has Nonnp = pd elements, proving the theorem. D

COROLLARY . Let M. be the number of integer zeros of a nonzero exponential
polynomial (1) with polynomials Fi(x) € K[x], «<(«) £ Z[z], i = 1,. . . ,m of degrees
at most F and a respectively. If M. < oo then

where w is the number of different prime ideal divisors of the <j>i, i = 1 , . . . , m, in K.
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PROOF: We select the rational prime p so that p > d + 1 and p is prime to each
of the 4>i. It is shown in [6] that such a prime can be selected with

(5) p .

For each i set <j>? ~ — exp $j. We then see that each of the p? — 1 functions

m

vk(t) = E((pf - l)t + k) = ^2Fi((pf - l)t + k)</>'iWexp($iriik(t)) ,
t"=i

where

has a power series expansion converging in the unit disk Up.
Let D denote the differential operator D = d/dt. Then, as shown in [12], Theorem

1, each function vjb(t) satisfies the differential equation

Li=i J

of order at most mF whose coefficients are polynomials over Kp and which have re-
spective degrees at most mF(s — 1). Thus we can apply Theorem 1 to each of the
pf — 1 functions w*(t), with n ^ mF + mF(s — 1) = mFs.

Hence M ^ 2pd(p/ — l)mFa < 2p2dmFs, and recalling inequality (5), we have
the claim. U

2. NUMBER OF SOLUTIONS OF CERTAIN CONGRUENCES

It is evident that using the representation of a generalised exponential polynomial
(1) as in the proof of Corollary to Theorem 1 and utilising bounds for the number
of solutions of polynomial congruences leads to bounds for the number of solutions of
congruences involving these generalised exponential polynomials.

Let OK be the ring of integers of K and let a be an integral ideal of OK •
Let Mjfc(DK,a) denote the set of polynomials

P{t) = ootk + M*" 1 + . . . + ak 6 OK[t]

of degree at most k and with gcd(do,... , a*) prime to a. Set

rk(OK,H,a) = majL{p(P,H,a): P G Mk(QK,a)}
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where p(P, H, a) is the number of solutions of the congruence

P ( t ) = 0 (modo), t = l,...,H.

In the.case K = Q, when we have congruences modulo a positive integer q £ Z,
bounds for Tk(H,q) = Tk{Z,H,q) are established in [10]: For any e > 0 we have

rk(H,q) =

where 0k = (Jfe — 1)/Jb(fcs — k2 + l) ; and for small H there is the sharper bound

with the constants implied in the O-symbol depending only on k and e.

We obtain a bound for congruences modulo a power of a prime ideal o = p r , which

is new even in the case K = Q and p = p.

LEMMA 3 . There exists a constant C, depending only on the ramification index

e and on k, such that

PROOF: Consider a polynomial P G M*(DK,pr)- Plainly, it suffices to show, with

U = [p~r^e*J > aLa^ f°r integers v, that the congruence

P(t>+u) = 0 (modpr), u = l,...,U

has at most k solutions.

Suppose there are A: + 1 solutions 1 ̂  «i < . . . < UA+I ^ U of the congruence.
Thus

oidP(uj)^r/e, j = 1,... ,k + l.

On the one hand, by the Lagrange interpolation formula we have

and on the other hand, for each j — 1,... , k + 1

That is absurd because P G Aft(DK, pr) - Mk(Ojn, p). D

Given a generalised exponential polynomial (1) and an integral ideal a, denote by
, a) the number of solutions of the congruence E(n) = 0 (mod o) , n = 1, . . . , N.
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THEOREM 2 . Suppose that the generalised exponential polynomial (1) with co-
efficients Fi(x) £ E[x] of degree at most F and exponents «i(s) £ Z[x] of degree at
most a, has only a £nite number of zeros in Zp. Select the rational prime p so that it
is relatively prime to each of the roots ^,-. Tien there is a constant c depending only
on E and p such that

(6)

where L = mFs — 1.

PROOF: It is clear that we can choose 6 positive such that

ord ( ^ ( P / - 1 > 8 - l ) > mFs/{p - 1).

Accordingly, set H = \_N/p0(pf — l)J + 1. For A; £ Zp we consider the function

Pk(t) £ Zp[t] denotes the polynomial P( t ) determined by Lemmas 1 and 2.

Then we can proceed as in the proof of the Corollary to Theorem 1 and in the proof
of Lemma 2 of [6], but with e = (mFa — l ) / ( p — 1). Thus we see that the degree of the
polynomial Pk{t) does not exceed degPk(t) ^ mFs - 1 +(mFs - 2)/e(p - 1) < mFs.

Suppose fk is the largest p-adic order of the coefficients of Pjt. It is clear that as
k varies in a complete residue system modulo p e ( p ' — l ) the 7* are bounded by some
constant 7 that depends only on E and p , and not on r.

Then, if r > 7 ,

k (mod p)

Evidently, the polynomials Pkp * satisfy the conditions of Lemma 3 and we have the
bound (6). D

3. CONGRUENCES FOR RECURRENCE SEQUENCES

We obtain more precise bounds for the case of recurrence sequences.

Let (afc) be a nondegenerate recurrence sequence of integers of K given by (2). It

is well known that its terms can be represented in the form
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where O j g K are the distinct roots of the characteristic polynomial and their respective
multiplicities n,- control the polynomial coefficients Ai(h) G K[A], which have degrees
respectively at most n^ — 1.

Given an integral ideal a of IK, denote by TZ(H, a) the number of solutions of the
congruence

ah~0 (mod a), h = l,... ,H .

In [8] it is established that

(7) K(H,a) < Cff/log(Norma + l) ,

with a constant C > 0 depending only on the recurrence relation, and not on the
initial values of the sequence. It is a simple matter to give an explicit expression for
the constant C using a bound on the number of zeros of recurrence sequences.

Notwithstanding its simplicity and generality, the bound (7) is nontrivial for all H
and a and it yields useful results on the arithmetical structure of recurrence sequences;
for such see [9].

Moreover, it is shown in [8] that the bound (7) cannot be improved for general
ideals a. The simplest example is K = Q, a^ = 3h — 2h, and the congruence is taken
modulo q = 3 m — 2 m ; that is, o is the principal ideal (q) in Z.

However, for the case of a prime ideal o = p, and constant coefficients Ai(h), a
different bound follows from the general bound proved in [11] for the number of zeros
of exponential polynomials over an arbitary ring R without zero-divisors.

For i = 1, . . . , n let A{, ctj 6 R be nonzero elements of R and let t be the smallest
positive integer so that, for i ^ j , a\ — aj-; if there is no such integer t set t = oo.

Define the sequence of rational numbers (tfj.) by 62 = 1 and the recurrence

Then the number M{H) of solutions of the equation

does not exceed

(8) M{H)

of course t = 00 means our omitting the second term on the right.

Now, suppose that the constant coefficient sn of the characteristic polynomial
S(X) and p are co-prime. We take r to be the smallest positive integer with aj" = a j
(mod p) for some t ^ j .
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Suppose that at least one term of the sequence (o^) is prime to p. Then

(9) Tl(H,p) < 2n(H1-6n + Hr'6").

This bound seems stronger than (7) but the difficulty lies in obtaining a lower bound
for T. Of course we have r > clogp with some positive constant depending on
ax,. . . , a n i but such an estimate yields a weaker bound than (7). We also note that
Si > exp (—clog2 /) where c > 0 is some absolute constant and that a similar bound to
(9) can be proved for an arbitrary ideal o at the cost of a more complicated definition
for r .

The bound (8) is applied in [11] to a problem in computational number theory on
constructing primitive normal bases in finite fields.

THEOREM 3 . Let (fflfc) be a nondegenerate recurrence sequence given by (2).
Suppose that p is prime to 8n. Then there exists a constant c > 0 depending only on
(an) and p such that {or each natural number r,

(10) Tl(H,pr) ^

PROOF: We recall that a nondegenerate recurrence sequence always has only a
finite number of zeros; see [4, 6].

Consider the functions

Vk(t) = f ; M(Pf - I)VH + *)«,(p /- l K < + t .

It is plain that for 6 large enough we have

ord (a(P'~l ) j>8 - l ) > n/(p - 1), i = 1,. . . ,m.

Hence, if for i = 1,... ,m we define the frequencies Ui by the equations

expo;; = a) ,

then we have ordw; > n/(p — 1), as in [6, Section 3].

Thus we can apply Lemma 2 of [6] with e = n/(p - l ) - l / ( p - 1) = (n - l ) / (p - 1).
By [6, Lemma 2] we see that the degrees of the polynomials Pk corresponding to the
polynomial P(t) of Lemma 2 do not exceed

deg Pk < n - 1 + (n - 2)/e(p - 1) = n - l / ( n - 1) < n .

Now we can repeat the proof of Theorem 2 mutatis mutandis using in the corresponding
places the bound deg Pk ^ n — 1. D
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4. AVERAGE P-ADIC ORDER OF A RECURRENCE SEQUENCE

Suppose that a recurrence sequence (ah) has no zeros and denote by Xp(-^0 *n e

average p-adic order of o i , . . . , OH ; that is,

H

h=i

THEOREM 4 . Let (ah) be a nondegenerate recurrence sequence given by (2).

Suppose that p is prime to sn. Then there exists a constant Xp depending only on

(ah) and p such that as H —> oo, Xp(B) — Xp + °(1)-

PROOF: Let 0P(H) = max{ordafc : h = ! , . . . , # } . It is clear that

Xp(H) = H-i
( 8 = 1

Let T ( P ^ ) denote the smallest period of the sequence (ah) modulo p&. Then

It is known that there exist positive constants c\, c-i depending on (a/,) and p only,
so that

C1P0 <T(PB)< C2P0.

Thus for arbitrary integral positive 7 we have

It follows from the bound (10) of Theorem 3 that

/3=1

converges to a finite value that we denote by Xp • Moreover

0=1

https://doi.org/10.1017/S0004972700012065 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012065


[11] Zeros of exponential polynomials 411

where L = d(n — 1). Applying the bound (10) to the second sum we get

H'1

/8=-r+i

Thus X,(B) = xP + Ofr-^"-1) + F - V + J - '
If we choose 7 so that pi ^ jj<=("-i)/("»-e+i) < p 7 + i ( then we obtain

For the final step we need the deep result that it can be shown that

For this and related results see [7] or [2]; and [4] and its references. D

The main disadvantage of the theorem is its ineffectivity; the upper bound 0P(H) =
o(H) is not effectively computable. On the other hand we can use a trivial effective
upper bound of the kind (3P(H) = O(H) and prove that the average value Xp{H) ls

bounded by some effective constant C depending only on (a/i) and p.

5. REMARKS

It is not difficult to see that more complicated computations would allow one to
improve and generalise some of the bounds presented here. However, it is not clear
whether it is possible to omit the condition that p be prime to all the a; without a
quite new idea. Were this achieved it would yield a solution to a longstanding conjecture
to the effect that the number of zeros of a recurrence sequence can be bounded in
terms of (the field of definition and) its order n only. In this sense, in the bound
(n — l)(4(d +w)) , the 'bad' parameter is w, the number of different prime divisors

of the roots a j . Using the ideas suggested by Cassels [1], it is possible to replace the
bound by one of the shape

C(K)nu;loga>.

This result would be better with respect to w other than that it contains a large, though
effectively computable, constant C(K) depending on K.

Another problem is to get an effective upper bound for the constant in Theorem
2; recall that in Theorem 3 this is possible since we have the bound (7). With that
done one would obtain a lower bound for the number of different prime divisors of
general exponential polynomials; compare [8, 9]. Also, it would be useful to prove (9)
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for arbitrary nondegenerate recurrence sequences, that is, to omit the condition that
the characteristic polynomial has distinct zeros.

It would also be interesting to consider recurrence sequences over other rings, for
example, over function fields; here it seems feasible to utilise the bound (8).

Probably the most serious unsolved problem in the study of arithmetical properties
of recurrence sequences is obtaining a nontrivial effective upper bound for the function
/3p(H) used in the proof of Theorem 4; relevant sources include [2] or [7], and [4].
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