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PROOF OF THE RADICAL CONJECTURE FOR
HOMOGENEOUS KAHLER MANIFOLDS

JOSEF DORFMEISTER

Introduction

In 1967 Gindikin and Vinberg stated the Fundamental Conjecture for
homogeneous Kéhler manifolds. It (roughly) states that every homogeneous
Kahler manifold is a fiber space over a bounded homogeneous domain for
which the fibers are a product of a flat with a simply connected compact
homogeneous Kéihler manifold. This conjecture has been proven in a
number of cases (see [6] for a recent survey). In particular, it holds if the
homogeneous Kéahler manifold admits a reductive or an arbitrary solvable
transitive group of automorphisms [5]. It is thus tempting to think about
the general case. It is natural to expect that lack of knowledge about
the radical of a transitive group G of automorphisms of a homogeneous
Kéhler manifold M is the main obstruction to a proof of the Fundamental
Conjecture for M. Thus it is of importance to consider the Kéhler algebra
generated by the radical of the Lie algebra of G. Computations in this
context suggest that one rather considers Kéahler algebras generated by
an arbitrary solvable ideal. In this context the Radical Conjecture for
Kahler algebras was formulated [6]: Assume that the Kéahler algebra
@, %, j, p) is generated by a solvable ideal t of g, i.e. g=t+jr+Ff, then
g=3-+f, where 3N =0, j3C3 (after an inessential change of j), and 3 is
a solvable Kéhler algebra.

If ¢ is abelian, a direct proof of the Radical Conjecture can be given
(following closely a proof of Gindikin, Piatetskii-Shapiro and Vinberg [8].
A proof of the Radical Conjecture proceeds by induction on dim t. It was
started in [6]. Since the case that r is abelian was already settled one
considers a maximal ideal n of g properly contained in t and sets g’=n
+jn+t For this Kihler algebra the Radical Conjecture already holds.
Generalizing constructions of Gindikin, Piatetskii-Shapiro and Vinberg it
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was shown in [6] that only three cases have to bz considered (one is that
n4jn is essentially an abelian Kéhler algebra, the other two are character-
ized by the distributions of eigenvalues of a maximal idempotent in &/,
where &' is associated with g’ via the Radical Conjecture, g’=35"+¥).

In the present paper, we continue and finish the proof of the Radical
Conjecture.

The details are rather technical and involved. We thus only want
to point out that in Case 1 (where n-jn is essentially abelian) we prove
a statement which is stronger than the Radical Conjecture. In Case 3 we
combine the description of the representations of sl(2, Z) with results on
the Kantor-Koecher-Tits construction of Lie algebras with more standard
techniques of K3ihler algebras to prove the Radical Conjecture.

Finally, we would like to note that the Radical Conjecture and a
substantial part of its proof have been used in the recent proof of the
Fundamental Conjecture (jointly with K. Nakajima).

I would like to thank K. Johnson for making me aware of [16] and
E. Neher for helpful discussions and information about Jordan triples (the
structure of which is used in case 3).

I would like to express great appreciation to K. Nakajima for his
careful reading of a preliminary version of this paper, in particular for
many critical and helpful remarks and for simplifying Lemma 1.5, Lemma
2.17 and section 3.7. He also pointed out to me a subcase of case 3 which
was not discucssed originally.

§1. Case 1: The Lie algebra n-+jn is the modification of an abelian
Kihler algebra

1.1. As in [6; 4.33] we consider a Kahler algbra (g, %, j,0) and a
solvable ideal t of g satisfying g=t-+4jr+f. We assume that the Radical
Conjecture holds if dim t< N—1. We assume dim t=N and we may assume
1Cnil(g). Moreover we can assume that the dimension of tr is minimal
among those solvable ideals u of g for which g=u-+ju+f holds. We choose
an ideal n of g which satisfies t2nD[t, r] and is maximal with this pro-
perty. Because the case of an abelian t has been settled in [6] we can
also assume n=~0.

We set g¢’=n+jn+f and apply the Radical Conjecture to g’. Hence
g’=a-+1t+f where a+t is a solvable Kahler algebra. The case under
consideration in this paper is defined by t=0, i.e. g¢’=a+{ where a is the
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modification of an abelian K&hler algebra. Such algebras have been in-
vestigated in [5].

1.2. From [5; 3.3] we know a = n + ju=4a, + &, where §, is an abelian
ideal of a and @, is an abelian subalgebra. Moreover 4, = [a, a]. Because
n acts nilpotently on g we have [n,n] = 0. Set n, = §,Nn and n, = §,Nn.

LemMMA. 1 =1, + 1.

Proof. Let nen and n = a, + @, ¢,€ 8, From the fact that a is the
modification of an abelian Kéhler algebra we get [b, n] = D(b)n — D(n)b
for all bea. As adn is nilpotent we have D(n) = 0. Further, from [5: 3.3]
we know D(b)&, = 0. Therefore [b, n] = D(b)a,en for all bea. Using d,
= [a, a] we derive from this a,en. The lemma follows.

1.3. We note that n, + jun, is contained in the commutator &, = [q, al
of the solvable Lie algebra a. Hence ad(n, + jn,) is a commuting family
of nilpotent derivations of g. In particular we have [n, 4+ jn, n] = 0.

In contrast to this the family ad(n, 4 jn,) is abelian but does not
consist in general of nilpotent derivations.

1.4. Consider ¢’ = a + . From the Radical Conjecture we know aN{
= 0 and a is a solvable Kahler subalgebra of g’. Let {,Cf be an ideal of
g’. We know that f is the Lie algebra of a compact group and f, is an
ideal of f. Hence [ = (z, + 2)DLPE where f, = [[P3, [, I semisimple,
3 31 abelian. Let § be a maximal semisimple subalgebra of g’ containing
Y/®¥f. Then f, is an ideal of § and we get § = §) @Y. Moreover, [radg’
+ b, %] = 0. Since nCradg’ we can assume w.r.g. that jn projects trivially
onto f;. Hence [a, ] =0 and ¢’ = (a + 3, + 3 + H)D¥ is a direct sum
of Lie agebras. Moreover, 3, is an ideal of g’ and 3 Cradg’. But 3N
nil(g’) = 0 since nil(g’) operates nilpotently on g whereas ¥, acts semisimply.
From this we conclude [g’, 3] = 0.

Therefore, when considering g’ only, we may assume that [ does not
contain any ideal of g’. But then we have a faithful representation » of
g’ as affine transformations of the complex vector space a. The elemants
of f act linearly on a and the elements of a by z+—a + D(a)z, zea, aca
(see [5; 3.5]). Considering the linear parts of these transformations we
see that D(a) + (f) = ® is a Lie algebra of skewadjoint endomorphisms
of a; moreover, D(a) is an abelian subalgebra, (f) is a subalgebra and
(possibly changing j inessentially) we also can assume D{a)N(f) = 0. We
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split & = @@, + 8 into simple summands &, and its center 8. Applying
[16: Theorem 1.1] to the projections D.(a) and ,(f) of D(a) and +(f) onto
®, shows that D,(a)C+(f) holds. Therefore D(a)C+(¥) mod center (D(a)
+ (£)). This implies:

LEMMA. After an inessential change of j we can assume [D(q), v (¥)]
= 0.

For the original Lie Algebra g’ (ideal in f permitted) this implies (after
some inessential change of j):

CoroLLARY 1. a) [f,a] Caq,
b) D([fa]) =0,
c) [D(a),ad¥|a] = 0,
d) [adf|a,j]= 0.

Proof. Write f = 3 + I + [, and represent a by affine transformations
on some complex vector space (=a). Then [k, a] = [(0, v (k)), (a, D(a))] =
(W (R)a, [v(k), D(@)]) = (¥ (R)a, 0) = (y(k)a, D(y(k)a)) — (0, D(y(k)a)) where
the last summand has to be in f. By our assumption, we may assume
a = jn for some nen, whence V(k)a = i(y(k)n). Changing j on (k)n
inessentially we obtain D(@i(y-(k)n)) = 0, proving a) and b). Part ¢) has
been known before and d) follows from a).

We retain the notation of 1.2 and 1.3 and write &, = &, + 8, as in
[5: 3.3].

CororLLARY 2. a) [f, 4;,] C &y,
b) [f, an] = Oa
c) [t &) C a,.

Proof. Since [f, a] C a and G, = [q, a] part ¢) is clear. We know that
f acts skewadjoint on a, whence [f, @] Ca,. By Corollary 1 we have
[, a,] C &, and a) and b) follow.

1.5. Let nen, and write adjn = D + N where D is the semisimple
part of adjn and N its nilpotent part.

The proof of the following lemma is a simplified version of the author’s
original proof. We follow a suggestion of K. Nakajima.

LEmMa. For nen, the semisimple part D of ad jn has only imaginary
eigenvalues.
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Proof. Let R be the real part of D and ¢ = @ g, be the decomposition
of g into eigenspaces for R. Because D|g’ has only imaginary eigenvalues
we get

(1) ¢’ Cg.

The integrability condition of g implies [jn,jx;] = j[jn, x;Jmodg’ for all
x,€g, Therefore

(2) imCat+yg.

Moreover, by an inessential change of j we may even assume

(3) jmuC g+ n+yn

Let 2 be the eigenvalue of R with maximal absolute value. We may assume
A>0. Suppose 2> 0. Then [g; g,] = 0. Therefore

(4) g, + n + jn is a solvable Kihler algebra.

By [56] we know that adjn has only purely imaginary eigenvalues in this
algebra. This is a contradiction; hence we obtain 2 = 0, finishing the
proof of the lemma.

1.6. In the last section we have seen that the semisimple parts of
elements of 1, have only imaginary eigenvalues. In the following sections
we show that, by a change of p and a modification, we can remove these
semisimple parts entirely.

We consider the eigenspace decomposition of g relative to — D?, D
the semisimple part of ad jn, nen,. Then there exist subspaces g,, « >0,
and an endomorphism I of g such that

1) I'=—id,

2) Dl|g,=al,

3) g=>Dg..
a>0

From Corollary 1, a) of 1.4 we know that a is an ideal of ¢’ = f + a.
Since a is solvable we have a C radg’. Therefore [f,a] C [¢/,g']Nradg’
= nil(g’). In particular ad[f, a] is nilpotent on g. Moreover, from Corollary
1. d) we derive j[f, n,] = [f, jn] C [, a]l. Hence adj[f, n,] is nilpotent. Hence
we can (and will) assume that n is taken from some f-invariant complement
of lf,n,] in n,. But then [t,n] = 0.

1.7. 1In this section we want to prove that (after an inessential change
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of j) we have

LEmMMA. a) jg, C g, for all «.
b) Djx, = jDx, for all « and all x,eg, .

Proof. From the integrability condition we get
(1) [jn,jx.] = jljn, x,]J mod ¢’ for all x,eq,.
Because ad jn leaves g’ invariant, we also have
(2) Djx, = jDx, mod g’ .

This implies
(3) J8. C 8.+ ¢

Hence, for x, € g, we have jx, = ¥, + 8 + 2.4 85 Where g;eg; and — w.r.g.
— grea. We want to use this expansion of jx, in the integrability con-
dition [jn, jx.] = jljn, x.] + jln,jx.] + [n, x,] + k. Therefore, we have to
study [n,jx,]. It is easy to see that g; C d, for all B+ 0. Hence [n, gj]
=0 for all p+0. From the description of a we derive immediately
Qg =G, + (Qén ao) + L

But ne d,, whence [n,d,] = 0. Moreover, n < nil(g) implies [n, ] = 0.
We have thus shown [n;, a] = 0, and in particular

(4) [n,jx.] € gl for all x, € g,.
But g} is j-invariant for all 2, whence
(5) Lin, jx] —jlin, x.] € g + .

From Corollar 1, d) of 1.4 and our choice of n we know [jn, f] = j[n, ]
= 0. In particular, Df = 0. Because [jn, g.] C g, we derive from (5)

(6) Djx, = jDx, + g/ + k" for some g’eg., k’et.
Applying D to (6) we get Dix, = — ojx, + g’ + k. We compare
the y-components and see — /*(jx,), = — a*(jx,), for u # «, 0. This implies

Jj8. C g. + & and in particular, jg, C g,. Let a # 0. Comparing for y = «
and p =0 gives g/ =0 and (jx,),€f. This implies jg, C g, + f. After
an inessential change of j we can assume (proving a)).

(7) ja. <g. for all a.

It is easy to verify that for every @, g(a) = @ncz8.. IS a j-invariant
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subalgebra of g. Moreover, g, = 1, + jr;, for 2+ 0 and g, = 1, + jr, + I
Therefore we can apply the induction hypothesis to g(a) when g(a) # g.
In case g(a) #+g for all «, the lemma follows. Assume now g(a) = g.
We can assume « = 1. Applying the induction hypothesis to g(m), m
= 2,8, --- we see that the lemma holds for all m = 1. We write ad jn
= D + N, where N is the nilpotent part of ad jn, and use the induction
hypothesis for g(2) to see for x,, y, € g,: (d/dt)p(e"x,, 7"y,) = p(jn, e®d"
X [x, y:]) = o(jn, e'?e'¥[x,, y.]) = p(jn, e*[x,, y:]). Here the last term is a
polynomial in . An integration yields

(8) p(e™ " x,, et my) = p(xy, y,) + et + oot + - - .

We have e/ = e'Ve¢!® where e'’x is bounded for all xeg and ey is a
polynomial in ¢. Comparing like powers of ¢ on both sides gives

(9) p(e®x, e?y) = p(x,y)  for all x,, y,eg,.

In particular, we obtain p(Dx,, y,) + p(x,, Dy,) =0 for all x,, ¥, € g,. Applying
this to y,eg, and x,egi = {x,€g;; p(x;,87) = 0} we get Dgicgl (since
Dg! C g! anyway). We also have jgi C gi. Finally, from (6) and (7) we
know Djx, = jDx, + g{,, where g{egl. For x,egi we obtain g/ef. If
x, €0, A0, then g{ = 0. If x,€g, then g/ = 0, since D commutes with
jin g,, This finishes the proof of the lemma.

1.8. Let 2 be the closure of {exp D; D is the semisimple part of some
adjn, ned,} in Gl(g). Then 2 is an abelian compact group of automor-
phisms of g. Moreover, 2 acts trivially on f and commutes with adf on
a by Corollary 1, ¢) of 1.4 and with j by 1.7. Also, if x¢f then Wxe¥
for all We 2.

We consider the skew from § on g given by

(1) o) = | o(Wu, Woydw,

where dW denotes the normalized bi-invariant Haar measure of 2.
It is easy to verify (3.4) through (3.7) of [6; § 3]. Hence we have

LemMa. a) (g, %,],p) is a Kdhler algebra.
b) The semisimple parts of adjn, n €@, are skew-symmetric relative
to § and commute with j.

1.9. We want to consider modifications of g, for which adjn is
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nilpotent for all nen. The modification map has to vanish on [g,g]. We
therefore prove

LEMMA. After an inessential change of j we may assume that
ad(jnN[g,ql) consists of nilpotent elements.

Proof. Suppose jnelg,g] and denote by D the semisimple part of
adjn, then adjnecladg, adg]l = m. But m is an algebraic Lie algebra,
whence D e m. Hence, by the appendix we can write D= D, + D,, [D,, D,]
= 0 and we can find a maximal semisimple subalgebra § of ¢ and A,c}
such that ad b, D,. Moreover, D, erad[adg, adg]. But this radical con-
sists only of nilpotent endomorphisms, whence D, = 0. Clearly h,eg,
where g, is defined in 1.6. If D + 0 we have g, +#g. Moreover, from 1.7
we can easily derive that g, is a Kéhler algebra and g, = (xNg,) + j(xNg,)
+ f. We can apply the induction hypothesis to g,. Since ad h, is skew
adjoint relative to g we have g(h,, [g, g]) = 0 by the closedness condition.
This implies in particular (A, § + nil(g)) = 0. Let q be a complement of
nil(g) in radg which is Y-invariant. Then [h, g] = 0. But then §(q, 5) =
0(q, 15, 9]) = 0. In particular (9, g) = 0. Therefore g(h,g) = 0. In par-
ticular 0 = §(jh,, h,), whence h,cf. From [A, f] = Df=0 we get h,¢e
center(f). Now we introduce an inessential change of j by redefining j
on a f-invariant complement 0, of [f,n,] in n,. For neb, we set j'n = jn
— h,. Then adj’n is nilpotent for all nen such that adjne ad[g,g]. We
will also assume that the center of { is j’-invariant.

We claim that n 4+ j'n is a solvable algebra having all properties of
Corollary 1 of 1.4. We note 4, + [}, 4] C n + jn and [n + jn, n + j'n] C
[a + f, a + f,] where f, denotes the center of {. Hence the last commu-
tator is contained in @&, + [f, a]. But [f, a] € &, + [f, 4,] and n + j'n is a
solvable subalgebra of g. Moreover, [f,n + jn] C [f,a + £] = [, a] C &,
+ [f,a] Cn+jm and [k, j'x] = [k, jx + k] = [k, jx] = j[&, x] = j[&, %] for
all xen + j'n since ad[f, a] consists of nilpotent endomorphisms. There-
fore, using j’ instead of j we may assume that jn [g, g] operates nilpotently
on g. This proves the lemma.

1.10. From 1.9 we see that the elements of ad(jnN[g,g]) have no
semisimple parts. Denote by v an algebraic complement of jnNIg, g] in
jn. We can assume v C 4, We split adjn = D(jn) + N(jn) for every
jn € b into semisimple part D(jn) and nilpotent part N(jn) and define a
(modification) map D:g — Derg by D([g,g]) = 0 and D(b) as above and
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trivial otherwise. It is easy to verify the properties (3.1) to (3.4) of [5]
for the map D and the Kahler algebra (g, f,j, §). Moreover, as D(jn) is
the semisimple part of adjn we know D(jn)g C [g,g]. Hence [5: 3.5] is
satisfied.

We define a new algebra structure on g by setting [x, y]' = [x, y] —
D(x)y + D(y)x, x,y € g.

A straightforward computation shows

Lemma. (g, [+, -1, %7, p) is ¢ Kdhler algebra.

It is clear that t and n are also ideals of (g, [-, -]1). The subalgebra
n + jn is now abelian and acts nilpotently on g. Moreover, it is easy to
verify that the Radical Conjecture holds for (g, [-, -1, £, j, §) iff it holds for
@ [ 1,57, 0

Therefore, from now on we assume (w.r.g.) that a = n + ju is abelian
and ad a is nilpctent for all ae a.

1.11. We want to follow the proof of [5; § 6]. Therefore, we consider
the set v = {xeg; ad x|n and adjx|n are skew adjoint relative to (-, ->
= p(j-, -) and commute with j}. Put o = {xew; [x, n] = 0}. Clearly, tv
is j-invariant (since f is skewadjoint on a and commutes with j.)

LEMMA. [a,g] C 0.

Proof. Note [[jn, x], m] = [jn, [x,m]] = 0 for all n,men, xeg. Also
Lilin, x], m] = [[jn, jx] — j[n,jx] — [n, x] — k, m] = —[k, m] for all n, m e n.
Hence [jn,g] € . Clearly, [n,g] © n C v. Hence the lemma.

1.12.
Lemma. p([q, 0], 0) = 0.

Proof. Let wei and n, n', m, m'en. Then p([n' + jn, w}, m' + jm)
= p([jn, w], m' + jm} = — p(lw, m' + jm], jn) = — p([w, jm], jn) where we
have used the fact that a is abelian. Using the integrability condition for
g we get p([w, jml), jn) = —p(jlw, jm], n) = —o([jw, jm] — jljw, m] — [w, m]
— k, n) =— p([jw, jm], n) — p(ljw, m], jn) = o([n, jwl, jm) — p([jw, m], jn) = A.
Set S(jw) = adjw|n. Then we get A = — p(S(jw)n, jm) — p(S(jw)m, jn)
= — p(S(jw)n, jm) + p(jS(jw)m, n) = 0 because S(jw) is skewadjoint rela-
tive to <{n, m) = p(jn, m).

CoroLLARY. p((ad a)’g,a) = 0.
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1.13. Using the above corollary we see

LEMMA. p(ef*?x, e **y) = at* + bt + ¢ for h e a, x,y € g and some
a,b,ceR.
dZ

d3
Proof. We know — p(e'®d*x, e'*dty) =

(h, e**[x, y]) = p(h, (ad h)**)

= 0. Hence the lemma.
1.14. Next we want to prove the following easy
LEmMA. (ada)7jx = j(ada)'xmodg’ for all aca, xeg.

Proof. The claim is trivial for r = 0. For r = 1 we split a = n’ 4 jn,
n,n’ en and see that it suffices to consider ¢ = jn. But here the claim
follows immediately from the integrability condition. Let now r>2. Then
(ad @)jx = (ad @)(ad @) Yjx = (ad @) {j(ad @) 'x + g’} = j(ad a)’x + g” with
some g’,g"eg’.

1.15. The trivial results above can be combined to give.

LEmMMA. (ada)g C 1.

Proof. bt* + ct + d = p(e™[a, [a, x]], e**%[a,y]) = ple**[a, [a, x]],
je*la, y] + g) = — (e'"™[a, [, x]], e***[a, y]) where x, yeg, aca. With
y = [a, x] we see that B = |e'*“(ad ¢)*x|* is a quadratic polynomial in ¢.
We know that ad e is nilpotent, hence B is a polynomial in ¢. Let ada
be nilpotent of degree s, i.e. (ada)’ = 0, (ada)*~* + 0. Then B is a poly-
nomial of degree < 2(s — 3) and the coefficient of £**-® is |(ad a@)*~'x[*. If
2(s —3)< 2, then s<4. If 2(s — 3)> 2, then (ade)"'g Cf and the
highest term in B is at most of degree 2(s — 4). Suppose also 2(s — 4) > 2,
then by the same argument as above, (ad a)**g C f. But then (ada)*~'g C
[a, 1N E = 0. Therefore 2(s — 4) < 2,i.e. s < 5. As seen above, this implies
(ad @)'g C f. Hence in both cases, 2(s — 3) < 2 and 2(s — 3) > 2, we have
(ad @)!g C f. Choosing ¥y = x above and again comparing highest terms in
t we get even (ada)’g C f. Finally, we consider C = — (e'"*[a, %], e*%°x)
= p([a, x] + tla, [a, x]], jx + tjla, x] + (1/2)¢%[a, [a, x]]. We know j[a, x] =
[a, jx] + g’ and j(ad a)*x = (ad a)’jx + g” where g’, g7 e g’. We note that the
coefficient of £ equals — (1/2)|(ad @)’x|* = (1/2) p((ad a)x, (ad a)}jx) by Corol-
lary 1.12. Hence, altogether, we get C = p(e**“[q, x], e***jx) + p(f) where
p(t) is a quadratic polynomial. Applying Lemma 1.13 we see that actually
C is a quadratic polynomial. Therefore (ad a)’g C f.
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1.16. Later we will frequently use the following.

LEMMA. a) a C rad(g)

b) [a, gl C nil(g).
¢) (ada)}=0.

Proof. It suffices to prove a) for an element of type jn, nen. We
work in § = gfradg. Suppose adjn #+ 0 on §. Then 0 # X = jn mod rad(g)
is nilpotent in the semisimple algebra §. Therefore, by the Jacobson-
Morozov-Theorem there exist y, 4 e § such that R% + Rh + Ry = sl(2, R).
In particular (ad X)) = 2. On the other hand we know (adjn)’g C t
mod rad(g). Hence % € f mod rad(g). Since f acts semisimple on g (and on
g and % acts nilpotent, ¥ = 0. This is a contradiction and % = 0 follows,
whence a). Part b) is a trivial consequence of a). To prove ¢) we combine
a C rad(g) with Lemma 1.15 and get(ad a)’g C nil(g)Nf = 0.

1.17. Eventually we want to generalize the proof of [5; § 6] to our

setting. We therefore consider §* = [jun,g] + g’. Note [jn, g] C nil(g) by
1.16.

LemMma. a) §“ is a Kdhler algebra.
B) 5= @NEY) +iENE) + 1.

Proof. a) Clearly [n,§"]  §". Because (adjn)’ = 0, we also have
gl clin,gl c g’ c 8. For ket we get [k [jn,gll C [jlk nl, gl +
bin, gl € §. Finally [[jn, x], [jm, y11 = [jn, [x, [jm, y]l] € §’ because (ad jn)*
= 0. This shows that §¢ is a subalgebra of g. The integrability condition
implies that § is j-invariant.

b) We have [jn,jr] +jljn, rJmodg’. Therefore [jun, t] + n + j([jn, ]
n) + = §®. From this the assertion follows.

1.18. From the definition of §® it follows §* C nil(g) + £, where
nily(g) denotes the greatest nilpotent ideal of g[2; §4.4 and §5.3]. We may
assume that o = § N nil(g) is invariant under j. In particular, as ad a®
consists only of nilpotent derivations of g, we see that a® is abelian.

We would like to point out that a® = [jn, g] + n + jn C nil(g) holds.

1.19. Next we want to consider g = {xeg; [x,g®] C g®} where g®
=n + jn. Before we can show that g satisfies the induction hypothesis
we have to consider the vector space rNjt.

Let v = {xer;jxer + I}
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After an inessential change of j we can assume jxet for all xev. We
note that this can be done without changing j on tNg§®.

LEMMA. a) b= tNjt
b) joCo

Proof. Let xcv, then x, jxet and j(jx) = — x + k. Therefore jxev.
But then j(jx)et, whence ket and k= 0. Hence x = j(— jx) e tNjr and
b C tNjr. Let xerNjr; then xer and x = jy for some yer. Hence jx
= —y -+ k and xep follows. This proves the lemma.

1.20. LmMA. tNjr + n is an ideal of g.

Proof. We have to verify that v is mapped into v 4+ n by {, © and jr.
Let xe v = tNjr and y € v such that x = jy holds. Clearly [¥, x] C t; more-
over, [k, jyl = jlk,y] + % by the definition of a Kahler algebra. Hence
jlk, ¥] + K e, yielding [k, y] € b. Therefore &’ =0 and [k, x] =j[k, y] € tNjt.
Next note [r, t] C n. Finally, we consider [jr,p]. Then, with x and y as
above, we have [jr,jy]l = j([jr,y] + [r,jy]) + [r,y] + ke t. Because [r, y]
en, we obtain jz 4+ ke, where z= [jr,y] 4+ [r,jyler. This yields zeb
and k= 0. Therefore [jr,jyl€jv 4+ n < b + n. This finishes the proof.

1.21. From the last lemma we see that n C 9 + n C t is a chain of
ideals. We had chosen n maximal. Therefore either tNjr C n or tNjx
+n=rt. In the latter case we get g = tNjr+ n+ju+ {. Hence g =
radg + f. After an inessential change of j we may assume that radg is
J-invariant and the Radical Conjecture holds.

Hence, from now on we will assume tNjr C n.

1.22. Now we can return to the consideration of the subalgebra g©
= {xeqg;[x,g®] C g®} where g® = u + ju. Clearly, g’ C g©.

LemMA. a) g© is a Kdhler subalgebra of g.
B) g9 = @2ND +j@OND) + L.

Proof. a) Let xeg®. Then we have to prove that jx leaves g@
invariant. This follows from [jx,n] C n Cg® and [jx,jn] = j[jx, n] +
jlx, jn] + [x, n] + k; note that in the last expression all summands but &
are in the greatest nilpotent ideal of g. Therefore adk = 0. Hence k& = 0,
because we have assumed that g acts effectively on some manifold. But
this implies [jx, jn] € g®.
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b) Because f C g we have only to consider elements of type x = 7
+jreg®. Then [jn,x]eg®, i.e. [jn, 7l + [jn,jrl = [jn, Fl1 +jlin, r] +jln, jr]
+ [n,r] + keg®. Therefore [jn, 7] + jljn,r]eg’. Hence there exist a, b
e n, k' et such that [jn, 7] +j[jn,rl =a +jb+ k. This implies j([jn, r] — b)
=a — [jn, 7] + K/, whence [jn,r] — bev and & = 0. In particular [jn, r]
— ben. Hence we obtain [jn,r], [jn, Fle n. This implies [r,g®] C g®
and [F,g®] C ¢®, whence r, Feg®. We have shown g® C @®Nz) + j@©
N1t) + f. The opposite inclusion is trivial and the lemma is proven.

1.23. To be able to use the induction hypothesis for g we have to
exclude the case tNg = 1. But in this case g = g and g is an abelian
ideal of g. Consider u = {xegq, p(x; g®) = 0}. Then u is a Kéhler sub-
algebra of g and uNg® = 0. Clearly u = g/g®. Therefore we can apply
the induction hypothesis to u. So after an inessential change of j on u
we get a solvable Kihler subalgebra 3 of u satisfying u =3 4+ f, 3Nt = 0.
But the the Radical Conjecture follows with 8 = g® + &.

Hence, from now on we will assume ¢ ++g. From the last lemma it
follows that we can apply the induction hypothesis. So after an inessential
change of j we have g© = t® + a® + {, where t° 4+ a® is a solvable
Kahler algebra, ¢ is a modification of a normal j-algebra and a® is a
modification of an abelian Kahler algebra.

From 1.18 we know a’ C nil(g)Ng®. Therefore also a® + [a", g] C
nily (@) Ng®  nili(@®). It is easy to see that one can choose t® 4 o so
that nil,(g®) < t© + o holds.

LEMMA. a) a C a@.
b) §“ is a subalgebra of g©.

Proof. It suffices to prove [jn,g] C g®. It is easy to s22 that we only
have to note [jn, [jn,g]] = 0 C g®.

1.24. We want to generalize the proof of [5; § 6] to our setting. We
define g7 =g, g©® = t® 4+ a® + £, g® = a® and g® = n + jn.

We have seen above g¢™" D g® Dg® Dg®. Also, jg® < g®. By the
definition of g and g© we have [g¢-", g®] Cg® and [g*, g®] C g®. Further
we know [g®, g®] = 0 and [g?, g1 C g hence, in particular [g", g®] = 0.

LEMMA. The subspaces g% form a j-invariant filtration of the Lie
algebra g.
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Proof. We have only to consider two types of commutators.

[39,g"] Cg?: let x,e g and x,€g®. Because [, g®] Cg® C g we
can assume x;, = [jn, x] for some nen, xeg. Then [x, x] = [x, [jn, x]] =
Lin, [x,, 1] — [Ljn, x], x] € g™.

[g-",gP]Ccg®: let xeg and x, €g®. Then for all nen we have
ljn, [x, 1] = [[jn, «], x,] + [x, [jn, x,]] = 0 since g is abelian. This proves
the claim.

1.25. From this point on we can use large parts of the proof of
[56; §6]. We have the obvious identifications: g <> 3%, a® < qa, 19«3,
=} and n<g.

(1) Let xea® and adx = S + N be the decomposition of ad x into
semisimple part S and nilpotent part N. Then N C g®©.

Proof. See [5].

(2) We denote by 3 the principal idempotent of {® and define H,,
4 8, ¥ --- as in [5]. For an arbitrary nen we define (as in [5]) {abc} =
[[lin, ], b], c], @, b, c € 5.

(3) {abc} is invariant under permutations of a, b, c.

Proof. As in [7] one notes {abc} — {bca} = [[[jn, a], b], c] — [[[jn, b], a], c]
= [lJn, [a, b]], c] = O since [§*"", §V] = 0. Hence {abc} = {bac}. Moreover,
[[jn, a], b, ¢] — [[ljn, al, cl, 8] = [Ljm, a, [b, c]] = O.

We also have

(4) [jm, {abc}] = [[[jn, a, ], [jm, c]] for all men.

(5) H,jn,= — ajn, where ae{0, + 1/2}, n,en,.

The standard argument yields:

(6) [n.,gi”l1Cgle.

This implies

(7) 2¢e{a,a £ 1/2} where ae {0, + 1/2} if [jn,, g{™"] = 0. Eventually
we want to prove {abc} = 0 for all nen. It clearly suffices to prove this
for n = n,en,, «ae{0, +1/2.}. If jnen, then {abc} = 0. This implies that
we can assume « € {0, 1/2} since for « = — 1/2 we have jn = [s,n]en.

Suppose now that we can choose ¢c g™, begl™, cegl ™™, so that
{abc} #= 0. From the definition and the symmetry of {abc} we derive that
the commutators [jn,, al, [jn., b] and [jn,, c] do not vanish. Hence, by (7),

(8) 4 p,ve{a,a +1/2} where ae {0, 1/2}.

The argument of [5] carries over without change to prove

(9) 24+ p p+v, v+ 2€{a, 1+ a, 1/2 4+ a}, where a € {0, 1/2}.
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Next we prove a result similar to [5; § 6.15].
(10) [3g,6"] C {aea®; ada|a® + t© is nilpotent} + [t©, O],
Proof. Let xe[g,g®]. Then x e nil(g®) C 39 = 19 4 a® by the con-

vention 1.23. Hence [g, x] C 8®. We write x = ¢ + ¢; since ad x|3® is
nilpotent, ¢ e [t?, 1] and ad a|3“ is nilpotent. This proves the claim.

The next result is [5; 6.16] and is proven as there. Let
(11) Let g, €gq,, u, €3, v, €3d® and assume

n+&>0o0rp=¢=0, then [[g, u,],v] = 0.
This implies
(12) 3", 871,81 =0if p+ >0 0r p=§=0.

We want to apply (12) to [jm, {abc}]. First we note that there exists
some m = m, € n, so that @ = [jm, {abc}] # 0; otherwise all representatives
of {abc} are in g, whence {abc} = 0. We note that @ is symmetric in
a, b, c and in n, m. Therefofre p + — 1/2. Moreover, (8) and (9) hold for
B as well and comparing (4) and (12) we see that

13) @A@—a)+@—p<0and 2—a#+0o0orv—=+0.

The same relations hold for every permutation of 2, x4, v and transposition
of a, B.

If « + B, then we can assume o« = 0, 3 = 1/2. In this case relations
(8), (9) and (13) become

(8)Y 2 p,vef0, £1/2}N{0, 1/2, 1} = {0, 1/2}

(9)Y A+ g p+v2+vel0, 12, BN{1/2 1, 3/2} = {1/2, 1}

13y 2+ u,p+v, 2+v<1)2

Hence 2+ p=p+v=2+v=1/2. Using (8) we get a contradiction.
Therefore, we can assume a = f€{0, 1/2}. For « = 0 the relations (8),
(9), (13) give

(8Y" 2, pvef0, £1/2}

(9)Y 24+ pp+v,2+ve{0,1/2, 1}

a3y 24+ mp+v,2+v<0.

Hence 2 + g, 4 + v, 2+ v = 0. Therefore y = —2andv= — p = A. Since
(13) also implies 2= 0 or v # 0, 2, g, v #+ 0. Therefore 24 v=21+0, a
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contrradiction.
Finally, for 1/2 we get

(8)Y” 2 U VE {0, 1/2, 1}

(9)/// 1+ﬂ,ﬂ+y,1+ue{1/2, 1, 3/2}

13" 24 pup+v,2+v<1 and at most one of the numbers 2, y, v is
equal to 1/2.

This implies in particular that 1 is not attained in (13)””. Therefore 2 + p
=pu+v=2+v=12 Hence 2 p ve{0,1/2}. By (13)” two of these
numbers have to be 0, but then their sum is not 1/2, a contradiction.
Therefore we have proven altogether

(14) {abe} = 0.

This implies

(15) (8", gl, gl Cg©.
From this one derives as in [5]
(16) [lg*,¢l,6"1=0.

1.26. We consider 3 = Z(g®") = {xeg; [x,g"] = 0}. Because g® C g®
we have in particular [x,g®] = 0 C g® for all x€3. Hence 3 C g®. Again
we can take over the first part of the proof of [7; part III, Lemma 18]
without change and get

(1) 3Cg® is an ideal of g.
Obviously

(2) ¢ Cy.
(3) The Radical Conjecture holds for g.

Proof. We consider the solvable ideal 3Nt of g. From (2) we know
nC 3Nt Cr. Hence we obtain that 3Nt coincides either with n or with t.
In the latter case t C 3 Cg® and g = g follows. But we have settled
this case already in 1.23 and are considering here only the case g = g©.
Therefore 3Nt = n. Because g® C 3 we obtain ¢”Ntr Cn. In particular
[jn,tf] c n. But then [jn, jr] = jljn, rl + jln, jr] + [n, r] + k with some
ket It is easy to check that here all summands but %2 are contained in
nil(g). Hence adk = 0, whence & = 0. Therefore [ju,jr] Cg®. Finally,
[jn, ] = j[n, f] € jn C g® (where we have used once more Corollary 1, d)
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of 1.4). Altogether we have shown [jn,g] Cg®. From this we obtain
[a®,g] € g®. Hence g ©g®, a contradiction. This finishes the proof of
(8) and also shows that the Radical Conjecture holds in “Case 1”.

§2. Case 2: g=g,+ g

2.1. In this section we use g, t, 1,g’,t and a as introduced in 1.1.
Here t is a modification of a normal j-algebra and a the modification of
an abelian Kéahler algebra. Let e be the principal idempotent of { and
g = @g, the eigenspace decomposition of g relative to Re(adje). In this
section we consider the case where Re(ad je) has only the eigenvalues 0
and 1. We know that adje leaves invariant i, a, v, n and g’. Therefore
these spaces have an eigenspace decomposition as well.

2.2. In [6; 4.10] we have seen t, = n,., Here we want to prove
LEMMA. 1, =1, =g;.

Procf. Clearly, g, is an abelian ideal of g. Therefore (independent
of the induction) g, + jg, + f is a Kéahler algebra for which the Radical
Conjecture holds. Hence (after an inessential change of j) we can assume
that g, + jg, is a solvable Kéahler algebra. Let & be the maximal idem-
potent of g, + jg,. Then &= x, + jy, and [jé,je] = 0. But this implies
v, =0 and écg,. Therefore [je,é] =é. Hence we obtain e=¢ and g, =mn,
follows.

COROLLARY. ¢, + jg, is a modification of a normal j-algebra with
principal idempotent e.

2.3. Let ¢ be a minimal idempotent in g,. Then [jc,c¢] = ¢ and (in
the underlying normal j-algebra) {x €g,; (je, x) = x} = Rec.

We consider the eigenspace decomposition of g relative to Re(adjc),
g = P.ecrd'®. Where necessary we write g = g‘(c). We recall that
subscripts refer to weights relative to ad je, g, etc.

We know that jc leaves g, gy, t, 1, t, a and ¢’ invariant. Hence we
also have a decomposition of each of these spaces relative to ad jc.

Note that the weights of adjc in g, + jg, and in jg, + f are 0, + 1/2, 1.
Hence, if a == 0, 4+1/2, 1, then ¢® C g,. Moreover, by the usual argument
jgP Cg® + g’

2.4. We can use the proof of [9; Lemma 4.2] and obtain
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Lemma ([9]). Let ge€g'® and jg =g + x + jy + k where geg'®, x,y
eqg, and ket. Then x,yc (@ + g*")Ng,.

2.5. In this section we prove

LEMMA. ¢ =0 if a ¢ -;—Z.

Proof. Let M = {a ¢ (1/2)Z;g3” ++ 0}. We choose a € M so that |a|
is maximal. Then [g,g,] = 0 and in particular [g,c] = 0. We will
show that ad(R + Rjc) is a ‘‘symplectic representation” of Rc + Rjc on
g®. Then, by [8, sect. 2,3] we know that ad jc has only the weights 0,
+1/2 on g‘© yielding a contradiction and proving the lemma.

(1) ja0 Cg@ + 1.

This follows from Lemma 2.4. From (1) we obtain that (after an inessential
change of j) we can assume jg@ C g for the chosen a € M. Since |al is
maximal in M we also have

(2) (@, g®] =0 if 2 e %z,
(3) o([3@, 3], jc) =0  if 20 e %z.

To prove (3) we note first ¢ C g,, since ae M. Hence [g@, g @] C g®®
Ngo C § = Preamzs®. Since ¢’ C §, Lemma 2.4 shows j§ C §. Hence § is
a Kéahler subalgebra of g. By assumption, g £ 0, a¢(1/2)Z; therefore
g # §. Finally, ¢® = t® + jr® modg’ since g = t + jr + {. Hence we
can apply the induction hypothesis to §. Therefore p(GNg,, jc) = 0 and in
particular p([g*, 3], jc) = 0. From (3) it follows immediately that ad je is
symplectic on g®:

(4) o(lic, 1, y) + o(x, [je,y1 = 0 for all x,yeg®

Since [g'®, ¢] = 0, ad ¢ is symplectic on g as well. Because [jc, c] = ¢,
we have only left to verify (and do it by a straightforward computation)

(5) [j, ad je — 1/2[j, ad c]]g = 0.
This finishes the proof of the lemma.
2.6. We sharpen the last result and get
Lemma. g = 0 if a2{0, +£1/2, +1}.
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Proof. Let ae(1/2)Z, a2 {0, +1/2, +1} and suppose g +0. We
assume that |a| is maximal. Then [g,g,] = 0, since adjc has only the
weights 0, 1/2, 1 in g;. Moreover, jg‘» C g 4+ f follows from Lemma 2.4
since g“’Ng, =0 and g®*PNg, = 0. We can again assume that even
Jjg“ < g holds. From [g,c] =0 and [g*”, g'*] = 0 we conclude that
ad ¢ and ad jc are symplectic maps of g/. As at the end of the proof of
the last lemma one finishes the verification that ad is a symplectic
representation of Rc + Rjc on g, Hence a {0, +1/2}, a contradiction.

2.7. From Lemma 2.4 it is easy to derive that after an inessential
change of j we can assume j§ C § where § = g“" + g + g®. Therefore
§ is a Kahler subalgebra of g. Moreover, g™ = t™ + jr mod (g’ N §).
Hence we can apply the induction hypothesis to § in case § = g. In this
case we have g‘""” = 0, whence

g = g(—lﬂ) + 9(0) + 9(1/2) + g(l) if @ =+ q.

Before we continue to consider this case more closely we want to finish
the possibility g = §.

LemMmA. If g = §, then the Radical Conjecture holds.

Proof. By our assumption, jc has only the weights 0 and 1 in g,.
Hence g, = g{® + ¢ and since ¢ is a minimal idempotent g{® = Rc. Because
there is no weight 1/2 we know that the underlying normal j-algebra
g, + jg, is the product of the subalgebras Rc + Rjc and g + jg{®. Since
the modification derivations D(x) annihilate ¢ and jec we conclude that
ai® + ja{® is a subalgebra of the given Kihler algebra g, -+ jg,. We also
know that f leaves both algebras invariant. Set g* = g " + jg{® + g® + L
Then Lemma 2.4 shows that g* is j-invariant. It is easy to verify that
g* is a subalgebra of g. It is straightforward to check that g¢-» 4 g is
an ideal of g*. Clearly, gt and g{® are both abelian and since [g¢", g{”]
= [gi, ai®] C g{" = 0 we see that g-» + g® is an abelian ideal of the
Kahler algebra g*. Therefore the Radical Conjecture holds for g*. Next
we want to show ¢ = 0. We consider the idempotent ¢ — ¢ of g{® + jg{®.
It is easy to see that the real part of adj(e — x) acts are identity map
on g¢"Y. From the solvable theory, applied to g*, we know that jg¢" is
annihilated by the real part of adj(e — ¢). But from Lemma 2.4 we obtain
gt gt 4+ a® 4 jgi” + f, whence jg¢P Cjg® + ¥ and g¢" cg® 4+ L
This implies g*-" = 0. Hence, by our assumption g = g, + g, = g© + g®.
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To finish our argument we consider as in [8; sect. 2.5] the space u =
{xeg;[x,c] =0, [jx,c] =0}. Clearly, fCu and jucC u. Since Rc is a
one dimensional ideal of ¢ we have for xeg: [x, c] = ac and [jx, c] = be
for some a, be R. A straightforward computation shows x — ajc — beceu.
Hence g = u 4+ Rc + Rjc. From the definition of u we derive g C u,
whence g + jg® + fC u. Next we show [jc,u] Cu. Let ueu, then
[[jc, ul, ¢] =0 and [jjc, ul, c] = [[jc, jul — jlc, ju]l — [c, u] — k,¢c] =0. There-
fore u=u® 4+ u®., Since g” = Re, uCg®. Let u=u, + u, u;€g:
Then weu iff [u,c] =0 and [ju, + ju, c] = 0. In particular u, €b =
{xegy; [x,c] = 0}. On the other hand, let vev, then [v,c] = 0 and [jv, c]
= bc. Therefore v — bceu. But u Cg® and veg, Cg®, whence b= 0.
Therefore 1= g{® + b. To see that u is a Kéihler algebra we have to
show [b, g1 C g®. But this follows since u cCg®, g® is a subalgebra
and g@Ng, = g{®. Finally, 1, = rNg, acts nilpotently on g, therefore
[t, ] = 0 and r, C v C u follows. Now it is easy to see that u = (¥, + g®)
4+ j(z, + g®) + I holds, where 1, + g is a nilpotent ideal of u. This
implies that the Radical Conjecture holds for u. From this we will derive
that the Radical Conjecture holds for g. Let ) be a maximal semisimple
subalgebra of g,. Then § is maximal semisimple in g. Moreover, [, Rc]
C Rc implies [§,c] =0, i.e. . Let t, be a maximal split solvable
subalgebra of §j. Then t, = t, + rad(v) + g{® is a solvable subalgebra of
u and u=1, +f by the Radical Conjecture applied to u. Moreover,
Hct, +f Therefore, t, = t, + rad(g,) is a solvable subalgebra of g, and
go =1, + f holds. Hence t =1, + g, is a solvable subalgebra of g and
g=1t+ ! From this the Radical Conjecture follows.

2.8. In the last subsection we have seen that the Radical Conjecture
holds if §(c) = g for some minimal idempotent ¢ of g,. Therefore, from
now on we can assume ¢ # {(c) for all minimal idempotents c¢ of g,.
Hence g = g»(c) + g®(c) + g"®(c) + g"(c) for all minimal idempotents
ceg, Applying the induction hypothesis to §(c) = g“(c) + g¥(c) once
more shows g®(c) C g,. Therefore g*(c) # 0 implies — 1/2 < a < 1/2. This
shows that [9; Lemma 4.3] holds. This together with Lemma 2.4, (which
is [9; Lemma 4.2]) enables us to carry out the rest of the arguments of
[9; §2] with few changes.

We choose minimal tripotents ¢, - - -, ¢, in g, satisfying

(1) o+ -t =e
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(2) Lici, ¢l = ducee

These conditions determine the c,’s uniquely (up to permutation). For
the purposes of this subsection we order ¢, ---,c, as in [9]. From the
solvable theory (applied to g, + jg,) we know

(3) [je, jedd = 0 for all i, &.

Therefore we get a simultaneous eigenspace decomposition of g relative to
R, - -, R, R, = Re(ad jc,). We thus get g = ®g? where Rx“ = A@)x“?
for all x eg“. Clearly, g’ = g® 4 g§*.

We know 4 = 4, or 4= (1/2)(4;, + 4,) on g, where 4,(k) = d,,. More-
over, we have seen above that A(k) =1 for some ke{l, ---,1} implies
g“» C g, and that A(k) € {0, +1/2, 1} for all k.

As in [9] we introduce the subalgebra 3 of g,, 8 = {x eg,; [*, e] = 0}.
Since x — j[x, e] € 8 for each xeg, we have g, = 3 + Jjg..

Using these fact and definitions, the proof of [9; Lemma 4.4] carries
over and yields

(4) 0 C s if A #1/2(4; — 4,)  for all i, k.

Next we consider s € 3 and decompose it relative to ¢ = ®g“’. From
(4) we conclude that s© 4 >, stW/»4- VO e g Tt is easy to see that
[s9, ¢;] € Re; holds. Moreover, assume 0 # x = [s(/24a-AD0) 01 g =£ b, is a
multiple of some ¢,. Then an application of R, yields 1 = (1/2)(3,; — J,.)
+ 0. Hence i =k, i+ a,b. But then R,x = (1/2)x, whence x =0, a
contradiction. Therefore x is perpendicular to @P.., Re,. Altogether
[s©, e] = 0 follows. We thus have proven

(5) ([9]) Let se3, then s@ea.
Next we show
(6) (8], [9D) Let 4= (1/2)(4, — 4,), a < b, then we have

3 = (#Ng5") + (ig)™ .
For A = 0 this follows from (5) and the case 4 = 0 can be shown as in
[8; Sect. 4.4].
We set o(x) = trace(ad x|g,), x€g. The proof of [9; Lemma 4.6] carries
over without change and yields (y, denoting the 8-component of y)
(7) (9], [8]) let 4 =1/2(4, — 4,), a < b, and let s€ 3N g{®. Then a([s, jx],)
= 0 for all xeg,.
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Lemma ([8]). trace(ad s|g,) = 0 for all ses.

Proof. By (5) we can assume s € 3. Using (6) and (7) we can carry
out the proof of [8; Lemma 8, sect. 4] without further changes and obtain
the claim.

2.9. We collect the properties of 3 which will be used in the following

sections.

Lemma. a) 8= {xecq,; [x,e] =0} is a Kdhler subalgebra of g, and
tca.

b) g, = 8+ Jjg is a direct sum of vecter spaces.

c) trace(ad3|g) =0

d) ads|g, is a contained in the isotropy algebra of the homogeneous
cone K in g, which is associated with the Kdhler algebra g, + jg, and the
point e€ K.

Proof. a) Following [8; Sec. 2, 5] we let m = {xeg; [x,e] =0,
[jx, e] = 0}. Clearly, jm C m. As in loc. cit. one proves g = m + g, + Jjg,
and [je, m] c wm. Hence m = u, + m,. But from the definition of m it
follows 0 = [jm,, e] = m,, whence m C g,. Obviously, mc 8. But m and
8 have the same dimension since both are algebraic complements of jg, in
g. Therefore m = 3 and a) follows. b) and c¢) have been shown in the
last subsection. d) This follows from [17; Proposition 4] and c).

2.10. Put 3 = {x€35; [x,g,] = 0}. Then & C 3 is an ideal of g.
LEMMA. 3=38-+j34+ f and v, C 8 + jgu.

Proof. Let ret, = tNg,; then r = s + jg, s€3, g €g;. From Lemma
2.9, we know ad g,|g, C Lie Aut K, the infinitesimal linear automorphisms
of the cone K. Hence adr,|g, is an ideal in adg,|g, which consists of
nilpotent endomorphisms. This implies ad v,|g; C ad jg,|g;, whence. 1, C 3
+ jg;. But this implies 3 Ct, + jv, + g, +Jjg + fC 8+ 8+ 4+ g + Jja
C 8 + g, + jg, and the assertion follows.

2.11. Set i = {jg:; s + jg: €1, for some s€}. Denote by p the Kahler
subalgebra of g, + jg, generated by . Then p = (pNg,) + (pNgy-

LEMMA. a) i is an ideal of jgi.
b) [5plC3+p.
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¢) P+ 8 is a Kihler subalgebra of g.
d) Py = pﬂgx 7+ Gy

Proof. a) Letjbei and s€$ sothat s + jber, Then [ja, s] + [ja, jb]
= [ja, s + jblex,. Since [ja, s] €3 and [ja, jb] € jg, we conclude [ja, jb] € §.

b) First we prove

(1) Let u be a subalgebra of g satisfying [3, u] C u 4 8. Then the
Lie algebra ii generated by u + ju satisfies [3, i] C it + 3.

Proof. Since 8 is an ideal of g the condition [3, u] C u + 8 is equi-
valent to [j3, ul C u + 8 and [f,u] € u + 8. But then [j3, ju] = j[j§, u] +
JI8, jul + [3, ul + k shows [j§, ju] C ju + 8 and [k, jul = jlk, u] + &’ implies
[f,jul cju + 8. Hence altogether [3, u 4 jul Cu-+ju+s. A simple
induction finishes now the proof of (1).

From (1) follows immediately

(2) Let u be a subalgebra of g satisfying [3, u] C u + 3. Then the
j-algebra 1t generated by u satisfies [3, i] C it + 3.

To prove b) it suffices now to show

® [Bilci+s

Proof. We note that [k, s + jgl = [k, s] + F + jlk, gler if s+ jg
ery,; clearly [k,s]ed if se3, whence €3 by Lemma 2.10. Hence
[, tlci Also, [js,s+Jjgl = Ljs, sl + s, jgl = lis, s1 + jlis’, gl +
jls'sjgl + [s', &l + k = ([js', s] + jls', jgl + k) + jlis’, &l e r,N (3 + jg,) for
all s’ and s, g, as in the definition of §. By Lemma 2.10, we conclude
[js’, sl + jls’, jg.] + ke d. Hence j[js’, glc€i. This finishes the proof of
(3) and thus of b).

¢) Since p and 3 are Kahler algebras the assertion follows from b).

d) We know 1t C nil(g). Therefore adr is nilpotent for all rer.
Since ¢ is an ideal of g we derive from ad(s + jg)"b = (ad jg,|g)"b, beg,,
that adjg,|g, is nilpotent for all jg,ei. This implies that ¢ is perpen-
dicular to all jc;,, ¢; a minimal idempotent in g,. We order the minimal
idempotents as in [4; p. 5] and see that the last minimal idempotent
¢ is perpendicular to the clan generated by ji. From this it follows that
i +ji is contained in the j-algebra of elements of g, - jg, which are
perpendicular to Rc + Rjc. Therefore ¢ is perendicular to p, and d)
follows.

212, Wehave v, C8+iC3+pand p,=pNg, C1. Itis easy to
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verify that v, + p, is a (solvable) ideal of p 4 3. Moreover, dim(x, + p,)
< dimt. Consider the Kéhler subalgebra tv = (¢, + §,) + j(xr, + 9) + ¥ of
5+ p.

LEMMA. 3C v =3+ p.

Proof. Let se3. Then s=r,+ jro+ x +jy, + k where r, ricr,
X, €61, ket. We can write r, = s, + jg, ry = s + jg. with s, s,€8,
g, 81€p,. Hence s = s, +js; + & +j(g + ) + (x; — g) and x, = g{ep,
y, = —g,€p,. Therefore sew. To finish the proof it suffices to show
pC . But p=yp,+ p Cg,+Jjg, where p, =pNg, Hence p, =jp, and
H C o follows.

It is clear that we can apply the induction hypothesis to tv = p + 3.

COROLLARY 1. a) 38 = 3, + I where 3, is a solvable subalgebra of 3.
b) After an inessential change of j, which does not alter j on g, + jg,,
we can assume jg, C 3,.

Proof. a) Let §) be a maximal semisimple subalgebra of 8 containing
[£, f]. From the Radical Conjecture applied to i D 5 it follows that a
maximal compact subalgebra of § is already contained in f. From this
the claim follows.

b) follows from a) and the facts 3N (g, +Jjg) =0, jaC & and

J@ + Jg) < gy + jgi-

COROLLARY 2. a) ad(3,)|g, is abelian
b) [5,3]Cs.

Proof. Since ads|g;, s€3, is skewadjoint relative to some inner
product on g, we know that ad(3,)|g, is solvable and skewadjoint, whence
abelian, proving a).

b) follows immdiately from a).

Remark. The importance of Corollary 2 is, that it deals with all of 3
(modulo the isotropy part f).

2.13. Let s, be a principal idempotent of the Ké&hler albebra 3,
satisfying [f, s,] = 0. Since [Jjs;, 5] = s, we know from Corollary 2.12.2
that s, € 8 holds.

Let D = Re(adjs,) and ¢ = @,z g be the eigenspace decomposition
of g relative to D. Then  C gi%.
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Since adjs,|g, is skewadjoint (realtive to some inner product on g,)
we have

® g g™

(2) D has only the eigenvalues 0, +1/2, 1 and the eigenspaces for
the eigenvalues +1/2, 1 are contained in 3,.

Proof. For geq, we have [js, jg] = jljs, gl mods. Hence Djg =
jDgmod 8 = Omod 8. This implies that nonzero eigenvalues of D can only
occur in 8. But f C gi; therefore nonzero eigenvalues can only occur
in 8,. Note that in 3; only the eigenvalues 0, +1/2, 1 can occur.

2.14. We want to apply the appendix to D = Re(adjs,). Let q be
the algebraic hull of ad g C Endg{(g). Then D € q is a semisimple endomor-
phism of g. Hence D = D, + D, where D, € §, § scme maximal semisimple
subalgebra of g, and D, € rad q satisfy [D,, D,] = 0. Since [, §] = H we
have § = ad}) for some maximal semisimple subalgebra of g. Let h e}
so that adh, = D,. Since adh, is semisimple with only real eigenvalues,
h, is contained in some Cartan subalgebra of §. Therefore, if adh, has
an eigenvalue 1 # 0, then it also has the eigenvalue —21 # 0. Moreover,
there exist xe€ b, and yeh_, such that [x, y] acts semisimply on g. Since
the eigenvalues of adh, are also eigenvalues for D we conclude 2 = +1/2
But we have seen in 2.13 that the eigenvalues +1/2 of D are only
attained in the solvable Lie aglebra 8,. Hence [x, y] is nilpotent on g,
a contradiction. This shows

LeEMMA. § C gt
2.15. We consider the subalgebra m = gt + gt of g.

LeEMMA. a) mw is a Kdhler subalgebra of g
b) m=@Nm+jcNm+ L

Proof. From 2.10 we know that 3 is an ideal of g. We have seen
above g1 C 3 if 2 # 0. Replacing e by 3, n by 3, it by 8"/* and defining
q={xegqg; [x, s8] en, [jx,s] en} it is straightforward to check that with
the exception of 4.17 the results of 4.13 through 4.22, of [6] still hold.
It is easy to verify that the proofs of 4.25 and 4.25 of [6] can be applied
in our situation as well and we obtain the assertion.

2.16.
LemMA. If gt + gt =+ g, then then Radical Conjecture holds.
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Proof. By our assumption and Lemma 2.15, we can apply the induc-
tion hypothesis to g + g'l. Therefore, there exists a solvable subalgebra
89 so that 3 + f = g holds. But then q = 8 4 radg is a solvable
subalgebra of g satisfying q 4+ f =g. Since tr C nil(g) we have t Cq.
Hence, after an inessential change of j we see that r 4 jt is a solvable
Kaihler subalgebra of g and the assertion follows.

2.17. It is clear that we have only to consider the case g = gt 4 gt.
Here we assume —in addition to our previous assumptions — that n is
chosen so that the rank of the maximal idempotent e of g’ is maximal.

LemMmA. If g = g™ 4 g, then the Radical Conjecture holds.

Proof. (1) We can assume that ¢ 4 jgi is a solvable Kihler
algebra with principal idempotent s,.

@) Let u={xeg; [x,s5] =0, [jx,s,] =0}. Then juCu and as in
[8; sect. 2.5] one proves g = jgi? 4+ g™ 4+ u and [js,, u] C u. Then u =
ul® 4+ ul? and 0 = [jul, g1 = ul3, Hence g = jgi + u.

@) gcrnNns: We know s,=x+jy +a + jb + k where x,yettt,
a,ber! and kef. We split b=jd + u, deg", ueu. Then s;=x —d
and [b, s,] = [jd + u, s;] = d e t'". Therefore s, € 113, whence gl*! = [jgtV, 5]
c™ns.

(4) From (3) and Lemma 2.2, we know g, + gi® C t. We consider
A=g +¢"+[r,t] =g, + g+ [ + g, + g™+ [ ] fA=r,
then g, + [£f%, tf?] = ™ and ©{? = 0 follows. But then © =g, + g™ is, by
(8), an abelian ideal of g and the Radical Conjecture follows. If A =+ 1,
then we can find an ideal fi of g satisfying A C i & t. But then the
rank of a maximal idempotent é associated with fi is greater than the
rank of e if ¢! %= 0. This would be a contradiction to our choice of .
Therefore g/ = 0. This implies 8, =0 and 3, is a modification of an
abelian Kihler algebra. The rest of this proof is a simplification of a
previous version. The presert version is due to K. Nakajima. We con-
sider rad,(3) = {x e rad(8); adx|§ is nilpotent}

(6) 1, Crad,®) + [jg,jg]: Let xer,. Then x =s + z where sc}
and z € [jg,, jg,] by Lemma 2.10. Note that B = r, + [jg,, jg,] is a solvable
subalgebra of g, and that x and z are contained in the ideal B, =
{xe B; adx|g is nilpotent} of B. Hence s€B,. Let § be a maximal
semisimple subalgebra of & and decompose s = s’ + s”, where s e rad(3),
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s” €Y. Then ads”|} is nilpotent since se B,. But since g™ = 0 we know
that 8 corresponds to a flat homogeneous Kéhler manifold. Therefore §
is a compact semisimple Lie algebra. Hence ads”|j = 0, whence s” = 0,
s = s’ and (5) follows.

6) rad,(8) is an abelian ideal of g: Since 3 is an ideal of g we
know that rad(3) is ideal of g and [g, rad(3)] C nil,(3) < rad,(3) follows
by [2; §5, Proposition 6], where nil(8) denotes the maximal nilpotent
ideal of 3. Therefore rad,(3) is an ideal of g. Moreover, since 3 cor-
responds to a flat homogeneous Kéhler manifold, rad,(3) is abelian.

From (6) we obtain

(7) rad,(8) + g, is an abelian ideal of g. To prove that the Radical
Conjecture holds for g it suffices now to note that g = (vad,(8) + g,) +

jrad,(3) + g,) + f holds.
This finishes the proof of “Case 2”.

§ 3. Case 3. g = G-12 + Qo + G120 + G4

3.1. We use the notation of [6] as before (see 2.1). Since —1 is not
a weight for adje, we have from [6; Lemma 4.19]

3.1 ole,q) = 0.

Then Lemma 4.21 of [6] simplifies to

3.2 plet* ey, et*iev) = e'p(je, [u, v]}) + const.
for all u,veg, teR. In particular, we have

(3.3) 0@ 8) =0 if 24+ p+0,1.

We also recall from [6; Lemma 4.26] that the Radical Conjecture holds
for the Kéahler subalgebra g, + g, of g. Note f Cg,, Moreover, we have
g, =, + 1, + Jja, + f where v, + {, is a modification of a split solvable
Kahler algebra and v, + {, + jg, + ¢ is a solvable Kéahler subalgebra of

8 + g1
As in Lemma 2.2 one proves

(3.4) & =1 =1.

3.2. We consider the subspace v =g,, + g_;» + f of g. Then jmC
since jg; C g: + ¢’ and p(wv, g, + g;) = 0 by (3.3). Therefore, after an ines-
sential change of j, we can even assume j(g,, + g_12) C @12 + G150+
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3.3. Let ¢ be the vector space of real parts of adjc, ceg, + t,, [Jjc, ]
=c¢. Let ccC bcC Endg be a maximal abelian subalgebra of the algebraic
hull adg which consists of semisimple endomorphisms. Since Re(adje) € ¢
it follows b adg, From the appendix it follows that there exists a
maximal semisimple subalgebra f) of g and an abelian subalgebra UcC
rad adg such that b C adj + % and % = 0. The maximality of b implies
b= (6N adh) + U, where bN adh is a Cartan algebra of adf = 4. In
particular R = Readje = adh, + R, where R,) = 0 and h,¢ ). Hence the
eigenvalues of adh, in ) are also eigenvalues of R in g. Moreover, if
2+ 0 is an eigenvalue of adh, in §), then also —1 is an eigenvalue of
adh, in §. Since R has only the eigenvalues 0, +1/2, 1, this implies
1= 41/2. If adh, has only the eigenvalue 0 in §, then the Radical
Conjecture follows by the argument of [6; Lemma 4.32].

Hence from now on we assume that ad’, has a nonzero eigenvalue
in .

Then § =§_,, + b, + ;. and 5, = 0 for all 2. (We will show in the
rest of this paper that this assumption leads to a contradiction). Moreover,
we can assume that tv, + t, + jg, contains a maximal split solvable sub-
algebra of §, and that it also contains the Cartan algebra of § which
corresponds to b\ adb.

Let (-, -) denote the product in the unmodified algebra underlying
g, + g, and denote by ad its adjoint representation.

Then Re(adjc) = ddjc in g, + g, for all minimal idempotents c¢ of
a; + .

LEMMA. Let x g, such that adx € b holds. Then there exists a linear
combination y of idempotents of g, + t, and w e, such that x =jy + u
and

a) [x, o] C t,,

b) [x,u] =0, [x,jul =0, [ju, u] =0,

¢) (je,jl = 0 for all idempotents c g, + 1,

d) [adx, Re(adjc)] = 0 for all idempotents ccg, + t,,

Proof. Let xeg, and adxeb, then adx lies in the span of all
Re(adje), ¢ a minimal idempotent of g, + f,, This implies x =jy + u
where y is a linear combination of minimal idempotents and ueg, + g,
such that (jc, u) = 0 for all idempotents c. Moreover, we can assume
that u is perpendicular to all je. Then uwei, Since the modification
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derivations D(v) of g, + ¢, annihilate all idempotents we already get a).
We also note that c¢) and d) are clear as well. In particular (x, u) = 0.
To see that also [x, u] = 0 holds we note D(x) = 0, since adx € b, whence
[x, u] = (x, v) — D(u)x = —D(u)u. Since adx is selfadjoint and D(u) skew
adjoint relative to the inner product p(a,jb) on v, we obtain D(w)u = 0
and [x, u] = 0. Let tv, = v, + 1, as in [5; 3.3]. Then adjc leaves 1, and
b, invariant. Hence [x, v,] = 0 and (jc, u;) = 0 where v = u, + u, u; €,.
But then (je, ju;) = 0 and [x, ju,] = (x, ju,) = 0 follows. Finally, [x, ju,] =
(x, ju) — D(ju,, x) = — D(ju)u,. But [x, W] C W, implies [x, w,] = (x, w,) —
D(w,)x = (Jy, w) + (u, w,) — D(w)u e, for all w,ed,. Since (jy, w,) €D,
(u, w) =0 and D(w,)u e, we obtain D(w)u = 0. From this we derive
[x,ju,] = 0 and [ju, u] = 0.

Remark. In what follows we will use frequently the representation
theory of sl(2, R). We will only consider such copies of sl(2, R) which
are of type sl(2, R) = Rf.,, + Rf, + Rf,,, adf,ebNadh and f,ew, + t,
+Jg-

It is clear that we can apply the above lemma to f,.

We would like to point out that we can actually find f,eg;,, 1 = +1/2,
0, so that in addition to the above properties f, is a simultaneous eigen-
vector for all beb.

We will make it explicitly clear where we use f;’s with this additional
property. The other properties will always tacitely be assumed.

3.4. In this section we consider thz action of sl(2, R) = Rf_,, + Rf,
+ Rf,, on g. We know that adf, has only integral eigenvalues and
in an irreducible representation all integers m, m — 2, ---, —m occur.
Moreover, starting from an appropriately chosen eigenvector x, in g, we
get a basis of an irreducible representation of sl(2, R) in g by applying
adf_,, to x,. The eigenvalues of adf, in g, are therefore all non-negative
or all non-positive (depending on the sign in [f;, f-,.] = =2f_,,) and only
the integers 0, 1, 2, 3 can occur (for simplicity we assume that only
non-negative integers occur in g,; the other case follows by the same
arguments). Thus we get the following chart indicating the chains of
eigenvalues that can possibly occur in some irreducible representation of
sl(2, R) in g. Note that the vector space corresponding to th2 various
integers in the same row all have the same dimension.
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312 Qo Qi 81
—3 —1 1 3
-2 0 2
-1 1
0
-2 0 2
-1 1
0
—1 1
0
0

3.5. We write f,=jd +1 + w, where deg, t,et, wew, We
know that d is a linear combination of idempotents, d = 3d, + 2d, + d,,
jdi,dil=d,, 2=1,2,3. We set d,=e —d, —d, — d,, Here some of
the d; may be 0. In what follows we use the algebra «/ on g, associated
with e eg, and the tube domain g, + jg, in [4].

LEMMA. o = o (d, + d,) D «(d, + d;) as product of algebras.

Proof. (1) d, +# 0, d;, == 0 implies &7, ,(d;, d,) = {x € «; (jd,, x) = (1/2)x
= (jd,, x)} = 0 since [f,, x] = (f,, x) = 3(jd;. x) + 2(jd,, x) = (5/2)x and 5/2
is not an eigenvalue for adf,. Similarly one proves

(2) 42{1/2(d2, dx) = O, ﬂx/z(dn do) = O, Jf;/z(dsy do) = 0.
From (1) and (2) we get the claim.

3.6. We will need some information on the eigenvalues of adjd,.

LemMA. Let ceg, satisfy [jc,c] =c¢ and [t,¢] =0. Then adjc has
only the weights 0, +1/2, 1 or the weights 0, 41 in g.

Proof. Let xeg. Then x =« 4+ g where x’€g’ and g€q. Since
g, C ¢ we can assume q = ¢, + ¢ + ¢, where g €qg; We also
write &’ = > x[.

ey} o(je, e**7°x) = p(je, e**°x;) .

Proof. From [6; Corollary 4.22] we know p(jc, g1 + §.1,) = 0. We also
have p(jc, g,) = 0. Hence p(jc, Wxi + Wxi, + Wxl,, + Wxg) = p(je, Wx7)
where W = efadic,

Decomposing x| further into weight vectors of adjc we get x| = y
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y1/21 44Ul gand
(2) p(je, e *iex) = e'p(jc, ).
From this we derive, using [7; chap. III, Lemma 9]
3) ple'™¥icy, e'*icy) = qe* 4+ b.
In particular, we obtain from this for the weight spaces gt¥ of L = Re(adjc)
in g:
4) g™, gt =0 f A+ p+£0,L
Next we prove (that after an inessential change of j)
) gl g™ if 20, £1/2, £1, 3/2.

Proof. From the integrability condition and g, = n, we get as usual
jg™ c g™ + ¢’. Hence for xeg we have jx =y + z where yeg® and
zsg’. We note that 1 + {0, +1/2, 1} € {0, 1} implies 2¢{0, =1, £1/2, 3/2}.
But we have excluded these values for 1, whence p(gi, g’) = 0. In par-
ticular 0 = p(x, 2) = p(jx,j2) = p(y + 2, j2) = p(2, jz). Hence z € {. But then
Jjg c g™ + f and the assertion follows.

Since 21+ 0,1 1f 2 =+ 0, +1/2, +1, 3/2 and k& C g'? we obtain from (5):

(6) g=0 if 20, +£1/2, £1, 3/2.
Using (4) we prove as in [6; Lemma 4.25]
(7 jatml g™l 4 ¢/ 4+ g/ for all neZ.

Now we can repeat the proof of [6; Lemma 4.30] and obtain

® g7 = 0,
Finally, the argument of [6; Lemma 4.26] is applicable in our situation
and yields

) =g+ gt + g is a j-invariant subalgebra and

§g=Ng +JjctNg + L

We consider the two possibilities § =g or § # g. In the latter case
we can apply the induction hypothesis and obtain gt~ = 0 (and from this
the assertion). If § =g, then we have again two subcases. The first,
gl- = 0, is exactly what we want. The second case, gl-"! == 0, allows us
to argue as in [6; Lemma 4.32] so that the Radical Conjecturs holds in

https://doi.org/10.1017/50027763000001410 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001410

108 JOSEF DORFMEISTER

this case. But then jc does not have the eigenvalue —1 in g, so that
this case actually does not occur. This proves the claim.

3.7. By the result of the last section we can assume that adj(d, + d,)
and adj(d, + d,) have only the (real) eigenvalues 0, +1/2, 1 in g. More-
over, these weights occur in the eigenspaces of adf, in the spaces g,. In
the proof of the last section we have also seen that for gl 4 gt! the
Radical Conjecture holds, where gt is defined for jc as in 3.6. We can
assume g 4 gt-v3 £ (.

The following argument is a simplification of a previous version of
the proof. We use ideas of K. Nikajima.

First, it is easy to see that jg,, is invariant under je. Hence jg,, =
(jgl/‘Z)ﬂgl/Z + (jgl/z)ﬂg-1/2 and g, = U, + 10,,, where U, = {x € Q12 Jjxe Q—m}
and 1v,, = {x €gyp, jx € G}

A direct computation shows that v,, is invariant under jg,. There-
fore jg, + W, + g, is a Kéahler algebra of domain type. In particular for
¢, = d, + d, and ¢, = d, + d, we know that jc,, jc, have only the eigenvalues
0 or 1/2 on v,,, and the sum of their eigenvalues adds up to 1/2.

Next we consider u,,. We know ju,, Cg_,, and jg_,. Cg_is + g
From this it follows u,, C g, whence u,, = [e, ju,,] C uyp.

Since u,, C n,,, we know that every h,,€Y9,, = 3,,NH has a non-zero
component in i, This implies that §N g2 (c;) = Omod n for ¢, or for c,.
If 9,,N g™ (c;) #= 0 mod n only for one of the idempotents ¢, ¢,, then denote
by ¢ the other idempotent. If this space is nontrivial for ¢, and for c,,
then choose ¢ = c,.

We consider the Kahler subalgebra g = g'c) + gi*¥(c); as mentioned
above we know that for this algebra the Radical Conjecture holds. Since
e —ced we can form the weight space decomposition of § relative to
j(e — ¢). From our construction it follows that there exists a semisimple
subalgebra § of § such that f C §(e — ¢) and §N §"*(e — ¢) == Omod rad §
holds. But by the Radical Conjecture this is not possible. Hence we
have shown

d,+d =0 ord, +d,=0.

3.8. We refine the description of f, = jd + ¢, + w,. We know that ¢,
is a linear combination of elements of type jg,, where g, is an idempotent
of t, t, = > a;jq,. Since [f,q.] a.9;,, we have a,€{0, +1, —2} by 34.
If a, = —2, then there exists x €g, such that g, = (adf_,.)*x. Then g, en.
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Since eeg, is the maximal idempotent in n, this case cannot occur.
Hence

LEMMA. ¢, = jg, — jq, where q; are idempotents in t,.

3.9. In this section we want to prove d, = 0. Otherwise (adf_,,)’d,
€f_,, is an eigenvector of f, for the eigenvalue —3. We note that a3
in 2.9 we get g, = 3 + jg, where 3 = {x € g,; [x, ] = O} is j-invariant. Since
q., Q;, W, €3 it is easy to see that the Kahler algebra generated by q,, q,,
w, acts symplectic on the abelian Ké&hler algebra v = n_,, + ju_,,. Note
jn_i, = [e, n_,5]. Therefore, jg, and jg, have only the eigenvalues 0, +1/2
on b and w, has no real eigenvalues on . Next we consider the elements
jd, and j(d, + d,). We know that they leave the flat part of g’ invariant
and have only the eigenvalues 0, 4-1/2 there. Hence, f, = 2jd, + j(d, + d))
+ jg, — jg. + w, cannot have the eigenvalue —3 on n_,,.

3.10. In this sectiori we show d, = 0. Suppose not, then (adf_,,)'d, € 1,
is an eigenvector of f, for the eigenvalue —2. Let xen, and write x =
a, + t, + jx, where q, is in the flat part w, of § = g, + g, and ¢, is in the
domain part t, of §. Note fv, + t, C 3 (see 8.9). Then [f,, x] = —2x implies
D(x) = 0 and (jq, — jq,, t,) = —2t, (j(2d,), jx,) = —2x, follows, where (-, -)
denotes the product in the underlying unmodified algebra. But j(2d,)
has only the eigenvalues +1, 0 in jg,, whence x, = 0. A similar argument
shows that jg, — jg, does not have the eigenvalue —2 in 1,, Hence x is
contained in the flat part tv, C g, of §. But there the idempotents jd,,
j(d, + gq) and jg, have only the eigenvalues 0, +1/2. Hence —2 cannot
be obtained.

3.11. By the last sections we have only to consider the cases d, = e
and d, = e. In this section we consider the case d, = e and f, = w, € Iv,.
This is impossible as follows from

LemMA. Let w, v, such that adty, is semisimple and has only real
eigenvalues. Then adw, = 0.

Proof. From [7; Chap. III, Lemma 9] we know

) L plet e, ) = pla, €[, v)).

Since w, € g,, only the component of [u, v] in g, + g; wwill contribute to
the right hand side by [6; Corollary 4.22]. Using the induction hypothesis
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shows that only the component in g, can contribute. But we know
[w,, @y + jx;] = (wy, jx,) — D(a, + jx,)w,, whence (adw,)*|g, = 0. Since adw,
is semisimple we obtain

(2 adw,|g, = 0.

Therefore the right hand side of (1) is just p(w,, [, v]). An integration
yields

3 ple'*®ou, e *dvoy) = to(w,, [y, v]) + p(u, v).

By assumption adw, is semisimple with only real eigenvalues. Let u = u,,
v = v, be eigenvectors for adw, Then (3) yields e****p(u, v) = tp(w,, [u, v])
+ p(u, v). This implies

) olwy, [u, v]) =0 for all u,veg.

This shows that adw, is symplectic on g. Moreover, [jw,, w,] = 0 by (2).
Now we apply the proof of [7; chap. II, Lemma 3]. Let A(x) denote the
j-linear part of adx, x € Rw, + Rjw, and B(x) the j-antilinear part. As
in loc. cit. one shows

) B(jw,) = jB(w,) and 2B(w) = [jA(jw,), A(w)].

This yields trace B(w,)’ = 0. Finally, since adw, is symplectic, it is
easy to see that B(w,) is selfadjoint and A(w,) is skewadjoint relative to
{u, v) = p(ju, v) modulo f. Altogether this implies B(wy)g C f. Thus
adw, = A(w,) is skewadjoint on g/f, whence ad w,g C {, since the eigenvalues
of adw, are assumed to be real. From this the lemma follows

3.12. In this section we exclude the case e = d, and f, = je + w,.
LemMAa. The case f, = je + w, does not occur.

Proof. We note first that adw,|g, is skewadjoint since [w,, je] = 0
and adjelg, is semisimple as well as adf, = adw, 4+ adje.

Let u™ denote eigenspace for the eigenvalue 2 of the real part of
adw, on u =g, + G_1p0.

We start again from the equation
(6)) ??t— plefedwoy, et#dwoyy = p(w,, e'*4 ¥y, v]).

As before we only have to consider the component of [u,v] in g. But
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from above we have adw,|g, = D(w,)|g, where D(w,) is the modification
derivation of w, in g, + g,. This implies that the right hand side of (1)
is p(wy, [y, v]). Therefore an integration yields

2) p(et*dwoy, ef*voy) = ta + b.

For ueu®, veuld, 2 + p 0 the left side grows here like ¢'®*# and the
right side is polynomial. This is a contradiction. Hence we obtain

3 o(ui, utdd) = 0 if 24+ u=+0.

From above we know that adf, attains only the eigenvalue 0 in g,
Hence, from 3.4 we derive that adf, can only have the eigenvalues —1,
2,0 in g,, and —2,0 in g_,,. Since adje has the weight 1/2 and —1/2
there respectively, the real part of adw, has the eigenvalues —3/2, 32,
—1/2 in g,, and —3/2, 1/2 in g_,,, (in the same order as above). Since p
is nondegenerate on u = gq,, -+ g_,, we derive from (3) that the weight
spaces with opposite signs have the same dimension. Therefore dim gf{*
= dim g{7¥* + dim gt5%% and dim g®% = dim gB® = dim ¢33 = dim gt5%” where
we have used 3.4 and the notation g{ for the eigenspaces of adf, in g,.
But then, again by 3.4, we have 0 = dimg{;**? = dimg{;" = dimg{® = dimg,.
This is a contradiction, proving the lemma.

3.13. In this section we start to look at g, more closely.

Using the induction hypothesis we see that w, + f and jg, + {, +
are subalgebras of g,, v, + f is j-invariant. By 1.4, we can even assume
(after an inessential change of j) that [f, tp,] C tv, holds. We can write
=1, + ¥ 4+ f such that ¥, + jg, and ¥, + {, are subalgebras where {; does
not contain any ideal of the corresponding algebra. Moreover, we can
assume that [f, {, + {, + f, + jg,] = 0 holds. This implies that (f, 4+ jg) +
(f, + t,) contains a maximal noncompact semisimple subalgebra §,, of g,.
We can assume that a Cartan algebra of §,, is contained in the span of
the je, ¢ 2 minimal idempotent of i, + g, + jg,. From this it is easy to
derive that A, is contained in the subspace §j, of the maximal semisimple
subalgebra § = §_,, + 8§ + 0§, of g considered in 3.3. Clearly we have
Bo, = 05, @ b5, where 05, C £, + t, and B3, C ¥, + jg.

Assume v = [§_,p, ;2] N (t; + ja,) contains a nontrivial, noncompact
simple subalgebra §”. We can assume that 5" is maximal in b and an
ideal of v. Then there exists a simple ideal ¥ C 9, ¥ = §7,, + 9 + b1
satisfying §” C §; and Y.,, # 0. Since §” # 0 we can choose fef; so
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that it has a nontrivial component f;’ in §”. But we have reduced the
discussion before to the case f, = Aje + j¢’ + w, where 2=0,1, ¢’ €t,
w, € tv,. This shows that f, commutes with %" on g,, whence f;’ = 0. This
is a contradiction and implies that b}, commutes with [§_,., §,.] and with
H_1e + Byp. Moreover, [§_,, i) C ¥ + t, + f holds.

3.14. We continue investigating g, by considering rad(g,).
First we prove

LemmA. rad([g,, g.]) < nil(g).

Proof. The maximal semisimple subalgebra §) under consideration can
be written as sum of ideals §) = §* @) where §* =p_,,, + [9_1/2 Bip2] + Bipo
By construction, [§_,, 9i.] + § C g, and [H_.p, H1p] = b5 + 3 is a reductive
Lie algebra with center 3 and semisimple part 5. It is clear that g, =
b N g, + (rad(g)), holds, where (rad(g)), = g, N rad(g). Therefore rad(g, =
g + (rad(g)), and [g,, 6] = B + b + [a,, (rad(@))]. Since b5 + § is semisimple
and v = [g,, (radg),] is a solvable ideal, we have v = rad([g,, g,]). Clearly,
b C nil(g). Hence the claim.

3.15. We had chosen 1 to be maximal in t. Therefore, since [nil(g), t]
&t is an ideal of g, we can —and will— assume that n D [nil(g), t]
holds.

Moreover, if x is an element or a subspace of t which is invariant
under the family b of endomorphisms chosen in 3.3, and if u(x) is the

h-module generated by x, then u(x) + n C r is an ideal of g and t = u(x)
+ n follows.

3.16. To complete the proof of this “Case 3” we need detailed
information on i, + . We recall that, by the induction hypothesis, t, + £
is a j-invariant subalgebra of g, which corresponds to a homogeneous
Siegel domain.

Lemma. nil(t, + f) < rad([g,, go]) € nil(g).

Proof. It is clear by 3.14 that we only have to prove the first inclu-
sion. Since nil(t, 4+ ) is invariant under modification derivations and
since the nilradical does not change when considering the algebraic hull
of g, +g,, we can assume that g, + g, is algebraic and fv, + t, is split
solvable. But then [f, ] Ctv, and nil(t, + ¥) is a solvable ideal of g,.
Therefore nil(t, + ¥) < rad([g,, g,]) as claimed.
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3.17. An application of the last section yields
LeEMMA. t, corresponds to a symmetric tube domain.

Proof. Let g be the maximal idempotent of {,. Then u = g, + g, splits
into uy; + u,,, + u_,,, + U, relative to jg where g, 4+ jg, C u,. Set r, = rNiL.
We have seen in [6; Lemma 4.26] that u = r, + jr, + { holds. Clearly
1, = ®(z,), where (v,), = t, Nu,. We can use the proof of [6; 4.10] and
obtain u, = (x,),. Moreover, since ju_,, = [q, u_y.l, ju_y C (£,);, holds.
Therefore, if t,N1u,,, # 0, then {,N(r,);. # 0. But since t, + u,,, C nil(t, + £)
this implies [j(t,N (tu)i), 1N (X1l C il (L, + &), tNgo] C [nil(g), ] C n by
3.15 and 3.16. Therefore nNu, = 0. But then u, contains an idempotent
which is already contained in n. This is a contradiction to the choice
of e. Hence t,Nu,, = 0. This proves that t, corresponds to a tube domain.

To finish the proof it suffices to show that (f, + f) N u, is reductive.
But otherwise v = nil(t, + ¥) £ 0. Since b is invariant under all jv;, v,
a minimal idempotent of 1, we obtain v = @b, where v, = (,);;. Note
[0:5 1] € [nil(g), ] © n by 3.15 and 3.16. Finally, if v,, = 0, then it is
easy to see that [v,;, 1,] C n contains an idempotent of n, again a con-
tradiction. This proves the lemma.

3.18. Let Ij = [)*@6 where f)* = 5-1/2 + [5-1/2, 151/2] + f)1/2 and BC %o is
an ideal of §. We set §f = H* N g,.

LEMMA. Let §), be a simple noncompact summand of Y satisfying
b,ct,+ ¥t Then

a) 9, is the noncompact part of H N (1, + ¥).

b) bH* Ng, is reductive with compact semisimple part.

¢) 1, corresponds to the irreducible symmetric tube domain associated
with 9,

Proof. Denote by p the ideal of t, + f associated with f,. Then
p = p, + b, where p, C 1, p, D jp, and p, is an §,-module and invariant under
b. Moreover, §); acts irreducibly on p, and trivially on all other ideals of
t, + . Finally, § commutes with §* for 2 =0, +1/2 and [§¥, p,] C p,.

Set X = > [9..[0.0 - - > [9e,r ] - -] where ¢, € {£1/2} and r>0. Then
X is an §-module and X C r. Since p, C X we have XZnand t =u + X
follows. Clearly, X=X_,, + X, + X,, + X, where X, =XNg, and X,
corresponds to the summands satisfying ¢, 4 --- + ¢, = 0. Since §; com-
mutes with §,,, = §*,,, X, is a sum of irreducible f;-modules isomorphic
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to ..

Next we note that n g, C v, + jg, holds. Otherwise there exists
some nenfg, n=a-+t-+ jx, where ac, x€g, and 0 £tet,. It is
easy to see that we can even assume te (), where (i), £ =0, 1/2, 1,
are the weight spaces in t, of a maximal idempotent of {,, Since n is
invariant under all Re(adjc), ¢ a minimal idempotent in t,, we can even
assume n N (f); =0. But now it is easy to derive that n contains a
minimal idempotent of t,. This is a contradiction since e was chosen
maximal in g’.

Now suppose R = Re(adjc) where ¢ is the maximal idempotent of
some summand v of {, + f which is different from the one associated with
h:. Then RY.,» CY.,. by our choice of § (see 3.3) and Rp, = 0. Hence
RX c X. Since R and adf, commute, RX is also an fj;-module. Moreover,
the eigenspaces X{” -of R in X, are §,-modules. By the remark above
they are even a sum of modules isomorphic to p,. Therefore, since
XP co, XM =0. This shows that t = X + n has no component in Ro.
But we have seen in the proof of 3.17 that t N Rv =0 holds. This is a
contradiction, proving the lemma.

3.19. We consider p = t, + ¥ more closely. First we split p = @,p,
+ ¥, where each ,p corresponds to an irreducible symmetric tube domain
and ¥, is an ideal of p contained in {. Hence ;p = ;p, + ., and ,p, contains
a maximal idempotent p; of ..

Let ,9* = 9., + & + b be a simple summand of *. Then (.95, :§-1)
carries naturally the structure of a simple Jordan pair [11; chapter IIJ.
Using a Cartan involution of this Jordan pair [12; § 5], we even get the
structure of a compact Jordan triple system on V=, [12; §5]. Then
Jb¥ is the “‘structure algebra” of V.

LEmMMmA. The Jordan triple V has rank V < 1.

Proof. Suppose V has rank >2, then there exist at least two minimal
orthogonal idempotents v,, v of V. Using the Peirce decomposition of
V relative to v,, v, it is easy to see that gl(2, R) C ,bF such that its off-
diagonal parts are contained in some rootspace of ,5¥ (relative to some
maximal R-split toral subalgebra). We can choose (different) subalgebras
sl(2, R) of § so that the corresponding Cartan algebras are spanned by
f» fo and f, + f; which corresponds to the matrices E,, = diag{l, 0},
E,, = diag{0, 1} and E = diag{l, 1}. These facts can be derived easily from
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[15; IV, §2]. Since f, and f; have only the eigenvalues 0, +1, on ;p and
since gl(2, R) splits into rootspaces of bF it is easy to see that there
exist minimal idempotents c,, ¢, in ,p, such that f, = 1je + je, — je, — jq
+ r, fo = 2je + je, — je, — jq + r’, where 2¢{0,1}, g =p, — ¢, — ¢, and r’
acts trivially on ,p,. Since f, + f; has also only the eigenvalues 0, +1
on ;p, 2 = 0 follows. Similarly we get ¢ = 0. This implies in particular,
that the cone corresponding to .,p has rank <2. But then f, + f; cen-
tralizes, .5 whence f, + f; has only the eigenvalues +2 on ,§.,,. Moreover,
ad(f, + fo)|:p, = 0 and there exists a k such that ad(f, + f))|:p, = 0. We
recall that ad(f, + f;) has only the eigenvalues 0, +1 in g,.

Consider the vector space U spanned by “monomials” of type
[-9e0s [2Begs -5 i)+ - -1, where r, is arbitrary, ¢, = +1/2 and i is fixed.
It is easy to see that U is an h-module and invariant under b. Moreover,
fo + fi has only the eigenvalues 0, =2 on U. Hence ad(f; + ;)| UNg, = 0.
This implies that U has no component in .p,, if ad(f, + fo)|p. = 0. As
in the proof of 3.18 we consider t = U + n and obtain a contradiction,
since .p, C t. This proves the lemma.

3.20. We continue the investigations of the last section. We assume
that § has a simple subalgebra ., = §_,, + B + b2 such that ., has a
noncompact simple subalgebra. We have seen in the last section that
V = B, considered as Jordan triple, has rank V = 1.

V is said to be of “algebra type” if there exists some subalgebra
sl(2, R) of ;5 such that the corresponding f, has only the eigenvalue 2 on
D1y —2 or §_,, and 0 or b,

LemMA. V = .0,, is of algebra type.

Proof. Suppose this is wrong, then our assumptions imply that there
exists a subalgebra si(3, R) = i/ C ,§ such that § = §’,, + b5 + §{, where

(we may assume w.r.g) Y. ,,= {(2 8), aeRz}, oy = {(—gr(A) X), Ac
gl(2, R)}, e = {(g gt>; beRz}. Moreover, we can assume that the

rootspaces of sl(3, R) are contained in rootspaces of ;) (relative to some
maximal R-split toral subalgebra). This follows from [15] and [12; § 3.2].
We consider the two copies of sl(2, R) inside §/ = sl(3, R) spanned by
Fospor for fie @nd Foyp, fo, F.e respectively, where one has the following corre-
spondences: f,, <> (1, 0), fuz < (0,1, f.,<(@1,0), f—-l/Z (0, 1), fo = [fies f-112])
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< diag{l, —1, 0}, fo= [fm, f_m] <> diag{1, 0, —1}. Morecuver, we know that
the subalgebra sl(2, R) C §; acts on a selfdual cone in ;5. We may assume
that it acts in the natural way on a three dimensional subspace H of
 realized as 2 X 2 symmetric matrices. We denote ¢, = diag{1,0}, ¢, =

diag{0, 1}, x;, = ((1) é) e H. Since f, and f, are selfadjoint (with integral

eigenvalues) we can label elements in g by the pair of eigenvalues cor-
responding to f, and f. respectively. We also note that f, and f, have
only the eigenvalues 0, +1, in g,. Thus we may assume that ¢, belongs
to (1, —1), ¢, to (—1,1) and x,, to (0, 0).

A straightforward computation in si(3, R) shows [fy, f.ip]l = £2f.1,
[fo l?il._/z] = iflﬂ’ and [fo, f:xzz] = if:tl/Z’ [fo, f:tl/2] = izfilﬂ' Moreover, for
x = [f_is fi2] we have [x,f_,,] =0 and [x,c] =0. The eigenvalues of
y = [fip, ¢.] are (1,2). Since c¢, has eigenvalue —1 relative to f,, y #+ 0.
Also note that y has eigenvalue 2 for f,, whence [f_,,z, vyl #+0 and
[f—l/Z’ [f—uz: yll #+ 0. But [f—-l/i’ ¥yl = [f—l/Z’ fire €l = [, €] + [fipes [f-uz, cll
= [fiser [f-;/z, ¢]], hence [f—l/?y [foi Y1l = [f—:/z, [fires [f—l/Z’ cll] = [x, [f—llz’ cll

+ [fiyes [f,l,z, [f_l,g, )]l = 0, a contradiction. This proves the lemma.

3.21. By the results of the last sections we know that for each
simple summand ;§ = ;5_,, 4+ 5o + i of B, H.1p #=0, on the space V = b,
we obtain naturally the structure of a simple Jordan triple of algebra
type and of rank 1. This implies [14; Lemma 2.1] that V is isomorphic
to a Jordan triple of a quadratic form [R"; Id], n > 1. Moreover, in all
these cases the “structure algebra” 5, = [.h_,s, :0;.] 18 isomorphic to
RO f where ,f =N .5 [13;§5]. It is easy to see that ,f = 0 if and only
if b = sl(2, R).

Finally, in all the cases except [R; Id] above, the Jordan triple C is
naturally a subtriple of V.

3.22. As a corollary of the last section we see that the noncompact
part of [9_,,, 0,.] is also the center of this Lie algebra. In particular, a
“f,” as considered before, contained in [§_,4, h,], commutes with § N g,.
Therefore such an f; has only the eigenvalues 0, =2 on §j (see also Lemma
3.20). Moreover, by 3.11 and 3.12 we can assume that f, has a non-
vanishing “g-part”.

LeMMmA. f, = 2je + jg, — jq. + wy, where 2€{0,1}, q; is a sum of max-
imal tripotents of irreducible factors of t, and q, + q, is the maximal
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idempotent of t,.

Proof. Suppose there exists an idempotent 0 # c e i, [f;, c] = 0, where
fresl2, R) = Rf_,, + Rf, + Rf.p. Let U be the h-module generated by c.
It is easy to see that f, has only even integral eigenvalues on U g,.
Hence [f,, UNgJ] = 0. As before we consider t =n 4+ U and see that
no element of t has a component in Re(adjg)t,, This is a contradiction
since [Re(adjg)t,] Nt #= 0 as shown in 3.17 and the assertion follows.

3.23. In this section we reduce further the possibilities for §.
LEmMma. B* = by + [5-1/0, Bi2] + by s simple.

Proof. Suppose there exist different simple summands ,§ and ,§ of H*.
By 3.20 we know that these Lie algebras have real rank one. Let f, f;
be corresponding elements “of type f,”. Then, by Lemma 3.22, f, = 2,je
+Jjgi + w,; for i = 1, 2. Since we can assume that also f, 4 f, is “of type
o, ad(f; + f,) has only the eigenvalues 0, +1 in g, and 0 or 1 in g,.
But f, + fo = (4 + 2)je + jl@i + @) + (wy + wyy) and q; + ¢; = 0 follows.
The remaining case f, 4+ f, = Aje + w; was already excluded in 3.11 and

3.12. This proves the lemma.

3.24. From 3.17 we know that f, corresponds to a tube domain.
Hence t, = u 4+ ju where ucCt. By 3.18, if t, 4+  contains a noncompact
semisimple ideal of §), then u corresponds to an irreducible cone. Other-
wise all occuring cones are one dimensional by 3.22.

LEMMA. 1, corresponds to an irreducible symmetric tube domain.

Proof. Let ¢ be the maximal idempotent of an irreducible summand
of t,, By the remarks above we can assume that the corresponding cone
is one dimensional. Since [f,, c] & Rc we see that U = >, [9,[---[b., c]-- -],
¢, = +1/2, is an j-module and invariant under b. We recall § = §* +
where §* = §_,, + [H_1, b1l + bie and § Cg,. Moreover, by 3.23, §* is
simple. Since R = Re(adjc¢’) leaves § invariant by construction 3.3, we
see that for every idempotent ¢’ of u the derivation R of § is sI for some
value s on ,, and then —sI on §_,,. Suppose that also [jc/, ¢] = 0 holds,
then [j¢/, UNg] = 0. Therefore t = n + U has no component in Rc'.
But ¢/ eucC 1, a contradiction.

3.25. The above considerations restrict the possibilities for §* =p,,
+ [9_15 b1/l + By quite a bit. But we can even show
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LemmA. §* = sl(2, R).

Proof. Suppose this is wrong. Then from 3.21 it follows that si(2, C)
C b*. (Since C is a subtriple of V this follows from [12; §3.2].) More-
over, the rootspaces of sl(2, C) are contained in rootspaces of §* (relative
to some maximal R-split toral subalgebra). We choose f, for the canon-
ically embedded sl(2, R) C sl(2, C). From 3.22 we know that f, is of type
fo = 2je + ejg + w,, ¢ = +1. Therefore, f, has the eigenvalue 0 on fv, +
ju+ f + jg, and the eigenvalue ¢ on u. We also note, that f, has on
9.1 the eigenvalue +2. Let U denote the j-module generated by u. It
is easy to see that [b,, [9,, u]] = 0 and [§,, [H_., u]] Cu for « = +1/2. This
shows that U = u + [§*, u] holds. Let [§_,, biz] = ROF*, where £* C L
Then [f*, u] = 0 since u is either one-dimensional or it is associated with
some ideal f — g, of . Let W U be an irreducible sl(2, C)-submodule of U.
Then W= W, + W, where Wy, = WN g,. Since f,esl2, C) and W,Cu, W
is not a trivial representation. Hence W = C®. The subalgebra b =
Cdiag{i, —i} of sl(2, C) corresponds to a subalgebra of f*. Considered
as subalgebra of sl(2, C) it acts non-trivially on W, but as subalgebra
of ¥* it acts trivially on W, u. This is a contradiction.

3.26. From 3.24 we know that the cone C corresponding to t, is
irreducible. Moreover, C is not one-dimensional only if it is associated
with an ideal g, of 5. In this case we set T =HN¥f Then f is

maximal compact in f.
LEMMA. It suffices to consider the case where C is one-dimensional.

Proof. Since §* = sl(2, R), g. = Rf, + v, where v, C radg, a = +1/2.
Therefore [g_,, 81] C Rfy + nil(g). We also note that §, = i, + 1, + jg,
is a solvable subalgebra of g, § + f = g,. It is easy to verify that § =
g_iz2 + 8 + 81 + ¢, is a Kéahler subalgebra of g satisfying § 4+ f =g.
Since §, is solvable, the maximal semisimple subalgebra of § is §* = si(2, R).
In particular there is no ideal of §) contained in §,. Therefore, applying
the previous sections to § shows that we can assume that {, corresponds
to a one dimensional cone.

3.27. From 3.25 we know §* = sl(2, R). Let f, denote the canonical
generator of the Cartan subalgebra of §*. Then f, = Aje 4+ eq + w,. From

3.26 it follows that we can assume u = Rq. Moreover, as in the proof
of 3.25 we see that for the H-module U, generated by u we have U =
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Rq + R[f.,q), if e= —1 and U= Rq + R[f_1 q], if e=1. We also
know t=U+4+n and g =¢' + U+ jU. Note that (g,, + g_,») modulo
(gl + jai) is at most two-dimensional.

In the following sections we will exclude the four possibilities for
fi: 2=0,1, e = +1.

3.28. Since g/g’ is of low dimension it is natural to consider some
of the cases g; = g’.

LemmA. The case g,, = g; does not occur.

Proof. Suppose g, = gi,. Then g,, = u,, + v,,,, where u,, and i,
are defined as in 3.7. Recall u,, = jn_,, = [e, n_,,)] C n, whence —in g’ —
[1D,5, W] = 0. Under our assumptions we also know that u,, is the
bilinear kernel of p restricted to g,.,. The closedness condition for p
implies that tv, + t, leaves u,, invariant. From this and the integrability
condition it follows that v, + 1, acts symplectically (in the sense of [7; § 6])
on gip/u,,. Therefore tv, has only the (real) eigenvalue 0 and jg has
only the (real) eigenvalues 0, +1/2. Hence, the eigenvalues of £, on g,,
are /2 and 2/2 +¢/2. It is easy to see that for A =0,1 and ¢ = +1 the
eigenvalue 2 does not occur. But then §),, = 0, a contradiction.

3.29.

LEMMA. The case f, = 2je + jq + w, does not occur.

Proof. By 3.28 we can assume g, # gi,. Since, by 3.27, (8., + g_1,2)
modulo (g7, + ¢~) is at most two-dimensional, we know g_,, =¢",, +
Rv_,;,. In particular f_,, = ju,, + bv_,, for some u,,€u,,Cn, be R. This
implies p(juy, ) = o(f-1;0 — BU_1p, Wyp). We want to show that this
expression vanishes. Then u,, =0 and f_,,€ Rb_,,, Ct Cnil(g), a contra-
diction. To see that p(ju,s,, uw,;) vanishes we note that f, has the
eigenvalue —2 on f_,, and —1 on v_,,. In the situation under considera-
tion f, can only have the eigenvalues 2, —1, 0 on g,,. We note that
(v + wo(x, nid) = p(lfo, 4.l 0 + p(x%, [for nBD = o(fo, [£%2, D)
holds. If n{#) en, then [x%),, n}]en*». This expression vanishes if
v+ # # 0 as shown in 3.18. Therefore p(g“),, n{%) = 0if v + # # 0. This
applies in particular to v = —2, —1 and ¢ =0, —1. To finish the proof
of this lemma it suffices to show n{® = 0. But if n{® # 0, then also
0 # [foip [fo1pee nB]l © 155, To see that this is impossible we consider
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the space b =n_,, = jn_,,. Since jn_,, = [e, n_,,] we see that v is in-
variant under v, + t,. It is easy to see that the representation of v, 4 1,
on b is symplectic. Therefore jq has only the (real) eigenvalues 0, +1/2
and w, only the (real) eigenvalue 0 on 9. Thus f; cannot have the eigen-
value —2 on 9. This contradiction finishes the proof of the lemma.

3.30. In this section we finish the proof of “Case 3” by showing
LeMMA. The case f, = 2je — jg + w, does not occur.

Proof. By 3.28 we can assume g,, #g;,. We also know U = Rqg + Rv,,,
and g =¢'+ U+ jU. In particular g_,, =g”,, + R(jv;)-1.  Splitting
Uy = Uy + Wy, Where u,€1,,Cn and wy, €y, (see 3.7) we see ju,, =
juys + jwys, hence (juys).ie = juy,€¢’. Therefore g_,, =g”,,. But then
J8-1p=le, 8.2 and b =g_,, + jg_i, is left invariant by , + {,, From
this it follows that jq has only the (real) eigenvalues 0, +£1/2 and w,
has only the (real) eigenvalue 0 on . Therefore f, does not have the
eigenvalue —2 on g_,,, and the lemma is proven.

AppENDIX. We want to prove the following general result.

LEMMA. Let q be an algebraic Lie algebra of endomorphisms of some
vector space V and Y C q an abelian sabspace such that every beb is a
semisimple endomorphism of V.

Then there exists a maximal semisimple subalgebra %) of q and an
algebraic abelian subalgebra o C rad(g) that consists of semisimple endo-
morphisms such that

a) [, al =0,

b) bCh+ a

Proof. We prove the assertion by induction on m = dimb. Ifm =1
it suffices to consider some 0 = g€ 6. From [3, chap. VI, § 4, Proposition
18] we know that there exists a Cartan subalgebra ¢ of g containing g.
Hence by loc. cit. Proposition 20 there exists a maximal semisimple sub-
algebra Y of q such that ¢, = § Nc¢ is a Cartan subalgebra of )’ and
¢ = ¢, + (cNrad(q)). We note that c; consists of semisimple endomorphisms
of V. From [3, chap. V, § 4, Proposition 5] we derive that we can write
rad(q) = o’ + n where o is abelian, algebraic and commutes with )’ and
where n Crad(q) is the greatest ideal of g consisting of nilpotent
endomorphisms. Then ¢ = h + g + n and A + ¢ is semisimple. We write
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n = n, + n, where n, is in the kernel of H = ad(h + a) and n, is in the
sum v of the eigenspaces of H for eigenvalues 1=+ 0. Clearly, H is
invertible on tv. We denote by n* the space of k-fold commutators of
elements from 1, n = n. Then n® is left invariant by H. Since n® O
n®* there exists some H-invariant complement u® of n®**" in n®., We
note that for every eigenspace 9, of H we have v, N n® =p, N u® +
b, N n**Y. We write n, = uf” + n{® and n, = u® + n{®; then u®, n®
both are in the kernel of H and H is invertible on u®® Ntn. Let A, =
expad(H 'u{). Then Ah+a+n=h+a+n—[h+a+n H 'u’lmodn®
=h+a+ u® +u® — uPmodn® = h+ a4+ u modn®. We iterate this
procedure and assume that we have found already inner automorphisms
A,---,A,_, so that A,_, ---,Alh+a+n)=h+a+ul®+udP+ ...
4+ uf™" + n” for some n”en”. We write n” = n{” + n{” and n{” =
u + ni*Y, j =0, 1, with n{” e ker H and n{” e fv. Set A, = exp ad(H ~'u{").
Then A,, - -, Ah+a+n=AGR+a+u+ - - +uf"+n")=h+
a+uP+ - +u’+u” —-h+ae+ud+ -, H'u"l modn"* = h +
a+ u® + -+ + u”modn“*", Hence we find an inner automorphism of g
such that W(h+a+n) = h+a+ x where [A+a,x] =0. But Wh+a+n)
and h 4+ a are semisimple endomorphisms and x is nilpotent. Therefore
x=0. Wesethj=W-'yanda= W-'a. Theng= WA+ W-lach+a
and the assertion follows.

Assume now dimb = m and the assertion holds for dimensions less
than m. We write b = Y@ Rqg and apply the induction hypothesis to ©'.
The corresponding subalgebras will be denoted by § and o. Hence
b =k + o, where W e¥, a’ed, for all b’e ¥ and q = h + a + n where
n is as above. Since [b/, q] = 0 we have

@ [b),h+al =0,
© b, n] = 0.

Now we repeat the proof above and note that in every step the inner
automorphisms A, fix ¥. From this the assertion follows.

Added in proof. The following paper builds on the present article:
J. Dorfmeister, K. Nakajima. The fundamental conjecture for homogeneous
Kéahler manifolds, Acta Math., 161 (1988), 23-70.
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