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EXISTENCE AND NONEXISTENCE
OF REGULAR GENERATORS

J. ADAMEK

ABSTRACT. A total category is constructed which has no regular generator although
it has an object C such that every object is a regular quotient of a copower of C.

Introduction. Given a class ‘£ of epimorphisms in a category K, by a (weak) E-
generator is meant a small collection G of objects such that every object X is an E-
quotient of its canonical coproduct w.r.t. G (or any coproduct of G-objects, respectively).
The former means that the canonical coproduct Igeg Hehomc. x) G, G = G, exists
and the canonical morphism into X is in E. Whereas the two concepts of ‘E-generator
and weak ‘E-generator coincide for ‘E = epis, strong epis, extremal epis, we will prove
that they do not coincide for ‘£ = regular epis. The example we present is very “well-
behaved: it is a total category K, i.e., the Yoneda embedding K — Set®” is a right
adjoint; thus, K is complete, cocomplete, compact, erc.

Let us remark that, on the other hand, the existence of a weak regular generator does
imply the existence of a regular generator provided that K has regular factorizations or,
more generally, has the cancellation property for regular epimorphisms.

The counterexample. We define a category I' as follows: T-objects are quadruples
(X, X0, X, @) where X O X, 2 X; are sets and a: exp X; — Xj is a function such that

a(l) = a({x}) € X,

forall x € X|.

Elements of X are called internal, those of X — X, are called external; an element
x € Xy is called special in case x = a({})) or x = (M) for some infinite set M C X, with
al{my,my}) = a(M) for all m; # my in M.

[-morphisms from (X, Xy, X, @) to (Y, Y}, Yy, 3) are functions f: X — Y such that

() fIXo]l € Yo

(2) fIXi1C Y

(3) f(a(M)) = B(fIM])) for each M C X,

(4) foreach x € X — Xy either f(x) € ¥ — Y, or f(x) is special.
Composition and identities are defined on the level of Set. We have to verify that mor-
phisms are indeed closed under set-theoretical composition. This follows easily from:
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LEMMA 1. T-morphisms preserve special points.

PROOF.  Lef f: (X, X0, X;, @) — (Y, Yy, Y1, 3) be a morphism, and let x € X, be spe-
cial. If f(x) = B(f), then f(x) is special. Suppose f(x) # 3(1). Since x is special, there is
M C X; infinite with x = (M) = a({x,x2}) for all x; # x> in M. Then for x; # x> in
M

B({f (). f)}) = B¢ 1{xxa b)) = f(x) # BD)

implies f(x)) # f(x2). Thus, f[M]is an infinite set with f(x) = 3(fIM]) = B3({y1, 2 })
for all y; # y; in f[M].

LEMMA 2 (DESCRIPTION OF COLIMITS INT").  Let D: D — T be a small diagram with
objects Dd = (X4, X0, Xa1, %), and let & be the smallest equivalence on 11, X, with the
following properties:

(1) x & D&(x) for each x € Xy and each D-morphism &:d — d’;

(2) ayM) ~ ap(M’y for any M C Dy, M' C Xy with ci{M] = ¢[M'] where
Gl Xy — X =14 Xy / R is the canonical map.

Then a colimit of D is formed by the sink of canonical maps from Dd to

colimD = X+2Z,Xo+Z,X,,&)

where X; = c(I1y Xa1), Xo = ¢y Xgo) Z = {M C Xo; M L c[ Xy for any d}, and for
each M C X,

M) = { c(ay[M'))  whenever M = ¢[M'] for some M' C Xy
' M whenever M € Z.

PROOF. Let us first verify that for each d the restriction ¢, of the canonical map ¢
is a morphism ¢,: Dd — colim D. It is obvious that ¢,[X; ] C X and ¢y[X40] C Xo.
furthermore, c((xd(‘M’)) = a(c[M')) for each M" C Xy,,. Let us verify that, for each
X € Xy — Xq0, whenever cy(x) is not special in colim D, then ¢, (x) € X — Xj. If there
would exist y & x, y € Xy — X9 with DS(y) € X for some é:d’ — d” in D, then the
point Dé(y) &~ x would be special in Dd”, and arguing as in Lemma 1, we would conclude
that cd(D(S(y)) = ¢y4(x) is special in colim D. Consequently, all external points in the
equivalence class of x are mapped to external points by all morphisms of the diagram
D. Since the condition (2) above concerns non-external points only (recall that a(M) is
never external), it follows that the whole equivalence class of x contains external points
only. Thus, c(x) = ¢4(x) € X — Xo.

The sink of all ¢,;: Dd — colim D is, obviously, compatible with D. Let f;: Dd — B =
(Y, Yy, Y1, 3) be another compatible sink. Then the equivalence & is clearly contained
in the equivalence merging x € X, with X' € X, iff f,(x) = fp(x'). Thus, we have
a unique mapping f: X — Y withf(crd(x)) = fy(x) for all d, x. Define f:X+Z — Y
to be the extension of f with f(M) = 3(f[M]) for each M € Z. Then f; = f - ¢, and
f(a(M)) = B(fIM]) for all M C X, and f is the unique function with these properties.
Moreover, for each x € X — X, we have x’ € X; — X0 with x = ¢(x'); thus f(x) = fy(x")
is either external or special. Thus, f:colimD — B is a morphism.
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COROLLARY. I is cocomplete, and for each coproduct in T the only special points
are the special points of the individual summands.

In fact, if the diagram in Lemma 2 is discrete and a set M C X, fulfils @(M) =
a({my,my}) for all m; # my in M, then, obviously, M € Z (else there exist m; # my in
M with {m,,my} € Z). Thus, M = ¢(M’) for some M’ C X, and ary(M’) is a special
point of Dd.

THEOREM. The category I has no regular generator, although each object is a reg-
ular quotient of a copower of the object

C=({{a,b,b,c,c'},{b,b e, } {e, '}, )

where
(@) = c and a({c,c'}) = b.

REMARK. Since the category I' is cocomplete (by Lemma 2), the existence of a weak
regular generator {C} implies that I is total—this has been proved in [BT;].

PROOF. Denote by I'y the full subcategory of I' consisting of all objects without
external points, and define a functor

U:I’—»Fo

by
UX, X0, X, o) = (Xo. X0, X1, @);  Uf = f/Xo.

I.  Let us prove that each object K = (X, Xy, X, @) is a regular quotient of a copower
of C. It is obvious that
K = K() + K]

where
Ky = UK

and

K, = (X, {ay}, {a®)},0— oz((/))).

Thus, it is obviously sufficient to prove that both Ky and K are regular quotients of
copowers of C.

(a) Let us first verify that a morphism f:A — A’ in T with A’ € T is a regular
epimorphism whenever both f and the domain-codomain restriction of f to “X,-type”
points are onto. More precisely, putA = (X, Xy, X,, @) and A’ = (X', X{, X, «’). Suppose
X' = X, and f(X) = X', f(X,) = X|. Then f is a regular epimorphism in I'. In fact, the
kernel set kerf C X x X of f defines a subobject of A X A:

E = (kerf.(Xy x Xo) Nkerf,(X; X X;)Nkerf,a")
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where for the projections 7y, m of X X X we have
o (M) = (- 7 [M], - ma[M]) forall M.

It is easy to see that 7j, m: E — A are morphisms of I', and of course f - 7y = f - 1.
Now for each morphism

f_A —>A = (X,)?(),X],(})
with /- m; = f - m we have (since f is onto) a unique map g: kerf — X withf = g - f.
This is a morphism g: A’ — A of T" because

glX1=g-fIX]1=fIX] CX; fori=0,1

and given M' C X|, = f[Xo] there exists M C X, with M’ = f[M] and then

g(a' M) = g('(fIMD))

= g(f(alMD)

F(an)
= a(f[M])
= a(gIM')).

Il

Consequently, f is a regular epimorphismin I'.
We now prove that K is a regular quotient of a copower of C. In fact, the canonical
morphism
fr I C—Ko

hehom(C,Kyy)

is onto, since for each x € X we have a morphism
h:C— Ky, h(b")=x, h(—=)= a(f)otherwise.

Its restriction to X, -type points is also onto, since for each x € X; we have a morphism
h: C — K defined by

h(c') = x

h(b) = a({x. a(®)})

h(—) = a()) otherwise.
Consequently, f is a regular epimorphism.

I1. T" DOES NOT HAVE A REGULAR GENERATOR.  Suppose that, to the contrary, G is a
regular generator of I'. We derive a contradiction by exhibiting, for each cardinal n, an
object in G of cardinality at least n. If all G-objects would lie in 'y, then their coproducts
would also lie in 'y, and this is impossible. Thus, some G € G has external points.

For each infinite cardinal n define an object

D, = (n,n,n,b,)
0 ifcardM # n,cardM # 2

6HM = .
(M) {1 ifcardM = norcard M = 2.
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Then 1 is a special point of D,. Thus, we have the following morphism f: Gy — D,,: f
maps all external points to 1 and all internal ones to 0. Consider the canonical morphism
¢ of the canonical coproduct of D, w.r.t. G which, by assumption, is a coequalizer of
some pair g, g’:
B LG -5 Dy Gi = (XX, X, ).
& el

Since f: Gy — D, is one of the components of ¢, there exists j € J with ¢(x) = 1 for
some external point x of G;. Since 1 is internal in D,,, we claim that there exists y in B
such that ¢(x) = c(g(y)) = c(g(y’)) and one of the points g(y), g'(y) is external whereas
the other one is internal. (In fact, suppose that no such y exists. By the description of
colimits in Lemma 2 it then follows that the &-class of x contains only external points;
thus, c(x) is an external point of the colimit, i.e., of D,—a contradiction.) It follows
that y is an external point of B. Consequently, one of the points g(v), g'(y) is special in
[lic; Gi. By the above Corollary, we thus have a special point z € G;j, for some iy € [
with ¢(z) = 1. Since 1 # a(D), it follows that there exists an infinite set M C X;,; with
a(M) = a({m,,my}) = z for all m;,my € M, m; # m,. Consequently, in D, we have

1 =6,(c[M]) = 5,,({c(m] ),c(mg)}).

Since §({x}) = 0, we conclude c(m,) # c(my), i.e., c is one-to-one when restricted to M.
Thus, ¢[M] is an infinite set which is mapped by ¢, to 1—consequently, card c[M] = n.
This proves that G;, has at least n points, which concludes the proof.

i
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