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Abstract. The role of tachoclines, the thin shear layers that separate solid body from differential
rotation in the interior of late-type stars, in stellar dynamos is still controversial. In this work
we discuss their relevance in view of recent results from global dynamo simulations performed
with the EULAG-MHD code. The models have solar-like stratification and different rotation
rates (i.e., different Rossby number). Three arguments supporting the key role of tachoclines
are presented: the solar dynamo cycle period, the origin of torsional oscillations and the scaling
law of stellar magnetic fields as function of the Rossby number. This scaling shows a regime
where the field strength increases with the rotation and a saturated regime for fast rotating
stars. These properties are better reproduced by models that consider the convection zone and
a fraction of the radiative core, naturally developing a tachocline, than by those that consider
only the convection zone.
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1. Introduction
In stellar interiors, tachoclines are interface layers where the solid body rotation of

the stars interior becomes differential rotation. It is also associated with the mechanism
by which the star transfers energy from the core to the photosphere, i.e., the interface
between a radiative and a convective layers where rotating turbulence drives the transport
of energy and angular momentum. Thus, the location of the tachocline depends on the
evolutionary stage of the star. In the case of the Sun it is located at about 71% of the
solar radius.

Since strong gradients of angular velocity occur at these layers, it is believed that they
are relevant for the stellar dynamos. For the solar case, particularly, some dynamo models
(Dikpati & Charbonneau 1999; Chatterjee et al. 2004; Guerrero & de Gouveia Dal Pino
2008) assume that the large-scale toroidal magnetic field generated at the tachocline
directly manifests as sunspots, the regions of strong radial magnetic field observed at the
surface. A buoyancy process is invoked as the transport agent of magnetic flux ropes.
This scenario of solar dynamo is controversial and matter of debate in the literature
Guerrero & Käpylä (2011). However, the same mechanism has already been considered
for stars with deeper convection zones.

As for solar-type stars in different evolutive stages, observations of X-ray luminosi-
ties, a proxy of stellar activity (Pizzolato et al. 2003; Wright et al. 2011), or magnetic
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fields (and references therein Vidotto et al. 2014), indicate two regimes of activity as
function of the Rossby number, Ro. For higher values of the Rossby number (buoyancy
dominated convection) the stellar activity follows a exponential relation (Lx ∝ Ro−2.7 ,
〈B〉 ∝ Ro−1.39). For low Rossby numbers (rotation dominated convection) the stellar
activity shows a saturated regime. In the sample studied by Wright et al. (2011), the
stars in the saturated regime are either partly or fully convective, whereas in the buoy-
ancy dominated regime the stars have already developed a radiative core. This suggested
a relation between photospheric and coronal magnetic field and the field developed at
the tachocline. Most recently, however, Wright & Drake (2016) reported new observa-
tions of fully convective stars that fall within the rotation dominated regime and follow
the Lx ∝ Ro−2.7 scaling. This result questions the relevance of the tachocline in the
generation of the large-scale magnetic field observed in stars. It suggest that in partly
convective stars the field does not develop in the shear region but in the convection zone.
A distributed dynamo process, with a turbulent α-effect (Parker 1955; Steenbeck et al.
1966), is then invoked as the field generating mechanism. The field observed in the Sun,
in the form of sunspots, and in other solar-type stars, via Zeeman-Doppler Imaging (Do-
nati & Brown 1997; Petit et al. 2008), might be of shallow origin as proposed one decade
ago by Brandenburg (2005).

To understand the physics behind the stellar dynamo mechanism in a self-consistent
form nowadays we draw upon global MHD models. Although these simulations are still
far from the numerical resolution required to capture the full dynamics of the stellar
interior, they have been successful in reproducing some key ingredients of the dynamo. For
instance Browning (2008) found dynamo action in fully convective models mimicking M
dwarfs while Brown et al. (2008) obtained steady magnetic field solutions, in simulations
of rapidly rotating convection with solar-like stratification. More recently Ghizaru et al.
(2010) reported oscillatory dynamo solutions in ILES simulations of convection rotating
at the solar rate. Thereafter different groups have found dynamos with periodic magnetic
fields in simulations with different Rossby numbers (Käpylä et al. 2012; Guerrero et al.
2016a; Augustson et al. 2015). From these models, the natural development of a tachocline
is reproduced only by Ghizaru et al. (2010) and (Guerrero et al. 2016a) who used the
EULAG-MHD code. In fact, Guerrero et al. (2016a) presented a comparison between
models with and without a stable layer at the bottom of the domain. Their results remark
important differences between both kind of models performed with the same code, as well
as with models performed with different codes that only consider the convection zone.

In this work we present what we consider the most relevant features observed in sim-
ulations of solar-type stars that include a fraction of the radiative zone (and therefore a
tachocline). The first two sections extrapolate the results of the models to the solar dy-
namo case. They discuss how MHD instabilities at the tachocline might set the dynamo
period, and how the so-called torsional oscillations might develop in the same region be-
fore propagating upwards up to the solar surface. The third section discusses the scaling
of the dynamo generated magnetic field with the Rossby number. We present the results
of a large number of simulations with (RC models) and without tachoclines (CZ models)
which indicate that the models that consider the stable radiative zone are the ones that
better reproduce the observational laws discussed above.

2. The solar dynamo period
One of the most relevant quantities defining the evolution of a dynamo generated

magnetic field is the turbulent magnetic diffusivity, ηt . Given the values for temperature
and density in the convection zone, the molecular, Ohmic, magnetic diffusivity is small
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Figure 1. Left: Turbulent magnetic diffusivity of models without (blue) and with radiative
zone (red). Solid an dashed lines correspond to MHD and HD cases, respectively. Rigth: Volume
integrated energies of the different quantities in the simulation; TKE, TME and PME stand for
toroidal kinetic and magnetic energies, and for the poloidal magnetic energy. NAME and NAKE
correspond to the non-axisymmetric magnetic and kinetic energies, respectively. Adapted from
Guerrero et al. (2016a).

enough (∼ 104 m2s−1) to allow a oscillatory dynamo with 22 yr period. According to
dynamo theory the rate at which magnetic field is diffusing is competing with the amount
of magnetic field being generated and advected. This competition defines what parameter
influences more in setting the oscillation period. The value of ηt has been estimated from
the mixing length theory (e.g., Muñoz-Jaramillo et al. 2011) and also from the properties
of the observed butterfly diagram (Cameron & Schüssler 2016). Both estimations agree
with values between 108 − 109 m2s−1 . If this is the case the magnetic diffusivity must be
controlling the cycle period of the solar dynamo. Turbulence diffusivity quenching, due
to the non-linear interaction between the large scale magnetic field and the turbulent
flows, has proven to be inefficient for the period to be controlled by, for example, the
meridional circulation (Guerrero et al. 2009; Muñoz-Jaramillo et al. 2011).

What is puzzling about this estimative for the value of ηt is that it will diffuse the
magnetic field in the convection zone in about 1-2 years, but not in 11. The simulation
without tachocline, CZ02, presented in Guerrero et al. (2016a) results in a value of the
turbulent diffusivity, ηt = 1.09× 109 m2s−1 (see blue line in Fig. 1(left)) and a full-cycle
period of 2.21 yr. The model, including radiative zone, RC02, results in ηt = 1.12 × 109

m2s−1 (see red line in 1(left)) and a cycle period of full-cycle period of 34.5 yr. By
comparing the solid (MHD case) and the dashed (HD case) red lines in Fig. 1(left), it
is possible to notice that ηt is not quenched by the large-scale magnetic field in the
convection zone. However, it is quenched in the range 0.7R� � r � 0.73R�, where the
stronger magnetic field is generated. Interestingly, the evolution of the magnetic field in
the rest of the computational domain seems to be governed by the deep seated magnetic
field.

According to the results presented in Guerrero et al. (2016a), the cycle period is set
by the value of the turbulent diffusivity at the bottom of the convection zone and the
radiative layer, ηt � 5 × 106 m2s−1 . This value is the result of turbulent motions that
develop at the tachocline and the stable layer due to current-driven instabilities (e.g.,
Cally et al. 2003; Miesch et al. 2007). Because of the shear profile and the configuration
of toroidal magnetic field an instability develops. It grows, exchanging energy with the
magnetic field (see black and green solid lines in 1(right)). When the magnetic field
is weak, the energy of the turbulent motions and magnetic field decays (see dashed
lines in Fig. 1(right)). Thus, both the shear and the magnetic field adjust themselves
to a equilibrium. Similar results have been obtained for a different global simulation
performed with the EULAG-MHD code (Lawson et al. 2015).
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3. Torsional oscillations

The slow-down and speed-up of the angular velocity observed at the solar surface are
called torsional oscillations (TO). When their latitudinal distribution is plotted against
time, two branches can be observed. One of them, with the largest amplitude, migrates
towards the poles, the second one migrates equatorwards. Since these branches oscillate
with the same periodicity than sunspots, it is believed that the TO are correlated with
the large-scale magnetic field. In fact, some correlation is observed between the equatorial
branch of TO and the sunspot latitudes of activity. However, the speed-up of the angular
velocity starts few years before than the sunspot cycle.

The model RC02 of Guerrero et al. (2016a) shows variations of the angular velocity
that resemble quite well the TO pattern, i.e, there are two brances, one polar and one
quatorial, that oscillate with the dynamo period (see the upper panel of Fig. 2(a)). The
origin of these oscillations was studied in Guerrero et al. (2016b). It was found that the
pattern observed at the surface of the model (r = 0.95R�) does not form locally but
it is the result of the strong axial torque carried on by the large-scale magnetic tension
at the tachocline. Therefore, the morphology of the TO does not corresponds to the
magnetic field itself, but to the divergence of the correlations BφBr and BφBθ at the
bottom of the convection zone. This perturbation propagates upwards as can be seen
in Fig. 3 where the time evolution of the axial torques is compared with the angular
velocity perturbation, δΩ(r, θ, t) = (2π�)−1(uφ(r, θ, t) − uφ(r, θ)), where � = r sin θ
and (2π�)−1uφ is the zonal and temporal average of the angular velocity. In this figure
the computational domain has been divided in 6 regions over which volume averages
of the quantities are performed. Regions R31, R21 and R11 correspond to the polar,
middle latitudes and equatorial tachocline; R32, R22 and R12 to the same latitudes
and the bulk of the convection zone; and R33, R23 and R13 to the top of the domain.
It can be seen that in the tachocline region, the shape of the TO closely resembles
that of the magnetic tension torque with a slight delay. This resemblance disappears
in the other regions but the shape of the TO propagates upwards while loosing some
amplitude.

From this study, Guerrero et al. (2016b) found that, in general, the meridional cir-
culation appears as a large-scale motion that compensates for the axial torque due to
the Reynolds stresses. This is the so-called gyroscopic pumping mechanism (e.g., Mi-
esch & Hindman 2011) for a quase-steady system (i.e., while full stationarity is never
obtained due to the cyclic magnetic field, the establishment of the meridional circula-
tion occurs in a faster time-scale). The steady profile of the meridional circulation varies
in a time-scale compared with the magnetic cycle. While at the tachocline, this change
is the response to the net magnetic tension torque, at the surface, where the magnetic
tension is weaker, the variation is a local response to the TO. This can be seen in panel
(b) of 2 where δuθ = uθ (r, θ, t) − uθ (r, θ) is presented in time-latitude (at r = 0.95R�,
upper panel) and time-radius (at 30o latitude, bottom) butterfly diagrams are presented.
The correlation between δuφ and δuθ is evident at the surface with a residual poleward
(equatorward) flow appearing when the rotation speeds-up (slows-down). The bottom
panel of the same figure indicates that this correlation does not exist all depths, as ex-
pected. The correlation between the TO (black line) and a negative axial torque due to
the meridional circulation (red line) can be seen in the top and bottom rightmost panels
of Fig. 3. It is worth noticing that a similar correlation between δuφ and δuθ has been
reported by Komm et al. (2015). These result ultimately indicates that the meridional
circulation must be correlated with the magnetic field at the bottom of the convection
zone.
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Figure 2. Time-latitude diagram at r = 0.95R� (upper panel), and time-radius diagram
at 30o latitude (bottom panel) of δΩ(r, θ, t)/2π = (2π�)−1 (uφ (r, θ, t) − uφ (r, θ)), left, and
δuθ = uθ (r, θ, t) − uθ (r, θ), right. The continuous (dashed) line contours depict the positive
(negative) toroidal magnetic field shown in Fig. 6 of Guerrero et al. (2016a).

Figure 3. Time evolution of the axial torques computed for different latitudinal and radial
regions (see the text). Red, orange, blue and green lines correspond to the meridional circulation
(MC), Reynolds stresses (RS), magnetic tension (MT) and Maxwell stresses (MS) axial torques
normalized to the local maximum value of 〈∇·FM C 〉. The black line shows the evolution of 〈δΩ〉
normalized to 10−7 . The angular brackets mean volume averages over each region. Adapted from
Guerrero et al. (2016b).

4. Saturation of magnetic field in solar-type stars
In this section we present results from dynamo simulations of solar-type stars with

different Rossby numbers. From these models only six cases were studied in detail in
Guerrero et al. (2016a). Here we present eight simulations which include a fraction of the
radiative zone (RC cases) and seven cases which consider only the convection zone (CZ
cases). In Fig. 4 we present the amplitude of the magnetic field as a function of Ro. The
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Figure 4. Magnetic field strength as a function of Ro for global simulations that include the
radiative zone (left and middle panels) and for models that consider the convection zone only
(right). In the left panel the field is measured at the shear region, 0.72R� � r � 0.75R�. In the
middle and right panels the field is measured at surface levels, 0.92R� � r � 0.96R�. Red and
blue symbols correspond to toroidal and poloidal field components, respectively.

left and middle panels corresponds to RC models while the right panel shows the results
for CZ models. In left panel the rms field is computed in the tachocline region where the
shear is stronger (0.72R� � r � 0.75R�). In the middle panel the field is computed in the
near-surface shear layer (NSSL, 0.92R� � r � 0.96R�). The Rossby number has been
computed here by using the definition used by Landin et al. (2010): Ro = Prot/τ , where
Prot is the rotation period and τ = Hp/urms is the convective turnover time computed
one pressure scale height above the tachocline.

Starting from the slow rotation regime, at tachocline levels, the toroidal magnetic field
(red dots) increases with the decreasing of the Rossby number until Ro � 1, for lower
values of Ro, it exhibits a decay. This happens because faster rotating models result in
less shear at the tachocline. The latitudinal shear also decreases and the rotations turns
more and more homogeneous. The continuous lines show scaling laws for the magnetic
field varying as Ro0.71 and Ro−1.79 for lower and larger values of the Rossby number,
respectively. The amplitude of the poloidal magnetic field (blue dots) also increases with
the decreasing of the Ro for slow rotating models. For 1 � Ro � 3, the 〈Bp〉 shows a
platoo, afterwards it increases and then decays again.

The scaling is different when the rms magnetic field is computed at the NSSL levels.
Both, the toroidal and the poloidal components increase with the decrease of Ro for
slow rotating models, but then they reach a saturation level. It seems, however, that the
Rossby number of saturation is different for 〈Bφ〉 (Ro ∼ 2.5) than for 〈Bp〉 (Ro ∼ 1).
The continuous line shows a scaling law with Ro−1.79 . Although the shear is decreasing
for fast rotating models, the amplitude of the toroidal field remains constant. It could be
argued that the α effect increases with the rotation so that α2 dynamos are operating in
these cases. However, the same analysis for models without the stable layer (right panel
of Fig. 4) indicate that this might not be the case. For these models the rms large-scale
magnetic field is computed only at the NSSL because there is not a radial shear layer at
the bottom of the domain. From right to left, the magnetic field increases for decreasing
Ro (the scaling law in this case fits better for Ro−1.2) but then decreases quickly for
the faster rotating models. Similar behaviour is observed for both, toroidal and poloidal
components of the large-scale magnetic field.

This result indicates that the presence of the tachocline is relevant for reproducing the
observed saturation of the magnetic field mentioned above for partly convective stars.
Nevertheless, the lhs panel of Fig. 4 suggest that the observed magnetic field might not
come from the tachocline but is the surface magnetic field generated by a distributed
dynamo. The evolution of this large-scale field is governed by the strong field anchored
in the tachocline and the stable layer underneath. The dynamo ingredients, naturally
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occurring in a global MHD simulation, will be presented in a forthcoming paper (Guerrero
et al. 2017, in preparation).

5. Discussion
Global dynamo simulations have become an essential tool to understand the physics

of the solar and stellar dynamos. The evolution of rotating turbulent convection of a
plasma in hydrostatic equilibrium results in large-scale motions and magnetic fields.
For the solar case, the models capture some of the observed characteristics of both,
motions and magnetism. From the variety of global dynamo models in the literature, the
ILES performed with the EULAG-MHD code have proven successful in reproducing two
important features: the thin shear layer at the interface between the radiative and the
convective zones, and the reversals of the large scale magnetic field in a time scale similar
to the solar cycle. Based on the results of these models, in this proceeding we discussed
the relevance of tachoclines for the generation of solar/stellar magnetic fields.

Three arguments are presented supporting the relevance of tachoclines. (i) the solar
cycle period: according to estimations the value of the turbulent magnetic diffusivity in
the bulk of the convection zone must be between 108 − 109 m2s−1 . These value means
a fast decay of the large-scale magnetic field and therefore a cycle period of about 2
years. In the global dynamo models the strong radial shear at the tachocline generates
a strong toroidal magnetic field which keeps stored in the stable layer underneath. The
co-existence of a shear profile together with a large-scale field is unstable and results
in non-axisymmetric field and motions and therefore in a turbulence diffusivity even
in the stable layer. This shear current instability develops obtaining energy from the
magnetic field, when the magnetic field is not sufficiently enough, the instability decays.
The time-scale of this balance sets the period of the oscillatory dynamo. (ii) The torsional
oscillations: Guerrero et al. (2016b) reported a pattern of TO that resembles the observed
pattern of speed-up and slow-down of the zonal flow observed in the solar surface. They
demonstrated that in the simulation this pattern is formed in the tachocline due to
the large-scale magnetic tension. The TO propagate upwards up to the surface of the
model. The simulation also exhibit changes in the meridional flow pattern with the same
period of the magnetic cycle. These changes are also observed at the solar surface. We
found that the surface variation of the meridional circulation is a response to the TO, i.e.,
whenever the zonal flow speeds-up (slows-down), the residual of the meridional circulation
is poleward (equatorward) such as it has been observed (Komm et al. 2015). (iii) Scaling
of stellar magnetic fields with the Rossby number: the X-ray luminosity as well as the
magnetic field show a well defined scaling with the Rossby number. For large values of
Ro, buoyancy dominated convection, the magnetic field increases with the decrease of
Ro; for smaller values of Ro, rotation dominated convection, there is a saturated regime.
Global simulations of partly convective stars, with a solar-like stratification and in a wide
range of Rossby numbers are able to reproduce a similar scaling profile with a Ro−1.79

for slow rotation rates and saturated for fast rotation rates. Models with radiative cores
are necessary to reproduce this law. The observed magnetic field does not correspond
to the magnetic field at the tacholine but to the surface magnetic field generated by
a distributed dynamo. However, the large-scale field evolution is governed by the deep
seated field anchored in the stable layer. On the other hand, solar-like models which
consider only the convection zone do not reproduce the saturated regime but scale with
Ro−1.2 in the buoyancy dominated regime. Further work is still necessary to determine
if the same scaling law is reproduced in simulations of fully convective stars. Initial
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efforts have started in this sense in EULAG-MHD simulations (see Zaire et al., in this
proceedings).
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