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Abstract

We consider the space L' (v, X) of all real functions that are integrable with respect to a measure v with
values in a real Frechet space X. We study L-weak compactness in this space. We consider the problem
of the relationship between the existence of copies of t°° in the space of all linear continuous operators
from a complete DF-space Y to a Frechet lattice E with the Lebesgue property and the coincidence of
this space with some ideal of compact operators. We give sufficient conditions on the measure v and the
space X that imply that L' (v, X) has the Dunford-Pettis property. Applications of these results to Frechet
AL-spaces and Kothe sequence spaces are also given.

1991 Mathematics subject classification (Amer. Math. Soc): primary 46A04, 46A40,46G10,47B07.
Keywords and phrases: Frechet lattice, L-weak compactness, Dunford-Pettis property, L-weakly compact
operators, generalized AL-spaces, Kothe sequences spaces.

1. Introduction

In this paper we study operators with values in, or defined on, spaces of scalar-valued
integrable functions with respect to a vector measure with values in a real Frechet
space.

This kind of integration was introduced by Lewis in [19] and developed essentially
by Kluvanek and Knowles in [18] for locally convex spaces. Let us recall briefly the
basic definitions (see [19] and [18]).

Throughout the paper X will be a real Frechet space. Denote by ̂ {X) the system
of all 0-neighborhoods in X. Given U e %{X) we denote by pv the associated
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Minkowski functional, that is,

pu(x) = sup{|(x', JC>|, x € U0}, x e X,

where U° denotes the polar set of U. Consider a countably additive measure v :
E —• X defined on a a -algebra E of subsets of a non-empty set Q.. For every 0-
neighborhood U in X the {/-semivariation of v is the set function \\v\\u : E —*• [0, oo)
defined by

\\v\\a(A):=sup{\x'v\(A), x'e U°),

where |x'v| is the variation measure of the signed measure x'v(A) = {xr, v(A)},
A e E, x' e X'. Observe that for all A e E

(1.1) sup{pt,(v(fl)), B € E,,} < ||u||i/(A) < 2sup{/?t/(v(fi)), B e

where E,, := {fi e E, B e A}; see [18, Lemma II.2].
Let L\v, X) be the space of (classes of v-almost everywhere equal) scalar-valued

integrable functions with respect to v. A real-valued, E-measurable function /
on Q is called v-integrable (see [18,19]) if / € L'(|x'v|), for all x' e X', and
if for each A € E there is a vector jA fdv e X (necessarily unique) satisfying
(x1, fA fdv) — fA fd(x'v) for all x' e X'. We identify two functions / and g if they
are equal v-almost everywhere, that is, if

for all f/ e <%(X). The space Lx (v, X) is a Frechet lattice with the Lebesgue property
when it is equipped with the topology of convergence in mean and the order / < g
if and only if f(co) < g(co), v-almost everywhere; see [19, Theorem 2.2] or [18,
Corollary II.4.2]. Recall that a locally solid Riesz space (L, r) is said to have the
Lebesgue property (or that r is a Lebesgue topology) if ua j , 0 in L implies ua A- 0.
The characteristic function \n is a weak order unit of the Frechet lattice L'(v, X),
since inf{/, xa) = 0 implies / = 0. Moreover, a system of lattice seminorms for this
topology is given by

u — d\x'v\, x' € U° \ , f e L'(v, X), U € %(X).

The associated integration map /„ given by /„(/) := fa f dv is linear and continuous
from L'(v, X) into X.

In Section 2 we characterize the L-weakly compact sets of L\v, X) via equi-
integrability (Theorem 2.2). L-weak compactness of the range of a positive vector
measure with values in a Frechet lattice is also proved (Theorem 2.4).
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In Section 3 we consider the problem of relating the existence of copies of tx

in the Frechet space Lh(Y, E), consisting of all linear continuous operators from a
complete DF-space Y to a Frechet lattice E (with the Lebesgue property) and having
the topology of uniform convergence on the bounded sets of Y, with the coincidence
of Lh(Y, E) to a certain ideal of compact operators. Our results (Theorems 3.2 and
3.3) extend to the locally convex setting those of Curbera in [9]. Similar problems
have been considered in [4,5] and [6].

In Section 4 we study sufficient conditions on the measure v and the space X
in order that the space L\v, X) has the Dunford-Pettis property (Theorem 4.1 and
Corollary 4.2). Some applications to generalized Frechet AL-spaces (Corollary 4.3)
and Kothe spaces are also given; see Section 4 for the definition of these concepts.

Our notation and terminology is standard. For details concerning the lattice prop-
erties we refer the reader to [20,21] and [23] and for the topological concepts in Riesz
spaces to [1] and [2]. Aspects related to locally convex spaces can be seen in [15].
For the general theory of vector measures and integration we refer to the monographs
[11] and [18].

2. L-weakly compact sets in L' (v, X)

In this section we obtain a characterization of L-weakly compact sets in the space
L' (v, X), where X is a Frechet space and v : T, —>• X is a countably additive measure
defined on a a-algebra Y, of subsets of a non-empty set Q. Recall (see [21, Definition
3.6.1]) that a (non-empty) subset A of a Frechet lattice E is said to be L-weakly
compact if xn —> 0 in the topology of E for every disjoint sequence (x,, )„ contained
in the solid hull S(A) of A, where S(A) := {v e E, \v\ < \u\ for some u e A).

By using the disjoint sequence theorem of Aliprantis and Burkinshaw [1, Theorem
21.7] we can prove the following result; see also [21, Proposition 3.6.2].

THEOREM 2.1. Let E be a Frechet lattice and K be a bounded subset of E. Then
the following assertions are equivalent.

(1) K is L-weakly compact.
(2) x'n(x) —> 0 uniformly on K for every (positive) disjoint equi-continuous se-

quence (x'n)n in E'.

Moreover, if E has the Lebesgue property, then the above conditions are equivalent
to

(3) K is almost order bounded, that is, for every solid set U e %)(E) there exists
x € E+ such that K c [—x, x] + U.
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REMARK 2.1. In the course of this paper we will need the relationship between the
concept of an L-weakly compact set and other notions of compactness. The position
of the class of solid, bounded, L-weakly compact sets in a Frechet lattice with the
Lebesgue property, among other classes of compact sets, is given in the following
items.

(1) L-weakly compact sets are relatively weakly compact, [1, Theorem 21.8]. The
converse holds for generalized AL-spaces E. Indeed, E is |cr|(£, £")-complete, [14,
Theorem 1] and so E — (E')~; see [1, Theorem 22.2]. Since E' is Dedekind complete
[1, Theorem 5.7], it follows from Corollary 20.12 of [1], applied to L = £", that if a
subset A of £ is relatively weakly compact, then its convex solid hull is also relatively
weakly compact. So, if (JC,,),, c S(A) is pairwise disjoint, then also (|*n|),, c S(A) is
pairwise disjoint. By [1, Theorem 21.2] we see that (|x'|, \x,,\) —>• 0 for each x' e £ ' ,
that is, xn —• 0 with respect to the absolute weak topology \a\(E, £") and hence,
x,, —*• 0 in E by [14, Theorem 1]. Hence, A is L-weakly compact.

(2) Solid, relatively compact sets are L-weakly compact, [1, Theorem 21.15]. The
converse is true for discrete Frechet lattices; see Theorems 21.12 and 21.15 of [1].

Suppose X is a Frechet space and let v : T, —> X be a vector measure. A positive
measure A. : £ —> [0, oo) is said to be a control measure for v if X(A) —> 0, A e E
if and only if IMIt/CA) —>• 0, for every U <E ̂ ( X ) . Let us observe that a control
measure for a Frechet valued measure always exists; see [18, II. 1. Corollary 2 of
Theorem 1].

THEOREM 2.2. Let X be a Frechet space, v : S —> X be a countably additive
measure and K be a bounded subset of L'(v, X). Then the following assertions are
equivalent.

(1) K is L-weakly compact in L1 (v, X).

(2) limn[sup{||/x/tjl(y, / £ K}] = 0,/or every U € ^/0(X), and every sequence
{An)n 4 , 0 / « E .

(3) lim)LM)_o[sup{||/x/4||f/, f e K}= 0], for every U € %(X), and every control

measure kofv.

(4) l imii^M^otsupfl l /xJt / . f e K}] = 0, for every U e %(X).

PROOF. (1) =>• (2) Take U € %(X) and e > 0. Consider the solid neighborhood
of 0 in L'(v, X) given by

Vs=\f€Ll(v,X):\\f\\u<^
2.

Since K is L-weakly compact and L'(v, X) has the Lebesgue property, there exists
g£ > 0 in L1 (v, X) such that K c [—gE, g£] + Ve; see Theorem 2.1. Hence, for every
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/ e K we can write / = u + v, for some v e Ve and u with |w| < ge. Now, if
(A,,),, I 0 in E and / e K, then

(2.D H / X / J l u = \WXA,, + VXAJU < I I M X A . U I / + {£< \\geXA,,\\v + L
2£-2

But,geXA,, —*• OinL'(v, X),sincegeXA,, i OpointwiseandL'(v, X)hastheLebesgue
property, and so for some Ne we have that ||g£X/»« lit/ < e / 2 for all n > Ne. It is then
clear from (2.1) that (2) follows.

(2) =>• (3) For every / 6 L'(v, X) denote by vf : E -» X the measure A i-»
fA fdv. Take U e ^0(^)> and consider the following family of countably additive
signed measures M := {x'vt : / € K, x' e U°). This family is uniformly
bounded with respect to the total variation norm, since K is bounded in L1 (v, X). By
hypothesis, it is uniformly countably additive. Observe also that every member of jtft
is /l-continuous. By [11, Corollary 1.2.5], ^ is uniformly A.-continuous, that is,

lim sup{|x'v/(B)|, x eU°, f e K] = 0.

Hence

lim sup{pu(vf(B)), f e K} = 0

and it follows that

lim supdlv/HuG*), x € U°, f e K] = 0,
MA)-*0

because HvylluCA) < 2sup{pu(vf(B)), B e Y,A}. The conclusion then follows from
the fact that

for all A € E and all / e K [19, Theorem 2.2].
(3) => (4) If X is any control measure for v, then lim||V||u(/1)_>o A.(A) = 0, for every

U e %(X) and so (4) follows from (3).
(4) =>• (2) This is immediate since (An)n I 0 in E implies that ||v||i/(An) -*• 0,

for all U e ^Q(X); see [18, II. 1. Lemma 3].
(3) => (1) Let (/„)„ be a disjoint sequence in the solid hull of K. By definition

of S{K) there exist gn e K such that \fn\ < \gn\, for all n = 1, 2, Consider the
disjoint measurable sets An := {co e S2 : |/n(a>)| > 0}, n = 1 ,2 , . . . , and observe
that \fn\xA,, < \8»\XA.,

 f o r all n = 1, 2 , . . . . Let U e %(X) and e > 0. By the
hypothesis (3) there exists 8 > 0 such that
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for all A e E with k(A) < 8. To finish the proof observe that

W f n h = \\\f,,\XA,,\\v < \ \ \ g n \ X A . \ \ u < *M\\ g X A,, \\ U, g £ * } < £ ,

for n large enough, because limn k(An) = 0. D

For X a Banach space the following result can be found in [10, Claim 1, p. 3803].

COROLLARY 2.3. Let X be a Frechet space with the Schur property and let
v : E —> X be a countably additive measure. Then in Lx{v, X) relatively weakly
compact sets coincide with L-weakly compact sets.

PROOF. AS we have already pointed out, every L-weakly compact set is relatively
weakly compact. Suppose that there exists a set K in L'(v, X) which is relatively
weakly compact but is not L-weakly compact. By the condition (2) of Theorem 2.2,
there exist U € ^(X), a sequence (An)n J, 0 in E, and a sequence (/„)/, C K such
that

(2.2) WfnXA.\\v>&,

for some 8 > 0 and all n = 1,2, Since K is relatively weakly compact, by
[15, Corollary 9.8.3] there exists a subsequence, that we still denote by (/„)„, which
converges weakly in Ll(v,X). Since W/XAWU < WfWu, for all U e %{X) and
A 6 E, the linear map <t>A : f i->- f XA is continuous from L'(v, X) into Ll(v, X)
for each A € E. Hence, the composition map Ivo <$>A : f i->- fA fdv is continuous
from L1 (v, X) into X. In particular, Ivo <$>A is also continuous for the weak topologies
on L'(v, X) and X. Accordingly, the sequence of integrals (fA fndv)n converges
weakly in X for every A e E. Since X is a Schur space, the convergence also
holds in the topology of X. Let vn be the vector measure A i-> fA fndv, A € E.
These measures vn are countably additive and absolutely continuous with respect to
any control measure k of v. Since (vn(A))n converges in X for every A € E, the
Vitali-Hahn-Saks theorem implies that

lim suppv(vn(A)) = 0,
HA)->0 „

for every V € ^0(X). Then, we have

lim sup || fnxAn Ik = 0 ,
MA)->-0 „

for every V e %(X). But this is a contradiction of (2.2). •
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We finish this section with an application of Theorem 2.2 to the properties displayed
by the range of a vector-valued measure.

It is a classical result of Bartle, Dunford and Schwartz [3, Theorem 2.9] that the
range of a vector measure with values in a Banach space is relatively weakly compact.
This result was extended (in particular for Frechet-valued measures) by Tweddle in
[22] (see also [17, Theorem 2], [18, Theorem IV.6.1]). When the vector measure takes
its values in a Frechet lattice more can be said.

THEOREM 2.4. Let E be a Frechet lattice and let v : Y —> E be a positive
count ably additive measure. Then the solid hull of the range ofv is L-weakly compact.

PROOF. By using the condition (2) of Theorem 2.1 it is enough to show that
x'n(x) —> 0 uniformly with respect to x € S(v(Y)), for every positive, disjoint and
equi-continuous sequence (x'n)n in £ ' . Now, for all « = 1, 2, . . . we have that

sup{|*;,(jr)|, x e S(v(Y))} < sup{or>(A), A e E ) < jc>(fi) = x'nIv(Xa).

Indeed, the second inequality follows from the positivity of x'n (given) and /„ (easily
verified). To verify the first inequality, note that if x e S(v(Y)), then |JC| < \y\ for
some y € v(S) . Since v is a positive measure y = v(A) for some A e Y and so
| j | = y, that is, \x\ < v(A) for some A e Y. Since x'n > 0 we have x,',(|jr|) <
x'n[y(A)). But, \x'J = x'n and so, by [1, p. 21] we have |JC,',(JC)I < A-^(|JC|). Hence
K,C*)I < x'n(v(A)) for some A e Y. whenever x e S(y(S)), which establishes the
first inequality. Since the order interval [—xn, Xn] is L-weakly compact in L'(v, £ ) ,
we conclude the proof by showing that the equi-continuous sequence of positive
functionals (x'nIv)n is disjoint. If / > 0 in L'(v, E), then u := / „ ( / ) > 0 in E.
Therefore,

M{x'nIv, </„}(/) = infixing) +x'Jv(f-g),0<g<f)
< mf[x'n(x) + x'm(u - x), x e E, 0 < x < u]

a
REMARK 2.2. It is a well known fact that the unit ball of I2 is the range of a vector

measure [18, VII.4. Examples 1 and 2]. By considering the basis vectors (en)n it is
clear that the unit ball of I1 is a solid set which is not L-weakly compact. This tells
us that the statement of Theorem 2.4 is not true in general. Nevertheless, it still holds
under a weaker hypothesis on the measure. A vector measure /x : E —> E is said to
be dominated by a positive measure v : Y, ->• E, if \/x(A)\ < v(A), for all A e I . In
this case, the solid hull of the range of \x is obviously contained in the solid hull of
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the range of v. Thus, the solid hull of the range of /x is L-weakly compact, since any
subset of a L-weakly compact set is also L-weakly compact. Observe that any vector
measure \x with a Jordan decomposition (/x = ju-i — M2, with IJLX and \x2 positive vector
measures) or any measure /z with a so called Hahn decomposition (that is, there exists
A € £ such that fi(B) > 0 if B c A and /z(B) < 0 if B c £2 \ A) is dominated by a
positive measure.

3. Operators with values in L'(v, X)

Let Y be a complete DF-space (see [15, Section 12.4] for the definition) and let
X be a Frechet space. Recall that Lh(Y, X) denotes the Frechet space (see [15,
12.4 Theorem 2]) of all linear continuous operators from Y to X, equipped with the
topology of uniform convergence on the bounded sets of Y. This topology is defined
by the seminorms

pUM(T) := sup{p(,(7», y e H], T e Lh(Y, X),

where U is any O-neighborhood in X and H is any bounded set in Y. In this section
we extend to the locally convex case the results obtained by Curbera [9, Theorems 9
and 10] in the Banach case, about the existence of copies of tx in Lh(Y, E) and its
relationship to the coincidence of this space with some ideal of compact operators.
Similar results have been proved in [5], [4] and [6] for pairs (Y, X), where X and Y
are either Frechet or complete DF-spaces. To do this, we associate to each continuous
linear operator T : Y —>• L1 (v, X) a vector measure taking values in the space of all
linear continuous operators from Y to X, and we characterize those operators whose
associated measure is countably additive in the topology of uniform convergence on
bounded sets of Y.

Consider the operator-valued set function vT : £ —>• L(Y, X), associated to the
continuous linear operator T : Y —>• L1 (v, X) and the given vector measure v : Y, —•
X, which is defined by

vT(A) : y ( - • Ty dv e X (ye Y ) ,
JA

that is, Vj(A) = Ivo<t>AoT for each A e E. It is then clear that vT is L(Y, X)-valued
and finitely additive. Moreover, using (1.1) it can be shown that for every bounded
set H of Y and each O-neighborhood U of X, we have the following estimates for the
II • ||(/.//-semivariation of vT;

(3.1) \ sup{||7> • XA\\U, y£H}< \\vT\\u,H(A) < 2sup{||r>> • XA\\U, y e / / } ,
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for all A £ E. Moreover, it is easy to show that vT is countably additive in LS(Y, X),
the space L(Y, X) equipped with the topology of pointwise convergence. In general,
vT is not countably additive in Lh(Y, X); see [9, Example p. 322].

The following result can be found in [9, Theorem 4] for the case when both X and
Y are Banach spaces.

THEOREM 3.1. Let Y be a complete DF-space, X be a Frechet space, v : Y, -*• X
be a countably additive measure and T : Y —*• Ll(v, X) be a continuous linear
operator. The following conditions are equivalent.

(1) The operator T is L-weakly compact, that is, T maps bounded sets of Y into
L-weakly compact sets of the Frechet lattice L[(v, X).
(2) The measure vT is strongly additive in Lh(Y, X), that is, vT(An) -*• Oin Lb(Y, X)

whenever (An)n is a disjoint sequence in E.
(3) The measure vj is countably additive in Lb(Y, X).

PROOF. (1) =>• (2) Suppose that vT is not strongly additive. By the Frechet space
version of [11, Corollary 1.1.18] there exist a bounded set H in Y, a O-neighborhood
U in X, a pairwise disjoint sequence of measurable sets (An)n and an e > 0 such
that ||vr||f/.//(An) > e > 0, for all n = 1, 2, By using the bounds given for
the semivariations of the measure vT in (3.1) we can choose a yn € H such that
II Tyn • XA,, HI/ > e/2, for each n = 1,2, But this contradicts (1), since {Tyn • XAJ*

is then a disjoint sequence in the solid hull of T(H) that does not converge to 0.
(2) =>• (1) Suppose that T is not L-weakly compact. Then there exists a bounded

set H in Y such that T{H) c Ll(v, X) is not L-weakly compact. Then we can take
a positive and disjoint sequence (/„)„ in L'(v, X) such that /„ < \Tyn\ for certain
yn e H (n = 1, 2, . . . ) but (/„)„ does not converge to 0. By passing to a subsequence,
there exists U e %(X) such that \\fn\\u > 1, for all n = 1, 2 , . . . . Consider the
disjoint sequence (An)n of measurable sets An := {co e £2 : fn(co) > 0}. Then (3.1)
implies that

1 < | | / J | y < Wyn\ • XAJU = \\\Tyn • XA,,\\\U = \\Tyn • XA,,\\U

< sup{\\TyXA,\\u, yzH}

for all n = 1, 2, Once again, by [ 11, Corollary 1.1.18], vr is not strongly additive.
(2) => (3) Since the measure vT : E —> Lh(Y, X) is countably additive in a

weaker Hausdorff topology (that is, in Ls(Y, X)) it is routine to check that the strong
additivity of vT in Lb(Y, X) implies its countable additivity.

(3) =>• (2) This is obvious. •

For the case when Y is a Banach space and £ is a Banach lattice with order
continuous norm and a weak order unit, the following result can be found in [9,
Theorem 9].
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THEOREM 3.2. Let E be a Frechet lattice with the Lebesgue property and with a
weak order unit and let Y be a complete DF-space. If L/,(Y, E) does not contain
an isomorphic copy oft.00, then every continuous linear operator T from Y to E is
L-weakly compact.

PROOF. By the representation theorem [12, Proposition 2.4 (vi)] there exists a
measurable space (£2, S ) and a countably additive vector measure v : Y. —*• E such
that E is lattice isomorphic to L'(v, E). Thus, we can consider the operator T as
mapping Y into V (v, E). Then the associated measure vT takes its values in L(Y, E)
and has bounded range in Lh(Y, E). By a theorem of Diestel and Faires [8, Corollary
4.1.44 and Theorem 4.7.16] the measure vT is strongly additive. Accordingly, the
operator T is L-weakly compact by Theorem 3.1. •

Recall that a Frechet lattice is said to be discrete if there exists a complete disjoint
system of atoms. (See [1, p. 17 and Example 9, p. 31].) In this setting, we know
that L-weakly compact sets are relatively compact; see Remark 2.1. The theorem to
follow is an extension of part of [9, Theorem 10] (a similar result to [16, Theorem 6],
without restrictions in the first space). For its proof we will need the following lemma
which, in the Banach space case, is contained in the proof of [9, Theorem 10]. We
include it for the sake of completeness.

LEMMA 3.1. Let E be a Frechet lattice with the Lebesgue property. Let A{E)
be a maximal disjoint system of positive atoms in E. For every x e E the set
A(x) := {z e A(E), inf{z, |*|} ^ 0} is countable.

PROOF. Since E has the Lebesgue property it is Dedekind complete, [ 1, Theorem
10.3]. Hence the order projection P: associated with the element z e E exists, [1,
Theorem 2.11], and satisfies

(3.2) P:(v) = sup{inf{u, «|z|} : n e N], « e E+\

see [1, p. 13]. Fix any x e E. For every e > 0 and every continuous lattice seminorm
q, the set {z e A(E), q(P,(\x\)) > s) is finite. If this is not the case, we can find
an infinite sequence of atoms (z«)n from A(E) such that q(PZn(\x\)) > e, for all
n = 1,2, Consider the increasing sequence uk := P,l+...+,t(\x\), k = 1, 2, . . . .
This sequence is order bounded by |JC|. Since E has the Lebesgue property, (uk)k must
be convergent. But, it follows from (3.2) that

q(uk - uk.x) = q(PZk{\x\))) > e for all * = 2, 3 , . . .

which is a contradiction.
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Now, consider an increasing sequence (<?„)„ of lattice seminorms generating the
topology of E. Then it can be shown that

A(x)= Q Ue A(E),qn(P._(\x\)) > ^

and this set is countable. •

THEOREM 3.3. Let E be a discrete Frechet lattice with the Lebesgue property and
Y be a complete DF-space. If Lh(Y, E) does not contain an isomorphic copy of i x ,
then every continuous linear operator from Y to E is compact.

PROOF. If Y is a DF-space and X a Frechet space, then the compact operators from
Y to X coincide with Montel operators from Y to X. (See the remark (1) after [5,
Corollary 19].) Recall that a continuous linear map from Y to X is called Montel if it
transforms bounded sets into relatively compact sets.

If E has a weak order unit, bearing in mind (by Remark 2.1 (2)) that L-weakly
compact sets are relatively compact, it follows that every operator from Y to E is
Montel, by the previous paragraph and Theorem 3.2. Now consider the general case
(that is, no weak order unit) and suppose that there exists a continuous linear operator
T : Y —• E which is not Montel. Then there exist a bounded sequence (*„)„ in Y,
and U e %(E) such that

(3.3) Pu(Txn - Txm) > 1, for all n ^ m.

By Lemma 3.1, the set H := (Jn > 1 A(Txn) is countable. The band F generated
by H coincides with the subspace generated by H, since all of the elements of H
are atoms. If we consider on F its relative topology, it is a discrete Frechet lattice
with the Lebesgue property. Moreover it has a weak order unit, since it is separable
[1, Example 7 p. 123]. On the other hand, Txn e F, for all n = 1, 2 , . . . since
inf{|7X|, z} = 0, for all z £ A(Txn), n = 1, 2, . . . . Denote by PF : E -+ F the
order projection band onto F. Then PFT e L(Y, F) and is not compact by (3.3) as
Pu(PFTxn — PFTxm) = pu(Txn — Txm). Moreover Lh(Y, F) does not contain an
isomorphic copy of £x as it is a closed subspace of Lh(Y, E). But, the previous case
shows that PF T is Montel and so we have a contradiction. •

REMARK 3.1. The converse of the above theorem is not true in general. (See the
remark after the corollary below.) Nevertheless, it is true if the discrete Frechet
lattice E is non-Montel, in addition to having the Lebesgue property. Suppose that
Lh(Y, E) = Mh(Y, E) has a copy of £°°. According to [5, Corollary 19 (a)], Y
contains a complemented copy of £' or £ contains a copy of t°°. The latter case is
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impossible, because E has the Lebesgue property [1, Theorem 10.7]. If we take a
bounded sequence (x,,),, in E without convergent subsequences (which is possible as
E is non-Montel), then the operator T(a) := ^na,,xn, for a e £\ defines a non-
Montel operator from £' to E. It is then possible to construct a non-Montel operator
from Y to E and a contradiction follows.

Since no infinite dimensional Banach space is Montel, we point out that Remark
3.1 and Theorem 3.3 together are an extension of (all of) [9, Theorem 10].

We complete this section with an application to Kothe spaces. Compare our result
with [6, Theorem 3] and [5, Propositions 29 and 30]. Consider an index set /, not
assumed to be countable. Recall that an increasing sequence A = (ak)k of positive
families ak = (aki)isi is called a Kothe matrix if for each / e / there exists a k > 1
such that aki > 0. For 1 < p < oo we define

fk:= (jTlx^a^

equipped with the topology generated by the seminorms || • \\k, k = 1, 2, . . . . Then
kp(f, A), called a Kothe space, is a discrete Frechet lattice with the Lebesgue property
which has a weak order unit if and only if the index set / is countable. To check that
XP(I, A) has the Lebesgue property use the p-additivity property of each seminorm
|| • \\p

k, k = 1, 2 , . . . as in [1, Theorem 10.10].

COROLLARY 3.4. Let \P{I, A) be a Kothe space and Y be a complete DF-space.
If Lh(Y,Xp(l, A)) does not contain an isomorphic copy of lx, then every continuous
linear operator from Y to kp(l', A) is compact {or Montel).

REMARK 3.2. Equivalent conditions under which Lh(Y, kp{l. A)) has a copy of
lx, for a Frechet or a complete DF-space Y and 2 < p < oo have been studied in [4,
Corollary 21].

4. Operators defined on Ll(v, X)

Let X be a Frechet space and v : Z —> X be a vector measure of bounded variation.
That is, for every 0-neighborhood U on X, we have

\v\u(Q.) :- s u p ^ p y d , ^ ) ) < oo,

where the supremum is taken over all partitions n of Q. For technical reasons we will
require that

(4.1) Dv := {x' e X' : v is \x'v\-continuous} ^ 0 ,
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where to say that v is X -continuous with respect to a positive measure X on E means
that every A.-null set is av-null set. Measuresof the form |jc'v| with*' e Dv(whenthey
exist) are called Rybakov control measures for v. Conditions on the space X for which
(4.1) holds have been studied in [13], where it is shown that if X admits a continuous
norm, then every X-valued vector measure has a Rybakov control measure. In this
section we study sufficient conditions on v and X in order that the space L'(v, X) has
the Dunford-Pettis property. Recall that a Frechet space is said to have the Dunford-
Pettis property if every weakly compact operator defined on it maps relatively weakly
compact sets into relatively compact sets. We also apply these results to the class of
Frechet AL-spaces with a continuous norm.

We first establish some preparatory results concerning the representation of oper-
ators from L'(v, X) to Y. The next lemma is the vector version of [13, Lemma 3.1
(B)].

LEMMA 4.1. Let X and Y be Frechet spaces, v : E —*• X be a countably additive
vector measure and T : Ll(v, X) —> Y be a continuous linear map. Then the
map ixT : E -> Y, given by (J-T(A) := T(XA), defines a countably additive vector
measure (henceforth called the representing measure for T),the inclusion L' (v, X) C
Ll(ixT, Y) holds in the sense of vector spaces, and

(4.2) T(f) = I fdnT (/ € L'(v, X)).

PROOF. The formula Mr(^) := T(XA) defines a finitely additive measure ixT :
S —> y. Actually, this measure is countably additive by the dominated convergence
theorem for vector measures [18, Theorem II.4.2] and the continuity of T. Toprovethe
inclusion L\v, X) C Ll(/xT, Y) it suffices to show that every non-negative function
/ G Ll(v, X) belongs to Ll(ixT, Y). To see this, choose a sequence of E-measurable
simple functions 0 < <pi < <p2 < • • • < f which increases pointwise to / on £2. By
the dominated convergence theorem for vector measures we have XA<Pn ->• X/t/ m

L'(v, X), for each A e E. The continuity of T implies that T(XA<P») -*• T(xAf)inY
as n —> oo. That is, the sequence T(xA<Pn) = fA Vnd^r, n = 1, 2 , . . . is convergent
in Y for each A e E. Now, since v-null sets are /Ltr-null sets, it follows from [19,
Lemma 2.3] that / e Ll(/xT, Y). By the dominated convergence theorem for nT it
is also follows (now knowing that / e L1(/J.T, Y) ) that fa (pndfiT —>• fQ fd\xT, and
this establishes that fa fd\ir = T(f). •

For the notions of strongly A.-measurable and A-integrable functions / : Q -> X
(with X a Frechet space) with respect to a finite positive measure X we refer to [7], for
example. The function / i s called X-Pettis integrable if (xf, f) e L1 (A.), for all*' e X',
andforeach A e E there is a vector fA fdX e X such that {x\ fA fdX) = fA{x', f)dX
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for all x' € X'. For X and Y Banach spaces the following result can be found [10, p.
3804]; see the proof of Claim 2 given there.

LEMMA 4.2. Let X and Y be Frechet spaces, letv : E —*• X be a countably additive
vector measure of bounded variation, and letT : L' (v, X) -» Y be a weakly compact
operator. Then, for every control measure X : E -*• [0, +00) of v, the representing
measure fiT has a Radon-Nikodym derivative with respect to X, that is, there exists a
strongly X-measurable function g : £2 —> Y which is X-integrable such that

-LHT(A) = / gdX, for all A e E.
JA

Moreover, for every function f e L'(v, X), the function fg is strongly X-measurable
and X-Pettis integrable and its Pettis integral fu fgdX satisfies

(4.3) T(f) = [ fgdX.
Jn

PROOF. By using the continuity of T and the fact that v has bounded variation we
can see that the measure /xr has bounded variation. Moreover, fiT is A.-continuous
and has locally relatively weakly compact (hence, s-dentable by [7, Theorem 1.1])
average range, meaning that for every A e E + there exists B e E + , B c A, such that

C € E \ and C c B

is relatively weakly compact, where E + — {A € E, X(A) > 0}. To see this, observe
that /zr(C)A(C) = T(xc/HC)) for all C e E+, so that J?B(/xr) = T(&B1ji)),
for all B e E + , where 11 : E -> L'(v, X) is the countably additive X-continuous
vector measure of bounded variation given by /x(A) := XA- With this observation,
and recalling that T is weakly compact, it is enough to show that /x has locally
bounded average range in V(v, X). But, this follows from [7, Lemma 3.1]. Now,
by [7, Theorem 2.1] there exists a strongly A.-measurable and A-integrable function
g : £1 —*• Y (called Bochner integrable in the Banach space case) such that

M r ( A ) = f gdX, A e E .
JA

Moreover,

(4.4) </, nT(A)) = [ (y\ g)dX, A € E, / € Y'.
JA
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Now, from Lemma 4.1 and (4.4), we can prove that ( / , fg) e L'(A) for all / e
L\v, X) and all y' e Y. Moreover,

/ / , j fdfiT\ = j fd{y'nr) = j /</, g)dk = J(y', fg)dk.

Hence fg : Q —> Y is A.-Pettis integrable and its Pettis integral is fA fgdk = fA fdfiT,
for all A e E. This together with (4.2) gives (4.3).

Finally, to see that fg is strongly ^.-measurable note that g takes its values in a
separable subspace of Y and hence, so does fg. Clearly (>•', fg) is E-measurable
for each y' e Y' and so fg : Q —>• Y is scalarly measurable. Then the Pettis
measurability theorem (which is also valid in Frechet spaces) implies that fg is
strongly A-measurable. •

For Banach spaces the following result occurs in [10, Claim 2, p. 3804].

THEOREM 4.1. Let X and Y be Frechet spaces and let v : Y, -» X be a vector
measure of bounded variation for which Dvj^0.IfT:Ll(v,X)^>- Y is a weakly
compact operator, then T maps L-weakly compact sets into relatively compact sets.

PROOF. Let A be a Rybakov control measure for v. By Lemma 4.2, there is a
strongly A-measurable and A-integrable function g : Q —> Y', such that

= fT(f)= / fgdk, f eLl(v,X).

Let K be an L-weakly compact (solid) set in Ll(v, X). To see that T(K) is a
relatively compact subset of Y it is enough to show (see [2, Theorem 9.1] and [15,
Theorem 3.5.1]) that for every V e Wo(Y) there exists a relatively compact set Kv c Y
such that T(K) C Kv + V. So, fix a 0-neighborhood V in J\

First of all, observe that [fQ \f\dk, f e K} is a bounded set, since A is a Rybakov
control measure for v and K is an L-weakly compact set (hence bounded by Remark
2.1(1)) in L\v,X). Then we can put p := sup{/Q \f\dk, f e K).

From the continuity of T there exists a 0-neighborhood (/ in X such that pv(Tf) <
H / H y . f o r a l l / e Ll(v,X).

By Theorem 2.2, we have that lim^/u-^osupdl/x^llf/, / e K] = 0 and so there

exists S > 0 such that sup{||/xA||{/, / e ^ } < 5, for all 4̂ € S with A.(A) < 8.
Since the function g is strongly A.-measurable, by Egoroff's theorem there exist a

T,-simple function <p : Q —> Y and a set fi e S with A.(6) < 5 such that

(4.5) p l
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For / in K we have

T(f) = Tifxe) + I f<pdk + f f(g- <p)dk.
Jn\B Jn\B

Then

Pv\T(f)- f f<pdk)<pv(T(fxB)) + Pv([ fig-
\ Jn\B / \Ja\B

<UXB\\U+ f \f\Pvig-q>)dk
Jn\B

< 1 1

- 2 + P 27~ '

Hence T(K) C {fnxB f<pdk, f e K} + V. Finally, the set

Kv := / f<pdk, f eK
[Jn\B

is relatively compact in Y because q> is a Y, -simple function and K is bounded. •

For the case when X is a Banach space the following result occurs in [10, Theorem

4].

COROLLARY 4.2. Let X be a Frechet space with the Schur property and let v :
T, —* X be a vector measure of bounded variation for which Dv ^ 0 . Then the space
L'(v, X) has the Dunford-Pettis property.

PROOF. The result follows from Corollary 2.3 and Theorem 4.1. •

We conclude this section by showing that an important class of Frechet lattices,
the so called generalized AL-spaces, have the Dunford-Pettis property. Such spaces
have been studied intensively in [14, Section 2], A Frechet lattice £ is a generalized
AL-space if its topology can be defined by a family of lattice seminorms p that are
additive on the positive cone, that is, with pix + y) = pix) + piy), for x, y e E+.

We recall at this point (see Section 3) that a Kothe space k{ (/, A) is a generalized
AL-space with a weak order unit if and only if the index set / is countable. Moreover
it has a continuous norm if one of the steps, say ak = (aki)iel, is strictly positive.

COROLLARY 4.3. Let E be a generalized Ah-Frechet space with a weak order unit
and a continuous norm. Then E has the Dunford-Pettis property.
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PROOF. Since every AL-space has the Lebesgue property (see Section 3), according
to the representation theorem [12, Proposition 2.4 (vi)], E is lattice isomorphic to
L'(y, E), for a certain countably additive measure v : S —> E. Hence, every
operator defined on E can be considered as being defined on V (v, E). Moreover, an
examination of the proof of [12, Proposition 2.4 (vi)] (see also p. 364 there) shows
that v(Y,) c E+. So, if pv is a lattice seminorm for E which is additive on £ + , then
it is routine to verify that ^Aen pv(v(A)) = pu(v(Q)) for every partition n of £2.
Accordingly, |v|[/(£2) < pv(v(£l)) < oo which shows that v has bounded variation.
Since E has a continuous norm, Dv ^ 0 , that is, the measure v has a Rybakov control
measure [13, Theorem 2.2]. Note that the relatively weakly compact sets coincide
with L-weakly compact sets in L\v, E), provided that L\v, E) is an AL-space; see
Remark 2.1(1). The proof then follows by applying Theorem 4.1. So, it remains
to establish that L\v, E) is a generalized AL-space whenever E is a generalized
AL-Frechet space and v : E —>• E is a positive measure (necessarily having bounded
variation). The following lemma establishes this fact. •

LEMMA 4.3. Let E be a generalized AL-Frechet space and v : E -*• E be a
positive measure. Then L1 (v, £) is a generalized AL-space.

PROOF. Denote by ^(E) the system of all solid O-neighborhoods in E. Since E is
a generalized AL-Frechet space its topology is \a \(E, E')\ see [14, Theorem 1]. Now,
by applying [2, Theorem 11.11(1)] we have that for every U 6 <&o(£) there exists
x'v > 0 in £" such that U° c [-*£,, x'v], that is, |x'| < x'v, for all x' e if0. Observe
that

(4.6) \ x ' v \ ( A ) < x > ( A ) , x e U ° , A e H

Consider the following system of lattice seminorms (x'v v is a positive measure) on
L\v,E):

u:= f \f\d(x'vv), / € L ' ( v , £ ) ,\f\

where U e <%ro(E). Now, it is clear from (4.6) that this system of seminorms define
the topology of L' (v, E). Moreover, \f + g\u = l/lt/ + lgl(;,forall positive functions
f,ge L'(v, E) and every U e %)(£). This shows that Ll(v, E) is a generalized
AL-space. •

The authors thank the referee for a number of suggestions and comments which
improve the content and presentation of the paper.
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