THE PRIMALITY OF $N=2A3^n-1$

BY H. C. WILLIAMS

- 1. Introduction. Lehmer [3] and Reisel [7] have devised tests for determining the primality of integers of the form $A2^n-1$. Tables of primes of these forms may be found in [7] and Williams and Zarnke [10]. Little work, however, seems to have been done on integers of the form $N=2A3^n-1$. Lucas [6] gave conditions that were only sufficient for the primality of N. Recently Lehmer [4] has given a method for determining the primality of an integer N if the factorization of N+1 is known. If $N+1=q^nm$ (q a prime, $q^n>m$), this test can be simplified somewhat, but the test is still only a sufficient criterion for N to be prime. It is, therefore, quite probable that an application of this test will not resolve the question of the primality of N. In this paper we give a criterion which is both necessary and sufficient for the primality of $N=2A3^n-1$, when $3^n>2A$. This test, like Lehmer's, can be easily implemented on a high speed computing device and also requires just about the same number of operations as Lehmer's test.
- 2. **Preliminary results.** We need some previously known results which we shall simply state here.

THEOREM 1. (Kummer [9], Lehmer [5]). Let p be any prime, let q be a prime congruent to 1 modulo 3, and let $4q=r^2+27s^2$, where r is congruent to 1 modulo 3. If p does not divide qs, the congruence

$$x^3 - 3qx - qr \equiv 0 \pmod{p}$$

has an integer root if and only if

$$p^{(q-1)/3} \equiv 1 \pmod{q}$$

THEOREM 2. (Cailler [1]). Let p be any prime congruent to -1 modulo 3, $\Delta = 27h^2 + 4g^3$, and $(3\Delta|p) = -1$. If p does not divide g,

$$x^3 + gx + h \equiv 0 \pmod{p}$$

has an integer root if and only if

$$U_{(p+1)/3} \equiv 0 \pmod{p},$$

Received by the editors November 24, 1970 and, in revised form, January 22, 1971.

where

$$U_m = \frac{\alpha^m - \beta^m}{\alpha - \beta},$$

 α and β are the roots of

$$z^2 + tz + u = 0,$$

and t, u are coprime integers such that

$$gt \equiv 3h$$
, $3u \equiv -g \pmod{p}$.

THEOREM 3. (Lehmer [3]). If $U_{m\pm 1} \equiv 0 \pmod{m}$ and $(U_{(m\pm 1)/a}, m) = 1$, where a is a prime, then the prime factors of m are of the forms $ka^{\nu} \pm 1$, where ν is the highest power to which a occurs as a factor of $m\pm 1$.

We shall also require two lemmas. The first of these is based upon an idea of Robinson [8].

LEMMA 1. If all the prime factors of $N=2A3^n-1$, where A is not divisible by 3, and $1 \le A < 4.3^n-1$, are of the forms $k3^n \pm 1$, N is a prime.

Proof. The smallest possible factor of N is 2.3^n-1 . If this is a divisor of N,

$$2A3^n \equiv 1 \pmod{2.3^n - 1}$$

or

$$A-1 \equiv A-2A3^n \equiv 0 \pmod{2.3^n-1}$$
;

hence,

$$A-1 = m(2.3^n-1).$$

Since 3 does not divide A, m cannot equal 1; therefore, $A \ge 2(2.3^n - 1) + 1 = 4.3^n - 1$, which is impossible. It may be shown in a similar manner that $2.3^n + 1$ is not a prime divisor of N.

Since $N < (4.3^n - 1)^3$, if N is composite it must be a product of two prime factors $t_1 3^n - 1$ and $t_2 3^n + 1$, where $t_1, t_2 \ge 4$, i.e.

$$2A = t_1 t_2 3^n + t_1 - t_2 > t_2 [t_1 3^n - 1]$$

> 8.3ⁿ-2;

thus, N is prime.

LEMMA 2. Let $N=2A3^n-1$, $4q=r^2+27s^2$, (q, N)=1, and $qK \equiv 1 \pmod{N}$. If

$$P_1 \equiv K^A V_{2A} \pmod{N},$$

and

$$P_{k+1} \equiv P_k(P_k^2 - 3) \pmod{N},$$

then

$$P_n \equiv K^{(N+1)/6} V_{(N+1)/3} \pmod{N},$$

where

$$V_m = \alpha^m + \beta^m$$

and α , β are the roots of

$$z^2 + rz + a = 0.$$

587

Proof. Put

$$P_k \equiv K^{A3^{k-1}} V_{2A3^{k-1}} \pmod{N}.$$

Since

$$V_{3m} = V_m [V_m^2 - 3q^m],$$

we have

$$P_{k+1} \equiv P_k(P_k^2 - 3) \pmod{N};$$

hence,

$$P_n \equiv K^{(N+1)/6} V_{(N+1)/3} \pmod{N}.$$

3. The main result.

THEOREM 4. Let $N=2A3^n-1$, where 3 does not divide A and $1 \le A < 4.3^n-1$; let q be any prime such that q is congruent to 1 modulo 3 and

$$N^{(q-1)/3} \not\equiv 1 \pmod{q};$$

finally, let $4q=r^2+27s^2$, where $r\equiv 1\pmod 3$. If (qs,N)=1, N is a prime if and only if

$$P_n \equiv \pm 1 \pmod{N}$$
,

where P_n is defined in Lemma 2.

Proof. If N is a prime,

$$x^3 - 3qx - qr \equiv 0 \pmod{N}$$

is not resolvable by Theorem 1; hence, by Theorem 2

$$U_{(N+1)/3} \not\equiv 0 \pmod{N},$$

where $U_m = (\alpha^m - \beta^m)/(\alpha - \beta)$ and α , β are defined in Lemma 2. Since (Lehmer [3])

$$U_{N+1} \equiv 0 \pmod{N}$$
,

we have

$$U_{(N+1)/3}[V_{(N+1)/3}^2 - q^{(N+1)/3}] \equiv 0 \pmod{N}$$

or

$$V_{(N+1)/3} \equiv \pm q^{(N+1)/6} \pmod{N};$$

hence,

$$P_n \equiv \pm K^{(N+1)/6} q^{(N+1)/6} \equiv \pm 1 \pmod{N}.$$

If

$$P_n \equiv \pm 1 \pmod{N}$$
,

then

$$V_{(N+1)/3} \equiv \pm q^{(N+1)/6} \pmod{N}$$
.

Since

$$V_{(N+1)/3}^2 + 27s^2 U_{(N+1)/3}^2 = 4q^{(N+1)/3}$$

we have

$$27s^2U_{(N+1)/3}^2 \equiv 3q^{(N+1)/3} \pmod{N};$$

Consequently, $(U_{(N+1)/3}, N)=1$. Also

$$\begin{split} U_{N+1} &\equiv \, U_{(N+1)/3}[V_{(N+1)/3}^2 - q^{(N+1)/3}] \\ &\equiv 0 \pmod{N}. \end{split}$$

By Theorem 3 the prime factors of N must be of the form $k3^n\pm 1$; by Lemma 1, N is a prime.

If A=1, q=7, we obtain the following:

COROLLARY. If $n \equiv a \pmod{6}$, where a=1, 2, 3, 5 and P_1 is selected from Table 1 below, $N=2.3^n-1$ is a prime if and only if

$$P_n \equiv \pm 1 \pmod{N}$$
,

where

$$P_{k+1} \equiv P_k(P_k^2 - 3) \pmod{N}.$$

а	1	2	3	5	
P_1	4(N-5)/7+1	2(N-3)/7-1	5(N-4)/7+1	3(N-2)/7-1	

Table 1.

We now summarize the steps necessary to carry out the test for the primality of $N=2A3^n-1$, $A<4.3^n-1.3\dagger A$. We give some idea of the time required for these steps by indicating the approximate number of operations needed to complete each of them.

(1) Find a prime $q \equiv 1 \pmod{3}$ such that

$$N^{(q-1)/3} \equiv 1 \pmod{q}.$$

This is not very difficult in practice; in fact, for n < 1000, $A \le 50$, we can find such a $q \le 79$.

(2) Obtain integers r and s such that

$$4q = r^2 + 27s^2$$

where $r\equiv 1\pmod{3}$. For small values of q, table 2 below should suffice for this operation. For q beyond the range of this table, the table in Cunningham [2] could be used. On a computer, however, it would be easier to simply obtain these numbers by exclusion, a process requiring approximately \sqrt{q} operations.

(3) Calculate K such that

$$qK \equiv 1 \pmod{N}$$
.

This is best accomplished using the Euclidean algorithm. The average time required for this step varies directly with the logarithm of q.

(4) Find V_{2A} . For small values of A this can be done by using the recurrence relation

$$V_m = -rV_{m-1} - qV_{m-2},$$

where $V_0=2$, $V_1=-r$. For large values of A a duplication formula such as that described in [4] should be used. The number of operations required for this step is of order $\log A$.

(5) We put

$$P_1 \equiv V_{2A}K^A \pmod{N}.$$

This is a process of order $\log A$ (see [4]). Define

$$P_{k+1} \equiv P_k(P_k^2 - 3) \pmod{N}$$

and calculate $P_n \pmod{N}$. N will be a prime if and only if N divides one of P_n+1 or P_n-1 . It is easy to see that the time required to complete the entire algorithm varies directly with $\log N$.

q	r	s	q	r	s	q	r	s	q	r	s
7	1	1	31	4	2	61	1	3	79	-17	1
13	-5	1	37	-11	1	67	-5	3	97	19	1
19	7	1	43	-8	2	73	7	3	103	13	3

Table 2.

4. Example. Let $N=13121=2.3^8-1$; then $P_1=2(13118)/7-1=3747$. The successive values of P_k (mod N) are then 3747, 879, 5842, 1288, 521, 1060, 6529, 1.

BIBLIOGRAPHY

- 1. C. Cailler, Sur les congruences du troisième degré, L'Enseig. Math., 10 (1908), 474-487.
- 2. A. J. C. Cunningham, Quadratic Partitions, London, 1907.
- 3. D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. (2), 31 (1930), 419-448.
- 4. ——, Computer technology applied to the theory of numbers, M.A.A. studies in Mathematics, 6 (1969), 117-151.
 - 5. Emma Lehmer, Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20-29.
- 6. Edouard Lucas, Théorie des functions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240, 289-321.
- 7. H. Reisel, Lucasian criteria for the primality of $N=h\cdot 2^n-1$, Math. Comp. 23 (1969). 869-875.
- 8. R. M. Robinson, The converse of Fermat's theorem, Amer. Math. Monthly, 64 (1957), 703-710.
- 9. H. J. S. Smith, Report on the Theory of Numbers, Chelsea, New York, (1965), 103-105.
- 10. H. C. Williams and C. R. Zarnke, A report on prime numbers of the forms $M = (6a+1)2^{2m-1} 1$ and $M' = (6a-1)2^{2m} 1$, Math. Comp. 22 (1968), 420–422.

University of Manitoba, Winnipeg, Manitoba