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Abstract
This paper proposes a modular method based on the kinematics of serial manipulators to synthesize over-constrained
mechanisms. Because the PPP manipulator has an unlimited work space, its end-effector can be constrained to trace
a trajectory identical to those of another open-chain manipulator, including a P joint single link and an RR dyad.
In doing so, two open-chain manipulators can be concatenated to form closed-loop mechanisms, including PPPP,
PPPRR, or PPCR mechanisms. To design over-constrained mechanisms efficiently, the Denavit–Hartenberg conven-
tion is adopted to describe the PPP manipulator kinematically, and the Euler angles are utilized to derive geometric
constraints of synthesized over-constrained mechanisms. Next, kinematic equations of the PPP manipulator can be
modularized and applicable to analyze different closed-loop mechanisms. At last, by adjusting link lengths, twisted
angles, and joint angles of the synthesized PPPRR and PPCR mechanisms to form other over-constrained mecha-
nisms configurationally. The novelty of this research lies in modularizing the over-constrained mechanism into two
movable serial manipulators whose end-effectors share identical trajectory and orientation. Thus, defining geomet-
rical constraints of the over-constrained mechanism can be transformed into finding angular parameters describing
the orientation of these two serial manipulators such that the end-effector coordinate system of two manipulators
can properly be aligned. Angular parameters of the serial manipulators can be easily determined by means of Euler
angles, which yields an advantage of easy calculation since it only involves the computation of Euler angles param-
eters. The presented method can be extended to the kinematic synthesis and analysis of more spatial closed-loop
mechanisms.

1. Introduction
In mechanism and machine science, the degree of freedom of a mechanism has always been a far-
reaching issue. Ahead of any analysis and synthesis, the most fundamental prerequisite is to confirm
the existence of a mechanism by checking its degrees of freedom. In kinematics, Chebychev–Grübler–
Kutzbach criterion [1, 2] is usually used to evaluate the degree of freedom of closed-loop linkages. Some
closed-loop linkages have a degree of freedom less than one based on the Chebychev–Grübler–Kutzbach
criterion, but they are mobile due to the unique geometric relationship of the mechanism. These mech-
anisms are called over-constrained mechanisms. Kinematicians have used different methods to discover
many spatial mechanisms that violated the formula of degrees of freedom. Bennett [3] first proposed
a four-bar linkage with the nonintersecting and nonparallel revolute joint in 1903. In 1922, Delassus
used two revolute joints and prismatic joints to form a four-bar chain and derive the joint arrangements
required to form a mobile linkage [4–6]. Afterward, Dimentberg [7] and Savage [8] also attempt to
find geometric constraints of an overconstrained but mobile four-bar linkage with cylindrical joints. In
1967, Hunt investigated four-bar and five-bar linkages with prismatic joints and spherical joints and
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restricted the rotational freedom of the ball joints to obtain a series of over-constrained mechanisms
[9]. Waldron [10, 11] summed up geometric constraints of each joint in mobile four-bar linkages in
space by solving kinematic closed-loop equations. In 1970, Pamidi and Soni [12, 13] fixed the cylin-
drical joints of a five-link mechanism to find out various five-link over-constrained mechanisms. Since
the parallel revolute joints are the common geometric constraint addressed by Dimentberg, Savage, and
Pamidi, Baker derived the possible combinations of the five-link mechanism by assuming that adjacent
revolute joints are parallel [14, 15]. Research regarding over-constrained mechanisms has continued
to evolve and develop in modern time. Lee and Hervé use the geometric relationship of the oblique
circular cylinder to synthesize a set of five-link over-constraint mechanisms [16]. Guo et al. applied
the screw theory to infer the characteristics and actual degrees of freedom of various multi-link over-
constrained mechanisms [17]. However, some past literature searched for the geometric relationship
of over-constrained mechanisms based on conjectures. For example, Pamidi and Soni first assumed
that adjacent revolute joints of the five-link mechanism were parallel, and then derived the remaining
geometric constraints through the closed-loop equations of the mechanism [12, 13]. For these related
works, there are excessive assumptions and geometric restrictions for these four-bar or five-bar linkages.
In addition, to find the existing criteria of an over-constrained mechanism, loop closure equations are
required to relate link dimensions and joint variables. Derived loop closure equations are highly non-
linear so that it is challenging to identify necessary geometrical constraints while maintaining the joint
variables of the over-constrained architecture solvable. Therefore, an alternative method is proposed in
this paper to examine the existence of over-constrained mechanisms. First, Section 2 investigated the for-
ward and inverse kinematic analyses of a PPP open-chain manipulator. Next, Sections 2 and 3 present
a synthesis method of several over-constrained mechanisms by constraining the end-effector of a PPP
open-chain manipulator to a trajectory identical to those of another open-chain manipulator. Hence,
angular parameters describing the orientation of one serial manipulator can be arbitrarily chosen. Next,
by means of Euler’s angle representation, angular parameters of another serial manipulator can then
be easily determined such that the end-effector coordinate system of two manipulators can properly be
aligned. Then, these two movable serial manipulators can be assembled to form an over-constrained
architecture with mobility. Because of adopting the Euler angles parameters of the manipulator
orientation, the geometric constraints of the five-link over-constrained mechanism obtained by the pre-
sented method will be less than that proposed by Pamidi and Soni [12, 13]. This presented approach
also yields an advantage of easy calculation since it only involves the computation of Euler angles
parameters.

Except for discovering over-constrained mechanisms from mathematical manipulations, Goldberg
proposed combining two sets of Bennett four-bar linkages to form a new five-link over-constraining
mechanism [18], thereafter Waldron [19], Baker [20], Chen [21], and others continued the same method
to synthesize more over-constrained mechanisms. Although new mechanisms can be synthesized by
syncopating common portions of mating mechanisms, this approach has not yet made the best use of
its strength because existing mechanisms are all based on a combination of Bennett four-bar linkages.
Few kinematicians noticed the possibilities of new mechanisms that could be constructed by combining
distinct source modules. Thus, Section 5 adopts the over-constrained mechanism obtained in Section 4
as source module, and then uses the configuration synthesis method proposed in the above-mentioned
literature to further synthesize more prismatic joint-based over-constrained mechanisms.

2. Forward and inverse kinematic analyses of a PPP open-chain manipulator
In this paper, the Denavit–Hartenberg convention [22] is adopted to describe the three-link PPP manip-
ulator kinematically. According to the coordinate system definition of D-H notation, the transformation
matrix i−1

iT from the previous coordinate system i − 1 to the next coordinate system i can be expressed
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Figure 1. PPP open-chain manipulator.

as

i−1
iT =

⎡
⎢⎢⎢⎢⎣

cos θi − sin θi cos αi sin θi sin αi ai cos θi

sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di

0 0 0 1

⎤
⎥⎥⎥⎥⎦

(1)

After properly attaching frames XiYiZi (i = 0, 1, 2, and 3) to each link of the PPP open-chain manip-
ulator in Fig. 1, its D-H parameters can be tabulated in Table I. Notice that all joints are prismatic such
that the parameter θi is constant and specifically denoted by θci for distinction.

Substitute the D-H parameters of Table I into the transformation matrix i−1
iT in Eq. (1) and multi-

ply the transformation matrices of three adjacent links to obtain the matrix 0
3T in Eq. (2). This matrix

0
3T represents the relative position and orientation relationship between the end-effector coordinate
system O3X3Y3Z3 and the fixed coordinate system O0X0Y0Z0 of the PPP open-chain manipulator in
Fig. 1.

0
3T = 0

1T 1
2T

2
3T (2)

Matrix 0
3T contains a 3 × 3 rotation matrix 0

3R and a 3 × 1 translation matrix 0
3P, which can be

expressed as

0
3T =

⎡
⎢⎢⎣

0
3R 0

3P

0 0 0 1

⎤
⎥⎥⎦ (3)

where the 3 × 3 rotation matrix 0
3R can be expressed as

0
3R =

⎡
⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦ (4)
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Table I. Link parameters for the PPP open-chain manipulator.

Link θ i di ai αi

1 θc1 d1 a1 α1

2 θc2 d2 a2 α2

3 θc3 d3 a3 α3

The elements of the rotation matrix 0
3R in Eq. (4) can, respectively, be expressed as

a11 = cθc3(cθc1cθc2 − cα1sθc1sθc2) + sθc3(−cθc2cα1cα2sθc1 + sα1sα2sθc1 − cθc1cα2sθc2) (5)

a12 = −cα3sθc3(cθc1cθc2 − cα1sθc1sθc2) + cα3cθc3(−cα1cα2cθc2sθc1 − cα2cθc1sθc2 + sθc1sα1sα2)

+ sα3(cα2sθc1sα1 + cα1cθc2sθc1sα2 + cθc1sθc2sα2) (6)

a13 = cα3(cα2sθc1sα1 + cα1cθc2sθc1sα2 + cθc1sθc2sα2) + sθc3sα3(cθc1cθc2 − cα1sθc1sθc2)

− cθc3sα3(−cα1cα2cθc2sθc1 − cα2cθc1sθc2 + sθc1sα1sα2) (7)

a21 = cθc3(cα1cθc1sθc2 + cθc2sθc1) + sθc3(cα1cα2cθc1cθc2 − cα2sθc1sθc1 − cθc1sα1sα2) (8)

a22 = −cα3sθc3(cα1cθc1sθc2 + cθc2sθc1) + cα3cθc3(cα1cα2cθc1cθc2 − cα2sθc1sθc2 − cθc1sα1sα2)

+ sα3(−cα2cθc1sα1 − cα1cθc1cθc2sα2 + sθc1sθc2sα2) (9)

a23 = cα3(−cα2cθc1sα1 − cα1cθc1cθc2sα2 + sθc1sθc2sα2) + sθc3sα3(cα1cθc1sθc2 + cθc2sθc1)

− cθc3sα3(cα1cα2cθc1cθc2 − cα2sθc1sθc2 − cθc1sα1sα2) (10)

a31 = cθc3sθc2sα1 + sθc3(cα2cθc2sα1 + cα1sα2) (11)

a32 = −cα3sθc2sθc3sα1 + cα3cθc3(cα2cθc2sα1 + cα1sα2) + sα3(cα1cα2 − cθc2sα1sα2) (12)

a33 = cα3(cα1cα2 − cθc2sα1sα2) − cθc3sα3(cα2cθc2sα1 + cα1sα2) + sθc2sθc3sα1sα3 (13)

Notice that in rotation matrix 0
3R there are only six angular parameters α1, α2, α3, θc1, θc2, and θc3,

which are all constant. In other words, the orientation of the end-effector of the PPP manipulator remains
unchanged, while the input parameters of three prismatic joints d1, d2, and d3 are actuated.

In addition, the 3 × 1 matrix 0
3P in Eq. (3) can be expressed as

0
3P =

⎡
⎢⎣

c1d2 + c2d3 + c3a1 + c4a2 + c5a3

c6d2 + c7d3 + c8a1 + c9a2 + c10a3

d1 + c11d2 + c12d3 + c13a2 + c14a3

⎤
⎥⎦ (14)

where the coefficients of the translation matrix 0
3P in Eq. (14) can, respectively, be expressed as

c1 = sθc1sα1 (15)

c2 = cα2sθc1sα1 + cα1cθc2sθc1sα2 + cθc1sθc2sα2 (16)

c3 = cθc1 (17)

c4 = cθc1cθc2 − cα1sθc1sθc2 (18)
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Table II. Link parameters for the three-link Cartesian robot.

Link θ i di ai αi

1 0 d1 0 −90o

2 90o d2 0 −90o

3 0 d3 0 0

c5 = cθc3(cθc1cθc2 − cα1sθc1sθc2) − sθc3(cα1cα2cθc2sθc1 + cα2cθc1sθc2 − sθc1sα1sα2) (19)

c6 = −cθc1sα1 (20)

c7 = −cα2cθc1sα1 − cα1cθc1cθc2sα2 + sθc1sθc2sα2 (21)

c8 = sθc1 (22)

c9 = cα1cθc1sθc2 + cθc2sθc1 (23)

c10 = cθc3(cα1cθc1sθc2 + cθc2sθc1) + sθc3(cα1cα2cθc1cθc2 − cα2sθc1sθc2 − cθc1sα1sα2) (24)

c11 = cα1 (25)

c12 = cα1cα2 − cθc2sα1sα2 (26)

c13 = sθc2sα1 (27)

c14 = cθc3sθc2sα1 + sθc3(cα2cθc2sα1 + cα1sα2) (28)

From Eq. (14), it is known that the three elements of the translation matrix 0
3P have a linear relationship

with three prismatic joints d1, d2, and d3. Suppose that the ranges of three prismatic joints d1, d2, and d3

are infinite. Thus, the origin of the end-effector coordinate system O3 has no boundary workspace. In
other words, the end-effector of the PPP manipulator can be moved to any point in the three-dimensional
space theoretically.

If the three sliding joint axes are arranged to be perpendicular to each other, as described by the D-H
parameters tabulated in Table II. By substituting these D-H parameters into homogeneous transformation
matrices, a relatively simple expression for the elements can be obtained as expressed in Eq. (29):

0
3T =

⎡
⎢⎢⎢⎢⎣

0 0 −1 −d3

0 −1 0 d2

−1 0 0 d1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

(29)

Suppose that the endpoint of this manipulator, relative to the end-effector coordinate system and the
fixed coordinate system, is expressed as [x, y, z]T and [X, Y, Z]T, respectively. Coordinates [x, y, z]T and
[X, Y, Z]T can be related by the following coordinate transformation:

⎡
⎢⎢⎢⎣

X

Y

Z
1

⎤
⎥⎥⎥⎦ = 0

3T

⎡
⎢⎢⎢⎣

x

y

z
1

⎤
⎥⎥⎥⎦ (30)
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Figure 2. Spatial PPPP mechanism by combining two open-chain manipulators.

Hence, expanding Eq. (30) yields
⎡
⎢⎢⎢⎣

X

Y

Z
1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−d3 − z

d2 − y

d1 − x
1

⎤
⎥⎥⎥⎦ (31)

From Eq. (31), it can be found that the end-point of the manipulator is controlled by three joint
variables d1, d2, and d3. From Eq. (29), we found that this manipulator can be configured into a Cartesian
robot, which has linear movements in the three Cartesian coordinates, that is, in x, y, and z axes that are
mutually perpendicular.

3. Synthesis of a spatial PPPP mechanism
In Section 2, it has been demonstrated that the three-link PPP manipulator has a fixed orientation and an
unlimited workspace. Therefore, its end-effector can be constrained to trace a trajectory identical to that
of another open-chain manipulator. If another open-chain manipulator is a single link adjacent to the
fixed link by a prismatic joint in Fig. 2(a), the PPP manipulator and the single link can be concatenated
to form a spatial closed-loop PPPP mechanism in Fig. 2(b).
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When such a closed-loop chain containing four prismatic joints is formed, the multiplication of trans-
formation matrices between adjacent links of such a closed-loop chain is equal to an identity matrix,
namely,

0
1T1

2T2
3T3

4T = I4 (32)

To find geometric constraints of twisted angles between the links, a 3 × 3 rotation matrix i−1
iR is

extracted from Eq. (32) and a closed-loop equation can then be expressed as
0
1R

1
2R2

3R3
4R = I3 (33)

To avoid the complexity faced by Pamidi and Soni [12, 13], this paper proposes an alternative way
to simplify the solutions of the closed-loop equation. First, multiply Eq. (33) by an inverse matrix 3

4R−1

to obtain the following equation, namely,
0
1R1

2R
2
3RR = 3

4R
−1 (34)

From the perspective of kinematics, rotation matrix 0
1R1

2R2
3R represents the end-effector orientation

of the PPP manipulator relative to the fixed coordinate system. Similarly, rotation matrix 3
4R−1 repre-

sents the end-effector orientation of the P-joint single-arm manipulator relative to the fixed coordinate
system. Therefore, Eq. (34) implies that when the PPPP mechanism satisfies the closed-loop equation,
the end-effector orientation of the PPP manipulator and the P-joint single-arm manipulator must be
identical. Therefore, this paper attempts to meet the closed-loop equation of the PPPP mechanism by
exploring the end-effector orientation of the PPP manipulator. To this end, rotation matrix 0

1R1
2R2

3R = 0
3R

of the PPP manipulator is set to be equal to Euler angle representation REuler(α, β, γ ), as shown in
Appendix A, namely,

0
3R = REuler(α, β, γ ) (35)

Eq. (35) can further be rearranged as
0
3RR−1

Euler(α, β, γ ) = I3 (36)

From Eq. (36), multiplying rotation matrix 0
3R and R−1

Euler(α, β, γ ) together forms an identity matrix I3.
This constraint in the Equation can be regarded as the necessary condition to meet the closed-loop equa-
tion of the PPPP mechanism. In addition, once Euler angle parameters (α, β, γ ) are determined and used
to characterize the P-joint single-arm manipulator, the closed-loop equation of the PPPP mechanism can
be met satisfactorily. However, the P-joint single-arm manipulator only requires two angular parameters
according to the D-H notation. To properly substitute Euler angle parameters into the D-H parameters,
this paper proposes decomposing the Euler angles convention such that Euler angle parameters (α, β, γ )

can be appropriately fit into the D-H notation.
Two types of Euler angles notations, ZXZ and XZX, are used for demonstration.
First, suppose that rotation matrix 0

1R1
2R2

3R of the PPP manipulator is represented by the ZXZ Euler
angles, which is

0
1R1

2R
2
3R = Rz(γ ) Rx(β) Rz(α) (37)

Eq. (37) is deliberately rearranged as

R−1
z (γ ) 0

1R
1
2R2

3R = Rx(β) Rz(α) (38)

such that the right side of the equal sign only contains matrix Rx(β) and Rz(α). In doing so, only two
Euler angle parameters α and β are required and thus can be fit into the D-H notation for describing the
P-joint single-arm manipulator.

Next, matrix 0
1R in Eq. (38) is further decomposed into a multiplication of matrices Rz(θc1) and Rx(α1),

namely,

R−1
z (γ ) Rz(θc1) Rx(α1)

1
2R

2
3R = Rx(β) Rz(α) (39)
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Figure 3. Synthesis of spatial PPPR mechanism using ZXZ Euler angles convention.

In Eq. (39), matrix R−1
z (γ ) and Rz(θc1) can be combined as one rotation of θc1 − γ around the z-axis,

namely,

Rz(θc1 − γ ) Rx(α1)
1
2R2

3R = Rx(β) Rz(α) (40)

Let Rz(θc1 − γ ) Rx(α1) and Rx(β) Rz(α) be denoted by one matrix 0
′

1R and 3
4R−1, respectively, such that

Euler angle parameters can be appropriately fit into the D-H notation and the successively rotational
transformations along the closed-loop PPPP mechanism can be expressed as

0
′

1R
1
2R2

3R = 3
4R−1 (41)

The ZXZ Euler angles embedded in Eq. (41) can be interpreted using Fig. 3 from the perspective of
kinematics. Fig. 3(a) illustrates an open-loop PPP manipulator whose end-effector and initial coordinate
system are O3X3Y3Z3 and O0X0Y0Z0, respectively. If a P-joint single-arm manipulator is connected to
the open-loop PPP manipulator to form a closed-loop mechanism, the P-joint single-arm manipulator
must share identical end-effector and initial coordinate system O3X3Y3Z3 and O0X0Y0Z0. For this pur-
pose, as shown in Fig. 3(b), angular parameters of the P-joint single-arm manipulator can be substituted
with Euler angle parameters (α, β, γ ) so that end-effector coordinate system O3X3Y3Z3 can be trans-
formed to initial coordinate system O0X0Y0Z0 via the newly added single-arm manipulator. Besides,
from Fig. 3(b), it can be interpreted that matrix 3

4R−1 represents a coordinate system transformation
from O3X3Y3Z3 to O0

′X0
′Y0

′Z0
′ , and matrix 0

′
1R represents a coordinate system transformation from

O1X1Y1Z1 to O0
′X0

′Y0
′Z0

′ .
Because Euler angle γ can be used to orientate X0’ toward X0, θc1 in Eq. (40) can be assumed as a

dummy parameter equal to zero. At last, D-H parameters in Eq. (41) can be tabulated in Table III.
Now, suppose that rotation matrix 0

1R1
2R2

3R of the PPP manipulator is represented by the XZX Euler
angles, which is

0
1R

1
2R2

3R = Rx(γ ) Rz(β) Rx(α) (42)

Eq. (42) is deliberately rearranged as
0
1R

1
2R2

3RR−1
x (α) = Rx(γ ) Rz(β) (43)

such that the right side of the equal sign only contains matrix Rx(γ ) and Rz(β). In doing so, only two
Euler angle parameters γ and β are required and thus can be fit into D-H notation for describing the
P-joint single-arm manipulator.
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Table III. Link parameters involving ZXZ Euler angles conven-
tion for the closed-loop PPPP mechanism.

Link θ i di ai αi

1 −γ d1 a1 α1

2 θc2 d2 a2 α2

3 θc3 d3 a3 α3

4 −α d4 a4 −β

Figure 4. Synthesis of spatial PPPR mechanism using XZX Euler Angles convention.

Next, matrix 2
3R in Eq. (43) is further decomposed into a multiplication of matrices Rz(θc3) and Rx(α3),

namely,
0
1R

1
2RRz(θc3) Rx(α3) R−1

x (α) = Rx(γ ) Rz(β) (44)

In Eq. (44), matrix Rx(α3) and R−1
x (α) can be combined as one rotation of α3 − α around the z-axis,

namely,
0
1R

1
2RRz(θ3) Rx(α3 − α) = Rx(γ ) Rz(β) (45)

Let Rz(θ3) Rx(α3 − α) and Rx(γ ) Rz(β) be denoted by one matrix 2
3
′R and 3

′
4R−1, respectively, such that

Euler angle parameters can be appropriately fit into the D-H notation and the successively rotational
transformations along the closed-loop PPPP mechanism can be expressed as

0
1R

1
2R

2
3
′R = 3

′
4R−1 (46)

The XZX Euler angles embedded in Eq. (46) can be interpreted using Fig. 4 from the perspective of
kinematics. Fig. 4(a) illustrates an open-loop PPP manipulator whose end-effector and initial coordinate
system are O3X3Y3Z3 and O0X0Y0Z0, respectively. If a P-joint single-arm manipulator is connected to
the open-loop PPP manipulator to form a closed-loop mechanism, the P-joint single-arm manipulator
must share identical end-effector and initial coordinate system O3X3Y3Z3 and O0X0Y0Z0. For this pur-
pose, as shown in Fig. 4(b), angular parameters of the P-joint single-arm manipulator can be substituted
with Euler angle parameters (α, β, γ ) so that end-effector coordinate system O3X3Y3Z3 can be trans-
formed to initial coordinate system O0X0Y0Z0 via the newly added single-arm manipulator. Besides,
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Table IV. Link parameters involving XZX Euler angles conven-
tion for the closed-loop PPPP mechanism.

Link θ i di ai αi

1 θc1 d1 a1 α1

2 θc2 d2 a2 α2

3 θc3 d3 a3 −α

4 −β d4 a4 −γ

Figure 5. Kinematic analysis of a spatial PPPP mechanism.

from Fig. 4(b), it can be interpreted that matrix 3
′

4R−1 represents a coordinate system transformation
from O3

′X3
′Y3

′Z3
′ to O0

′X0
′Y0

′Z0
′ and matrix 2

3
′R represents a coordinate system transformation from

O3
′X3

′Y3
′Z3

′ to O2X2Y2Z2.
Because Euler angle α can be used to orientate Z3 toward Z3

′ , α3 in Eq. (45) can be assumed as a
dummy parameter equal to zero. At last, D-H parameters in Equation can be tabulated in Table IV.

Because the motion of the PPPP mechanism can be characterized by picturing its end-effector being
constrained to trace a linear trajectory, the kinematics of the PPPP mechanism can be analyzed based
on the kinematics of the PPP manipulator. In reference to Fig. 5, the end-effector and initial coordinate
system of the PPP manipulator are denoted as O3X3Y3Z3 and O0X0Y0Z0, respectively. When the PPPP
mechanism is moving, the origin O3 of the end-effector is constrained to move along axis Z3, a straight
line whose equation can be expressed as

L(d4) =
⎡
⎢⎣

−a4

−d4 sin α4

−d4 cos α4

⎤
⎥⎦ (47)

By setting the elements of the 3 × 1 matrix 0
3P, as expressed in Eq. (14), equal to these of L(d4) in

Eq. (47), joints variables d1, d2, and d3 can be expressed in terms of d4, namely,

d1 = − (a2 + a1cθc2 + a3cθc3 + a4cθc1cθc2 + d4cα4sα1sθc2 + d4sα4cθc2sθc1 − a4cα1sθc1sθc2

+d4cα1sα4cθc1sθc2) /sα1sθc2 (48)
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Table V. ZXZ Euler angles convention for synthesized PPPP mechanism.

Link θ i di ai αi

1 −γ d1 130 45◦

2 − 70◦ d2 140 55◦

3 − 60◦ d3 160 70◦

4 −α d4 160 −β

Table VI. D-H table for synthesized PPPP mechanism.

Link θ i di ai αi

1 −55.7477◦ d1 130 45◦

2 −70◦ d2 140 55◦

3 −60◦ d3 160 70◦

4 −97.2240◦ d4 160 74.0753◦

d2 = (cα2sα1cθc1 − sα2sθc1sθc2 + cα1sα2cθc1cθc2) (a4 + a1cθc1 + a2cθc1cθc2 + a3cθc1cθc2cθc3

− a2cα1sθc1sθc2 − a3cα1cθc3sθc1sθc2 − a3cα2cθc1sθc2sθc3 + a3sα1sα2sθc1sθc3

− a3cα1cα2cθc2sθc1sθc3) / (sα1sα2sθc2 + (cα2sα1sθc1 + sα2cθc1sθc2 + cα1sα2cθc2sθc1) (d4sα4

+ a1sθc1 + a3cθc3(cθc2sθc1 + cα1cθc1sθc2) –a3sθc3(sα1sα2cθc1 + cα2sθc1sθc2–cα1cα2cθc1cθc2)

+ a2cθc2sθc1 + a2cα1cθc1sθc2)) /sα1sα2sθc2 (49)

d3 = − (a1 + a2cθc2 + a4cθc1 + a3cθc2cθc3 + d4sα4sθc1 − a3cα2sθc2sθc3) /sα2sθ2 (50)

A numerical example is provided to illustrate using the ZXZ Euler angles convention to synthe-
size an over-constrained PPPP mechanism. First, five arbitrary angular parameters {θc2, θc3, α1, α2, α3} =
{−70◦, −60◦, 45◦, 55◦, 70◦} and four-link parameters {a1, a2, a3, a4} = {130, 140, 160, 160} are assumed
and substituted into Table III, which is tabulated in Table V.

Next, substituting five arbitrary angular parameters {θc2, θc3, α1, α2, α3} = {−70◦, −60◦, 45◦, 55◦, 70◦}
and θc1 = 0 into rotation matrix 0

3R in Eq. (4) yields,

0
3R(θc1 = 0, θc2, θc3, α1, α2, α3) =

⎡
⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦ (51)

Then, use to calculate Euler angle β, which is

β = ± cos−1 a33 = ±87.273◦ (52)

Here, the negative value of Euler angle β is adopted to solve for Euler angle α and γ using Eqs. (A4)
and (A5), which are

α = atan2(− a31, −a32) = 97.2240◦ (53)

γ = atan2(− a13, a23) = 55.7477◦ (54)

The aforementioned results, which are tabulated in Table VI, can be used to structure a closed-loop
PPPP mechanism, as shown in Fig. 6.
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Figure 6. Synthesized PPPP mechanism using presented methodology.

Figure 7. Two open-chain manipulators used to form A spatial PPPRR mechanism.

4. Synthesis of a spatial over-constrained five-bar mechanisms and their isomers PPPRR
mechanism

4.1. PPPRR mechanism
Because the end-effector of the PPP manipulator can be constrained to move along an arbitrary space
curve, in Section 3, its trajectory is purposely assigned to move along a straight line and connected
to a P-joint single-arm manipulator to form a closed-loop PPPP mechanism. This synthesis concept is
further extended by assigning the end-effector trajectory of the PPP manipulator to be circular, as shown
in Fig. 7(a). Hence, the end-effector now can be connected to a two-arm RR manipulator, as shown in
Fig. 7(b).

Recall that the orientation of the PPP manipulator is fixed. To form a closed-loop mechanism by
combining a PPP manipulator with a RR manipulator, the end-effector of the RR manipulator must be
constrained to move along a circle without changing its orientation. In reference to Fig. 7(b), when joint
axes of two revolute joints are parallel and the second joint variable θ2 is a summation of adding the
first joint variable θ1 with an arbitrary constant φ, endpoint O2 of the RR manipulator traces a circular
trajectory and the orientation of the end-effector coordinate system O2X2Y2Z2 is always identical to that
of O0X0Y0Z0. Hence, the RR manipulator can be combined with the PPP manipulator by sharing the
same end-effector trajectory and orientation.
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Figure 8. Spatial PPPRR mechanism by combining two open-chain manipulators.

For a better illustration, coordinate systems of the PPP and RR manipulator defined according to the
D-H notation are labeled in Fig. 8(a). O3X3Y3Z3 and O0X0Y0Z0 are the end-effector and initial coordinate
systems, respectively, for the PPP manipulator. O4X4Y4Z4 and O6X6Y6Z6 are the end-effector and initial
coordinate systems, respectively, for the RR manipulator. Notice that revolute joint Z4 is parallel to
revolute joint Z5. Now, let origin O3 be coincident with origin O4 and the orientation of coordinate
system O3X3Y3Z3 remain unchanged relative to that of O4X4Y4Z4. In doing so, a closed-loop five-bar
PPPRR mechanism is formed, as shown in Fig. 8(b).

The DH parameters for the PPPRR mechanism are presented in Table VII. Notice that all joint vari-
ables θi for prismatic pairs are specifically denoted by a constant θci for distinction. Likewise, all joint
offsets di for revolute pairs are specifically denoted by a constant dci for distinction. In addition, to form
a closed-loop mechanism by combining a PPP and RR manipulator, two revolute joint axes of the RR
manipulator must be parallel and the difference of their joint variables must be constant. Thus, two more
constraints that must be met can be expressed as

α4 = 0 (55)

θ5 = φ − θ4 (56)
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Table VII. Link parameters for the closed-loop PPPRR
mechanism.

Link θ i di ai αi

1 θc1 d1 a1 α1

2 θc2 d2 a2 α2

3 θc3 d3 a3 α3

4 θ4 dc4 a4 α4

5 θ5 dc5 a4 α5

Next, by substituting the D-H parameters in Table VII into the transformation matrix of the PPPRR
mechanism, a multiplication of five 3 × 3 rotation matrices can be extracted and expressed as

0
1R

1
2R2

3R3
4R4

5R = I3 (57)

Multiply Eq. (57) by inverse matrices 4
5R−1 3

4R−1 to obtain the following equation, namely,
0
1R

1
2R2

3R = 4
5R−1 3

4R
−1 (58)

Substituting Eqs. (55) and (56) into matrices 4
5R−1 3

4R−1 yields the following equation:

4
5R−1 3

4R
−1 =

⎡
⎢⎣

cφ sφ 0

−sφcα5 cφcα5 sα5

sφsα5 −cφsα5 cα5

⎤
⎥⎦ (59)

It can be found that 4
5R−1 3

4R−1 in Eq. (59) can be further decomposed into a multiplication of matrices
Rx(−α5) and Rz(−φ), namely,

Rx(−α5) Rz(−φ) =
⎡
⎢⎣

1 0 0

0 cα5 sα5

0 −sα5 cα5

⎤
⎥⎦

⎡
⎢⎣

cφ sφ 0

−sφ cφ 0

0 0 1

⎤
⎥⎦ (60)

Therefore, from Eqs. (58), (59), and (60), we can find that
0
1R

1
2R2

3R = Rx(−α5) Rz(−φ) (61)

Now, a similar manipulation of rotation matrices, as mentioned in the previous section, can be applied
to properly fit Euler angle parameters into D-H parameters. Two types of Euler angles notations, ZXZ
and XZX, are used for demonstration. First, we discuss the case using the ZXZ Euler angles. In reference
to Eq. (40), this equation is deliberately rearranged as

0
′

1R
1
2R2

3R = Rx(β) Rz(α) (62)

where,
0
′

1R = Rz(θc1 − γ ) Rx(α1) (63)

By comparing Eq. (61) with (62), it can be found that the ZXZ Euler angle parameters (α, β, γ ) can
be appropriately fit into the D-H parameters in Table VIII describing the closed-loop equation of the
PPPRR mechanism.

Next, we discuss the case using the XZX Euler angles. In reference to Eq. (45), this equation is
deliberately rearranged as

0
1R

1
2R2

3
′R = Rx(γ ) Rz(β) (64)

where,
2
3
′R = Rz(θ3) Rx(α3 − α) (65)

https://doi.org/10.1017/S0263574722000868 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000868


Robotica 4207

Table VIII. Link parameters involving ZXZ Euler angles conven-
tion for the closed-loop PPPRR mechanism.

Link θ i di ai αi

1 −γ d1 a1 α1

2 θc2 d2 a2 α2

3 θc3 d3 a3 α3

4 θ4 dc4 a4 0
5 −α − θ4 dc5 a5 −β

Table IX. Link parameters involving XZX Euler angles convention
for the closed-loop PPPRR mechanism.

Link θ i di ai αi

1 θc1 d1 a1 α1

2 θc2 d2 a2 α2

3 θc3 d3 a3 −α

4 θ4 dc4 a4 0
5 −β − θ4 dc5 a5 −γ

Table X. ZXZ Euler angles convention for synthesized PPPRR
mechanism.

Link θ i di ai αi

1 −γ d1 180 50◦

2 −60◦ d2 140 40◦

3 −70◦ d3 130 55◦

4 θ4 85 100 0
5 θ5 55 120 −β

By comparing Eq. (61) with (64), it can be found that the XZX Euler angle parameters (α, β, γ )

can be appropriately fit into the D-H parameters in Table IX describing the closed-loop equation of the
PPPRR mechanism.

A numerical example is provided to illustrate using the ZXZ Euler angles convention
to synthesize an over-constrained PPPRR mechanism. First, five arbitrary angular parameters
{θc2, θc3, α1, α2, α3} = {−60◦, −70◦, 50◦, 40◦, 55◦} and seven link parameters {dc4, dc5, a1, a2, a3, a4, a5} =
{85, 55, 180, 140, 130, 100, 120} are assumed and substituted into Table III, which is tabulated in
Table X.

Next, substituting five arbitrary angular parameters {θc2, θc3, α1, α2, α3} =
{−60◦, −70◦, 50◦, 40◦, 55◦}and θc1 = 0 into rotation matrix 0

3R in Eq. (4) yields,

0
3R(θc1 = 0, θc2, θc3, α1, α2, α3) =

⎡
⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦ (66)

Then, use Eq. (A3) to calculate Euler angle β, which is

β = ± cos−1 a33 = ±87.273◦ (67)

Here, the negative value of Euler angle β is adopted to solve for Euler angle γ using Eq. (A5),
which are

γ = atan2(− a13, a23) = 63.0047◦ (68)
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Table XI. D-H table for synthesized PPPRR mechanism.

Link θ i di ai αi

1 −63.0047◦ d1 180 50◦

2 −60◦ d2 140 40◦

3 −70◦ d3 130 55◦

4 θ4 85 100 0
5 θ5 55 120 87.273◦

Figure 9. Synthesized PPPRR mechanism using presented methodology.

Figure 10. Cylindrical joint formed by a revolute and a prismatic joint along the same axis.

The aforementioned results, which are tabulated in Table XI, can be used to structure a closed-loop
PPPRR mechanism, as shown in Fig. 9.

4.2. Isomers of PPPRR mechanism
The cylindrical joint is a joint that provides one translational and one rotational of freedom along the
same joint axis. Therefore, when two adjacent R joints and P joints are shown in Fig. 10(a) where the R
joint axis ZR and P joint axis ZP are coaxial, the R joint and P joint will be configured to a cylindrical
joint, as shown in Fig. 10(b).
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Figure 11. Synthesized PPPRR mechanism and its isomer.

Because of a cylindrical joint that can be formed by a revolute and a prismatic joint along the same
axis, the synthesized PPPRR mechanism can be transformed into another over-constrained mechanism
with a cylindrical joint. For example, set a3 = 0 and α3 = 0 in Table VIII, a PPPRR mechanism based
on the ZXZ Euler angles convention can be synthesized in Fig. 11(a), where P joint axis Z2 and R joint
axis Z3 and are coaxial. Thus, a PPCR mechanism can be formed, in Fig. 11(b), by combining the P joint
and R joint into a cylindrical joint. In addition, the D-H parameters describing the closed-loop equation
of the PPCR mechanism can be listed in Table XII.

5. Mobile assemblies derived from PPPRR and PPCR mechanisms
In this section, synthesized PPPRR and PPCR mechanisms can be further used as source modules to form
other mobile assemblies. These assemblies may provide a much large archive allowing the engineers to
choose desired motions and trajectories. To synthesize new mechanisms configurationally, link param-
eters of PPPRR and PPCR mechanisms are correspondingly adjusted such that two source modules can
be assembled as another over-constrained mechanism.

5.1. RRPRRP mechanism
Figure 12 shows an assembly configuration of the two PPPRR mechanisms and their schematics. In
Fig. 12(a), Zi is the direction of axis i, and [ai, αi] represent the common normals and the skew angles
between joint axes Zi and Zi+1. The joint variable of a revolute joint of axis Zi is denoted by θi, while
the joint variable of a prismatic joint is denoted by θci, a constant value. When the PPPRR mechanism is
configured based on the presented method using the ZXZ Euler angles convention, angular parameters
θc2, θc3, α1, α2, and α3 can be freely assigned. Hence, [a1, α1] of the first PPPRR mechanism can be set
equal to [a2, α2] of the second PPPRR mechanism. In addition, θc2 of the first PPPRR mechanism can be
set equal to θc2

′ of the second PPPRR mechanism. In doing so, Z1, Z2, and Z3 are, respectively, parallel
to Z1

′ , Z2
′ , and Z3

′ , as schemed in Fig. 12(b).
Next, combining these PPPRR mechanisms by aligning [a1, α1] with [a1

′ , α1
′ ] and [a2, α2] with

[a2
′ , α2

′ ] leads to coincidences of Z1 and Z1
′ , Z2 and Z2

′ , and Z3 and Z3
′ , as shown in Fig. 12(c).

Now, joint variable d2 of the first PPPRR mechanism is constrained to be joint variable d2
′ of the

second PPPRR mechanism. Therefore, two PPPRR mechanisms with independent motion are synchro-
nized. Afterward, collinearly overlapped links [a1, α1] and [a1

′ , α1
′ ] as well as [a2, α2] with

[
a2

′ , α2
′
]

now can be removed to form a single closed-loop six-bar RRPRRP mechanism in Fig. 13(a). Since
the prismatic joints along axis Z3 and are coaxial, they can be equivalently replaced by one prismatic
joint adjacent to link [a3, α3] and [a3

′ , α3
′ ]. Besides, the twisted angle of the substitute prismatic joint
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Table XII. Link parameters involving ZXZ Euler angles
convention for the closed-loop PPCR mechanism.

Link θ i di ai αi

1 −γ d1 a1 α1

2 θc2 d2 a2 α2

3 θc3 + θ4 d3 + dc4 a4 0
4 −α − θ4 dc5 a5 −β

Figure 12. Assembly of the two PPPRR mechanisms and their schematics.

is θc3
′ − θc3. Likewise, the prismatic joints along axis Z1 and Z1

′ can be equivalently replaced by one
prismatic joint adjacent to link [a1, α1] and [a1

′ , α1
′ ]. Besides, the twisted angle of the substitute pris-

matic joint is θc1 − θc1
′ . The rest of [ai, αi] for the synthesized RRPRRP mechanism are all identical to

these of original PPPRR mechanisms. In addition, due to the constraint d2 = d2
′ , the movement of the

synthesized RRPRRP mechanism is the same as the two PPPRR mechanisms run synchronously with
equal input variables, as simulated in Fig. 13(b).
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Figure 13. Synthesized RRPRRP mechanism and its motion animation.

5.2. RRPRC mechanism
Figure 14(a) shows an assembly configuration of the PPPRR and PPCR mechanism. As mentioned, five
angular parameters θc2, θc3, α1, α2, and α3 of the PPPRR mechanism can be freely assigned. However,
for the PPCR mechanism, only three angular parameters θc2, α1, and α2 can be freely assigned. Hence,
[a1, α1] and [a2, α2] of the PPPRR mechanism can be set equal to [a1’, α1’] and [a2’, α2’] of the PPCR
mechanism. In addition, θc2 of the PPPRR mechanism can be set equal to θc2

′ of the PPCR mechanism.
In doing so, Z1, Z2, and Z3 are, respectively, parallel to Z1

′ , Z2
′ , and Z3

′ , as schemed in Fig. 14(b).
Next, aligning [a1, α1] with [a1

′ , α1
′ ] and [a2, α2] with [a2

′ , α2
′ ] yield coincidences of Z1 and Z1

′ , Z2

and Z2
′ , and Z3 and Z3

′ , as shown in Fig. 14(c). Now, joint variable d2 of the PPPRR mechanism is
constrained to be joint variable d2

′ of the PPCR mechanism. Therefore, two mechanisms with indepen-
dent motion are synchronized. Afterward, removing collinearly overlapped links [a1, α1] and [a1

′ , α1
′ ]

as well as [a2, α2] with
[
a2

′ , α2
′
]

yields a single closed-loop five bar RRPRC loop in Fig. 15(a). In the
combined loop, the prismatic joint along axis Z3 and the cylindrical joint along Z3

′are coaxial, they
can be equivalently replaced by one cylindrical joint adjacent to link [a3, α3] and [a3

′ , α3
′ ]. Besides, the

twisted angle of the substitute prismatic joint is θc3
′ − θc3. Likewise, the prismatic joints along axis,

Z1 and Z1
′ can be equivalently replaced by one prismatic joint adjacent to link [a1, α1] and [a1

′ , α1
′ ].

Besides, the twisted angle of the substitute prismatic joint is θc1 − θc1
′ . The rest of [ai, αi] for the syn-

thesized RRPRC mechanism are all identical to these of original PPPRR and PPCR mechanisms. The
synthesized RRPRC mechanism should be immobile since its mobility is zero based on the predic-
tion of Chebychev–Grübler–Kutzbach criterion. However, its mobility inherit from the synchronized
motion of input variables d2 = d2

′ driving the combined PPPRR and PPCR mechanism, as simulated in
Fig. 15(b).

5.3. RCRC mechanism
By the same token, two PPCR mechanisms are assembled as shown in Fig. 16(a) and schematized in
Fig. 16(b). Three angular parameters θc2, α1, and α2 for these two PPCR mechanisms can be corre-
spondingly assigned such that [a1, α1] and [a2, α2] of the first PPCR mechanism are equal to [a1’, α1’]
and [a2’, α2’] of the second PPCR mechanism. In addition, θc2 of the first PPCR mechanism can be set
equal to −θc2

′ of the second PPCR mechanism such that Z1, Z2, and Z3 are, respectively, parallel to Z3
′ ,

Z2
′ , and Z1

′ , as schemed in Fig. 16(b).
Next, two PPCR mechanisms can be combined by aligning [a1, α1] with [a1’, α1’] and [a2, α2] with

[a2’, α2’]so as to achieve coincidences of Z3 and Z1’, Z2 and Z2’, and Z1 and Z3’, as shown in Fig. 16(c).
Now, two PPCR mechanisms move synchronously with equal input variables due to the constraint
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Figure 14. Assembly of the PPPRR and PPCR mechanisms and their schematics.

d2 = d2
′ . Afterward, a single closed-loop four-bar RCRC loop in Fig. 17(a) can be formed by remov-

ing collinearly overlapped links [a1, α1] and [a2
′ , α2

′ ] as well as [a2, α2] with
[
a1

′ , α1
′
]
. In the combined

loop, the prismatic joint along axis Z1 and the cylindrical joint along Z3
′can be equivalently substituted

by a cylindrical joint adjacent to link [a1, α1] and [a3
′ , α3

′ ]. Besides, the twisted angle of the substitute
cylindrical joint is θc1 + θ3

′ . Likewise, the prismatic joints along axis Z3 and Z1
′ can be equivalently

substituted by a cylindrical joint adjacent to link [a3, α3] and [a1
′ , α1

′ ]. Besides, the twisted angle of the
substitute prismatic joint is θ3 + θc1

′ . The rest of [ai, αi] for the synthesized RCRC mechanism are all
identical to these of original PPCR mechanisms. The synthesized RCRC loop is also an over-constrained
mechanism, as simulated in Fig. 17(b). An intriguing research that relates the RCRC linkage and its
ressemble linkage, the RCCC linkage, is the passive coupling method proposed by Dimentberg [23]. He
suggests synthesizing the RCRC linkage by locking the degree of freedom of one revolute joint of the
RCCC linkage. This approach may provide an extended investigation of the ongoing discussion but is
not within the scope of this paper.
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Figure 15. Synthesized RRPRC mechanism and its motion animation.

6. Closing remarks
This paper presents a synthesis method of spatial over-constrained mechanisms. First, the kinematics
of a three-link PPP manipulator is investigated based on the Denavit–Hartenberg notation. Next, the
end-effector of the PPP manipulator is constrained to trace a straight trajectory such that its end-effector
can be combined with that of a P-joint single-arm manipulator. By doing so, these two open-chain
manipulators can be assembled to form a spatial closed-loop PPPP mechanism. By the same token, the
end-effector of the PPP manipulator can be constrained to trace a circular trajectory such that the end-
effectors of the PPP and RR manipulators can be combined to form a PPPRR mechanism. In addition, the
synthesized PPPRR mechanism can be transformed into an over-constrained PPCR mechanism by align-
ing the revolute and prismatic joints of the original PPPRR mechanism. The DH parameters of those
synthesized mechanisms are defined by incorporating them with the Euler angles notations. Solving
the Euler angle parameters is advantageous to avoid excessive algebraic assumptions. At last, PPPRR
and PPCR mechanisms are further adopted as source modules to concatenate other mobile assem-
blies. These assemblies can be correspondingly configured into over-constrained RRPRRP, RRPRC, and
RCRC mechanisms by the common link-pair (CLP) method by Wohlhart [24]. Compared with deriving
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Figure 16. Assembly of two PPCR mechanisms and their schematics.

Figure 17. Synthesized RCRC mechanism and its motion animation.
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geometrical constraints from closed-loop equation analytically, the modular method presented in this
research is more intuitive to find the over-constrained mechanisms.

In addition, our work aims to provide a synthesis method of spatial over-constrained mechanisms
based on the kinematics of a specific serial manipulator. Some concepts are similar to the previous
studies by Li and Angeles’s work [25, 26]. They are devoted to promote a 3-CCC parallel manipulator
by refining its kinematic, singularity, workspace, and dexterity analyses. To the goal for both of our
research, kinematic analyses that describe the input/output function among mating parts are required.
One noticeable difference between our methods is the mathematical foundations adopted. We apply D-H
notations to relate link dimensions and joint variables for the serial manipulator and derive the position
and orientation of the manipulator end-effector based on the homogeneous transformation matrix rep-
resentation. Li and Angeles’s work establishes the constraint-screw systems for every CCC limb [25]
and solves a quartic resolvent polynomial to yield the orientation of the moving platform. Although the
mathematical formulations are distinct, both of our works attempt to simplify the analyses by decoupling
the rotational and translational motion of the end-effector. We verify that the serial PPP manipulator
has an unchanged orientation and unlimited workspace by separately examining the elements governing
rotation and translation. Hence, we can concentrate on aligning the orientations of the end-effector coor-
dinate system of two manipulators without paying attention to coinciding the origin of the end-effector
coordinate system. Li and Angeles reveal that the orientation of 3-CCC PKM can be individually solved
without considering the linear displacement of the cylindrical joints. Besides, they found that the singu-
larity of the 3-CCC PKM only results from the orientation of the moving platform. Both of our works
indicate that the complexity of a kinematic problem may be reduced by considering the rotation and
translation of the links individually. This feature, as suggested by Li and Angeles [25, 26], may provide
an intriguing enlightenment on relevant research in the future.
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Appendix A

Euler Angle Representation for Rotation Matrices
The orientation of the PPP manipulator can be defined by the Euler angle representation [27,28].

Hence, this section summarizes the conventions of ZXZ Euler angles and XZX Euler angles, respec-
tively. First, to describe the orientation of the end-effector coordinate system O3X3Y3Z3 using the ZXZ
Euler angles convention, all elements of rotation matrix 0

3R are set to be equal to these of rotation operator
Rz(γ ) Rx(β) Rz(α) specified by ZXZ Euler angles (α, β, γ ), which can be expressed as

0
3R = Rz(γ ) Rx(β) Rz(α) (A1)

namely,
⎡
⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦ =

⎡
⎢⎣

cαcγ − sαcβsγ −cγ sα − cαcβsγ sβsγ

sαcβcγ + cαsγ cαcβcγ − sαsγ −sβcγ

sαsβ cαsβ cβ

⎤
⎥⎦ (A2)

Analyzing Eq. (A2) allows to find the solution of the required ZXZ Euler angles (α, β, γ ), which can
be expressed as

β = ± cos−1 a33 (A3)

α = atan2( ± a31, ±a32) (A4)

γ = atan2( ± a13, ∓a23) (A5)
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Similarly, to describe the orientation of the end-effector coordinate system O3X3Y3Z3 using the XZX
Euler angles convention, all elements of rotation matrix 0

3R are set to be equal to these of rotation operator
Rx(γ ) Rz(β) Rx(α) specified by XZX Euler angles (α, β, γ ), which can be expressed as

0
3R = Rx(γ ) Rz(β) Rx(α) (A6)

namely,
⎡
⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦ =

⎡
⎢⎣

cβ −cαsβ sαsβ

sβcγ cαcβcγ − sαsγ −sαcβcγ − cαsγ

sβsγ sαcγ + cαcβsγ cαcγ − sαcβsγ

⎤
⎥⎦ (A7)

Analyzing Eq. (A7) allows to find the solution of the required XZX Euler angles (α, β, γ ), which
can be expressed as

β = ± cos−1 a11 (A8)

α = atan2(a13, −a12) (A9)

γ = atan2(a31, a21) (A10)
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