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Abstract. The motion of a black hole about the centre of gravity of its host galaxy induces
a strong response from the surrounding stellar population. We consider the case of a harmonic
potential and show that half of the stars on circular orbits in that potential shift to an orbit
of lower energy, while the other half receive a positive boost. The black hole itself remains on
an orbit of fixed amplitude and merely acts as a catalyst for the evolution of the stellar energy
distribution function f (E). We then consider orbits in the logarithmic potential and identify the
response of stars near resonant energies. The kinematic signature of black hole motion imprints
the stellar line-of-sight mean velocity to a magnitude � 13% the local root mean-square velocity
dispersion σ. The high velocity dispersion at the 5:2 resonance hints to an observable effect at
a distance � 3 times the hole’s influence radius.
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1. Introduction
Black hole (BH) dynamics in galactic nuclei has attracted much attention for many

years (e.g., Merritt 2006 for a recent review). The influence of a BH on its surrounding
stars is felt first through the large velocity dispersion and rapid orbital motion of the
inner-most stars (σ ∼ v1d ∼< 103 km/s). This sets a scale ∼< GMbh/σ2 (� 0.015−0.019 pc
for the Milky Way, henceforth MW) within which high-angle scattering or stellar stripping
and disruption takes place. For the MW, low-impact parameter star-BH encounters are
likely given the high density of ρ ∼ 107M�/pc3 within a radius of ≈ 10 pc (see e.g. Yu
& Tremaine 2003; O’Leary & Loeb 2006; see also Freitag, Amaro-Seoane & Kalagora
2006 for a numerical approach to this phenomenon). Star-BH scattering occurring over
a relaxation time (Preto, Merritt & Spurzem 2005; Binney & Tremaine 1987) leads to
the formation of a Bahcall-Wolf stellar cusp of density ρ� ∼ r−γ where γ falls in the
range 3/2 to 7/4 (Bahcall & Wolf 1977). Genzel et al. (2003) modeled the kinematics of
the inner few parsecs about Sgr A� with a mass profile ρ� ∼ r−1.4 , which suggests of
a strong interplay between the BH and the central stellar cusp. More recently, Schödel
et al. (2007) presented a double power-law fit to the data, where the power index � 1.2
inside a break radius rbr , and � 7/4 outside, where rbr � 0.2 pc. This is indicative of
on-going evolution inside rbr not accounted for by the Bahcall-Wolf solution.

Most, if not all, studies of galactic nuclei dynamics assume a fixed BH (or BH binary)
at the centre of coordinates. Genzel et al. (1997) had set a constraint of ∼< 10 km/s for
the speed of the BH relatively to the galactic plane, a constraint later refined to ∼< 2 km/s
(Backer & Sramek 1999; Reid & Brunthaler 2004). Stellar dynamics on scales of ∼ few pc
surrounding Sgr A� is complex however, and the angular momentum distribution on that
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scale is a prime example of this complexity (Genzel et al. 2003). Reid et al. (2007) used
maser emission maps to compute the mean velocity of 15 SiO emitters relatively to Sgr
A�. They compute a mean (three-dimensional) velocity of up to 45 km/s from sampling
a volume of � 1 pc about the centre†. This raises the possibility that stars within the
central stellar cusp experience significant streaming motion with respect to Sgr A�. The
breaking radius rbr ∼ 0.2 pc is suggestive of uncertain dynamics on that scale. Random,
‘Brownian’ BH motion may result from the expected high-deflection angle encounters
(Merritt 2001, 2005; Merritt, Berczik & Laun 2007). Here we take another approach, and
ask what net effect a BH set on a regular orbit will have on the stars. In doing so, we
aim to fill an apparent gap in the modeling of BH dynamics in dense nuclei, by relaxing
further the constraint that the hole be held fixed at the centre of coordinates. A full
account will be found in Boily, Padmanabhan & Paiement (2007, MNRAS, in the press,
hereafter BPP+07).

A rough calculation helps to get some orientation into the problem. Consider a point
mass falling from rest from a radius Ro in the background potential of the MW stellar
cusp. Let the radial mass profile of the cusp ρ�(r) ∝ r−3/2 , consistent with MW kinematic
data. If we define the BH radius of influence � 1 pc to be the radius where the integrated
mass M�(< r) = the BH mass � 3 to 4 × 106M� (Genzel et al. 2003; Ghez et al. 2005),
then Ro may be expressed in terms of the maximum BH speed in the MW potential as
[max{v}/100 km/s]4/5 = Ro/1 pc . For a maximum velocity in the range 10 to 40 km/s,
this yields Ro � 0.3 − 0.5 pc, or the same fraction of its radius of influence‡. We ask
what impact this motion might have on the surrounding stars. To proceed further, let
us focus on a circular stellar orbit outside Ro in the combined potential of the BH and
an axisymmetric galaxy. When the BH is at rest at the centre of coordinates, the star
draws a closed circular orbit of radius r and constant velocity v. We now set the BH on
a radial path of amplitude Ro down the horizontal x-axis. Without loss of generality, let
the angular frequency of the stellar orbit be ω� , and that of the BH ω � ω� . The ratio
ω/ω� � 1 is otherwise unbounded. The net force F acting on the star can always be
expressed as the sum of a radial component F r and a force parallel to the x-axis which
we take to be of the form Fx cos(ωt + ϕ); clearly the constant Fx = 0 when Ro = 0. The
net mechanical work done on the star by the BH as the star completes one orbit is

δW =
∫

F · vdt =
∫

Fxv sin(ω�t) cos(ωt + ϕ) dt (1.1)

where ϕ is the relative phase between the stellar and BH orbits. The result of integrating
(1.1) is set in terms of the variable ν ≡ ω/ω� as

2δW

vFx
=

1
ν + 1

[cos(2πν + ϕ) − cos(ϕ)]

+
1

ν − 1
[cos(2πν − ϕ) − cos(ϕ)] (1.2)

when ν > 1, and 2δW/vFx = 2π sin(ϕ) when ν = 1. Equation (1.2) encapsulates the
essential physics, which is that δW changes sign when the phase ϕ shifts to ϕ + π. Thus
whenever the stellar phase-space density is well sampled and all values of ϕ : [0, 2π] are

† Statistical root-n noise ∼ 25% remains large owing to the small number of sources but is
inconsequential to the argument being developed here.

‡ These figures are robust to details of the stellar cusp mass profile, so for instance a flat
density profile (γ = 0) would yield Ro in the range 0.3 to 0.6 pc.
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realised with equal probability, half the stars receive mechanical energy (δW > 0) and
half give off energy (δW < 0). In other words, stars in the first quadrant exchange energy
with those in the third quadrant of a Cartesian coordinate system. (Similarly for those
in the second and fourth quadrants.) By construction, the BH neither receives nor loses
energy but merely acts as a catalyst for the redistribution of mechanical energy between
the stars. Our goal, then, is to explore the consequences of this mechanism quantitatively
for realistic stellar distribution functions.

We present a subset of results lifted from BPP+07 for the case of an BH orbiting in a
logarithmic background potential. We focus on the effect of resonances and their likely
detection at a distance equal to several times the BH radius of influence and show that
streams that develop at the 5:2 resonance have larger Toomre parameters (hot streams).

2. Results
We set our problem in the framework of the logarithmic potential, which we write as

Φg (r) = − 1
2 v2

o ln
∣∣∣∣R

2

R2
c

+ 1
∣∣∣∣ (2.1)

with vo the constant circular velocity at large distances, and the radius Rc defines a
volume inside of which the density is nearly constant. Thus when r � Rc we have again
harmonic motion of angular frequency ω = vo/Rc . If we let q = 1 and define u ≡ r/Rc ,
the integrated mass Mg (u) reads

Mg (< u) =
v2

o Rc

G

u3

u2 + 1
. (2.2)

The mass Mg (u � 1) ∝ u diverges at large distances, however this is not a serious flaw
since we consider only the region where u ∼ 1. The mass Mg (u = 1) = v2

o Rc/2G fixes
a scale against which to compare the BH mass Mbh . Since the BH orbits within the
harmonic core, we set

Mbh ≡ m̃bh
v2

o Rc

2G
(2.3)

with 0 < m̃bh � 1, and

M(u) = 1 + m̃bh
1 + u2

u3 ≡
(ω�

ω

)2

defines the position of orbital resonances when the frequencies are commensurate. The
core radius offers a reference length to the problem. The position and velocity of the BH at
any time follow from the equation of a harmonic oscillator, R̈(t) = Ro sin(ωt+φo)x̂, where
the amplitude Ro defines the dimensionless number uo = Ro/Rc and x̂ is a directional
unit vector. Our goal is to quantify the time-evolution of a large number of orbits in the
combined logarithmic and BH potentials. If we pick parameters such that

m� � Mbh < Mg (max{u})
then we may neglect the collective feedback of the stars on the BH and galactic potential
and study only the response of individual orbits evolving in the time-dependent total po-
tential. This approach will remain valid so long as the response of the stars are relatively
modest. The time-evolution of orbits was done numerically using a standard integration
scheme, see BPP+07 for details. As a specific case we chose dimension-less parameters
m̃bh = uo = 0.3 (case ’C3’ of BPP+07) with physical parameters vo = Rc = G = 1. The
radius of influence of the BH is then ≈ 0.58. We neglect the stars self-gravity. The stellar
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Figure 1. Maps of the Toomre number QJ for a calculation with m̃bh = uo = 0.3 shown at times
A) t = 15; B) t = 16 and C) t = 17. The dash circle marks the core length of the logarithmic
potential, the cross is the origin of coordinates and the light dot marks the position of the BH.
The shaded ring of radius � 2.2 indicates large dispersion at the 5:2 resonance.

orbits were all co-planar with that of the BH but an extension to 3D only comforted our
findings (see BPP+07).

2.1. Resonances and hot streams
Given the potential (2.1) it is straightforward to isolate for the radii where the circular
orbital frequencies are in a commensurate ratio m : n (see Table 2 of BPP+07). Inspection
of the energy distribution function of the stars shows that BH motion induces highs and
troughs when compared to the d.f. where the BH is fixed at the coordinate centre. The
peaks seen in the d.f. match (roughly) the position of resonances, but, significantly, the
d.f. is never steady because the potential varies continuously in time. A time-average of
several snapshots, when all orbits are projected in space, shows that the largest resonances
are still easily identifiable in the d.f., a result that would favour the detection of long-
lasting hot streams (high velocity dispersion) at places where none is expected.

Our approach does not integrate the full response of the stars to their own density
enhancements. These could become bound structures which would alter the dynamics
globally. To inspect whether this could have an influence over the evolution of the velocity
field, we computed the Toomre number

QJ ≡ σΩ
GΣ

=
σ2

GΣdl

on a mesh of 30× 30 points in real space. We computed the dispersion σ with respect to
the initial equilibrium flow; hence σ = 0 when the BH is at rest. The surface density Σ is
calculated with an CIC algorithm. Stars are stable against self-gravitating local modes
of fragmentation when QJ ∼> 1.7 (Binney & Tremaine 1987). We applied a modified
criterion for stability, because the disc is presumed initially stable against such modes,
that is, when the BH is at the centre of coordinates. Because we subtracted from the local
mean square velocity dispersion the value computed for the initial configuration, we set
a conservative threshold for stability such that QJ > 1. When that condition is satisfied,
the BH contributes through its orbital motion more than 58% of the square velocity
dispersion required to prevent local self-gravitating fragmentation modes from growing.
Since the black hole already accounts for more than 50% to the gravity everywhere
inside its radius of influence, it also provides the extra dispersion required to kill off all
self-gravitating modes.

Fig. 1 maps out QJ at three different times for the reference calculation; the dark
shaded area have QJ > 1 with an upper cutoff at 2, so white means instability on that
figure. The outer dark ring at u � 2.2 on the figure matches the position of the 5:2
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resonance. Thus it is very likely that structures that would cross this area would be
heated up and disrupted as a result of BH motion.

2.2. Comparison with MW data
The ring seen on Fig. 1 may have consequences for the streams of stars observed at the
centre of the MW (Genzel et al. 2003). The dimensions of this ring, about three times the
BH radius of influence, would correspond to a radius of 3 pc in the MW. This should be
an element to incorporate into future modelling of the MW centre since actual resolution
power already resolves sub-parsec scales.

The line-of-sight velocity is also of interest. This is derived from individual snapshots
by projecting the orbits on a 1D mesh and averaging by number. The largest values of
v1d were obtained from a viewing angle parallel to the motion of the BH. Contrasting
these values to the local root mean square velocity dispersion σ, we find a ratio of
< |v1d |> /σ ≈ 25% at maximum value, which occurs inside the hole’s radius of influence.
Applying this to MW data, where the mean velocity dispersion rises to ∼ 180 km/s
inside 1 pc of Sgr A� (Genzel et al. 1996), we obtain streaming velocities in the range
∼ 40 km/s, a rough match to the values reported recently by Reid et al. (2007). The
MW surface density profile shows a break at radius rbr ∼ 0.2 pc (Schödel et al. 2007).
Inside rbr , the volume density is fitted with a power-law index γ � 1.2 which falls outside
the range 3/2 to 7/4 of the Bahcall-Wolf solution. BH motion of an amplitude Ro ∼ rbr

might cause such a break. The ratio rbr /rbh ∼ 0.2 is however lower than the value ≈ 0.5
adopted for the calculation discussed here. More detailed modelling in a galactic cusps
is underway for a closer match to MW data.
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