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SUMMARY

The prevalence of Escherichia coli O157 displays striking variability across the Scottish cattle

population. On 78% of farms, in a cross-sectional survey of 952, no shedding of E. coli O157 was

detected, but on a small proportion, y2%, very high prevalences of infection were found (with

90–100% of pats sampled being positive). We ask whether this variation arises from the inherent

stochasticity in transmission dynamics or whether it is a signature of underlying heterogeneities in

the cattle population. A novel approach is taken whereby the cross-sectional data are viewed as

providing independent snapshots of a dynamic process. Using maximum-likelihood methods to fit

time-dependent epidemiological models to the data we obtain estimates for the rates of

immigration and transmission of E. coli O157 infection – parameters which have not been

previously quantified in the literature. A comparison of alternative model fits reveals that the

variation in the prevalence data is best explained when a proportion of the cattle are assumed to

transmit infection at much higher levels than the rest – the so-called super-shedders. Analysis of

a second dataset, comprising samples taken from 32 farms at monthly intervals over a period

of 1 year, additionally yields an estimate for the rate of recovery from infection. The pattern of

prevalence displayed in the second dataset also strongly supports the super-shedder hypothesis.

INTRODUCTION

Escherichia coli O157 is an important zoonosis with

global distribution. In Scotland, approximately 200

cases of E. coli O157 infection in humans are reported

annually, although much larger outbreaks with sig-

nificant fatalities have occurred. Cattle are well rec-

ognized to be a reservoir for the organism [1, 2],

although the mechanisms by which E. coli O157 is

maintained in the cattle population are still poorly

understood. Studies of E. coli O157 prevalence in

cattle typically find the shedding of the organism to be

sporadic and of short duration [3–7]. Prevalences are

generally low – usually reported to be <10% of ani-

mals carrying the pathogen [2].

Typical features of the distribution of E. coli O157

shedding are revealed in two datasets available to this

study. The first, a cross-sectional survey of cattle

groups on 952 farms [8], shows striking variability in

the on-farm prevalence of E. coliO157 (see Fig. 1). On

78% of farms sampled no shedding of the organism

was detected, but on a small proportion, y2%, very

high prevalences of infection were found (with 90–

100% of faecal pat samples being positive). A second
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study comprising pat samples taken from 32 farms at

monthly intervals over a period of 1 year [9], shows

substantial variation both between farms and between

sampling events on the same farm (see Fig. 2) : a

few farms displayed high levels of shedding; some

were never identified as positive for E. coli O157;

while others had occasional, short-lived periods of

shedding.

The variability in E. coli O157 prevalence revealed

by these data leads us to ask whether the farms dis-

playing high levels of shedding have different epidemi-

ological characteristics, or whether the on-farm

transmission dynamics of E. coli O157 are such that

these high prevalences are to be expected occasionally

by chance. The potential sources of epidemiological

heterogeneity in the cattle population are many-fold.

Some farms may provide a better environment for

transmission than others, for reasons depending on

geographical location, farm type, management prac-

tices, and presence of other animals or wildlife [9].

Differing exposure to infection may result from vari-

ation in movement rates of livestock onto and from

farms. Furthermore, some animals may be more per-

sistent carriers of the organism or shed at higher levels

than others – the so-called super-shedders [10–13].

Although the cross-sectional data (Fig. 1) present a

static picture of the on-farm prevalence, the longi-

tudinal data (Fig. 2) clearly demonstrate that complex

patterns of shedding underlie this distribution. By

viewing the cross-sectional data as a snapshot of a

dynamic process, the consequences of different sources

of heterogeneity on the prevalence distribution can be

explored by considering the effect of both animal-level

and farm-level variability in rates of infection and

recovery.

Specifically, we describe the on-farm transmission

dynamics in terms of a susceptible–infected–suscep-

tible (SIS) type model [14]. The typically small cattle

group sizes and frequent low prevalences of infection

suggest that infection and recovery should properly be

regarded as probabilistic events – we, therefore, em-

ploy a stochastic model of the transmission dynamics.

Within this framework, we assume that infections arise

in the susceptible population via two possible routes ;

first, transmission from other infected individuals, the

probability of which increases with the number of

infected individuals ; and second, immigration of in-

fection from some external source, which occurs with

a constant probability – this could represent either the

presence of an environmental reservoir, or the move-

ment onto the farm of an already infected individual.

Since there is no evidence to suggest that cattle acquire

immunity to carriage of the pathogen we assume that

all individuals recover to the susceptible state.

The stochastic on-farm dynamics lead to an equi-

librium distribution of prevalences whose shape re-

flects the balance between immigration, transmission

and recovery from infection. We make the assumption

that the dynamics on different farms are not corre-

lated; we may, therefore, regard the cross-sectional

data as providing a sample from such an equilibrium

prevalence distribution. Competing hypotheses for

the likely source of heterogeneity are represented

by allowing either between-farm variation in the

parameters of the SIS model, or, in the case of

heterogeneities at the level of the individual, multiple
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Fig. 1. The distribution of prevalences of E. coli O157 in
faecal pats sampled from finishing groups of beef cattle on
952 Scottish cattle farms.
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Fig. 2. Illustrative (six out of 32 shown) time series of pre-
valences of E. coli O157 in faecal pats sampled monthly
during a longitudinal study of beef suckler cows on 32

Scottish farms.
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classes of susceptible and infected individuals.Analysis

of the longitudinal data is similarly structured, but

must additionally account for the fact that successive

on-farm measurements are correlated.

Maximum-likelihood methods [15] are used to fit

models with different sources of heterogeneity to the

observed data. This allows us to (i) obtain estimates

for epidemiologically important parameters and (ii)

discriminate formally between models and draw

conclusions as to the likely sources of heterogeneity

underpinning the observed distribution of prevalences

of E. coli O157 on Scottish cattle farms.

METHODS

Data collection

The cross-sectional data comprise pat samples col-

lected from finishing groups of beef cattle on 952

Scottish cattle farms between March 1998 and May

2000. The farms selected were a random sample from

the population of target farms stratified with respect

to region, production system and season at time of

sampling [8]. The longitudinal data comprise pat

samples collected from a beef suckler cow group on

each of 32 farms in the north of Scotland [9]. Each

farm was visited approximately monthly and was

sampled, with the exception of one, over a 12-month

period. Fresh faecal material from pats were collected

and examined for E. coli O157 strains using im-

munomagnetic separation (IMS) [16, 17].

The transmission model

Transmission dynamics within a group of cattle are

represented using a stochastic, individual-based SIS

Markovian model [14]. Thus, within-group trans-

mission of infection (occurring at a mean rate b), re-

covery from infection (which occurs at a mean rate s),

and immigration of infection into the group (which

occurs at a mean rate l) are probabilistic events.

Intuitively we expect the probability of there being

j infected individuals in the group at a given time to

depend on: (i) the probability of recovery from the

state with j+1 infecteds; (ii) the probability of trans-

mission or immigration of infection into the state with

jx1 infecteds ; and (iii) the probability of remaining in

the state with j infecteds. Combining these events we

obtain the following:

dPj

dt
=f(Pjx1,Pj,Pj+1, s, b, l,N), (1)

with

f (Pjx1, Pj, Pj+1, s, l, b, N)=

s( j+1) Pj+1+(l+b( jx1)=N)(Nx(jx1))Pjx1

x(sj+l(Nxj)+bj(Nxj)=N)Pj

and Pj(t) being the probability of there being j animals

infected in a group of size N at a time t [for clarity

we write Pj rather than Pj(t) in the equations]. Note

that the formulation of the immigration term can be

interpreted as either acquisition of infection from an

environmental reservoir or a simplified representation

of cattle movements whereby a susceptible individual

is replaced by an infected individual. Equation (1)

defines the null model against which models in-

corporating either farm-level or animal-level hetero-

geneity are compared. (Note that this equation is valid

for 1<j<N ; for j=0 or j=N the terms involving Pjx1

and Pj+1 respectively are omitted. An equivalent

convention should be assumed where appropriate in

subsequent sets of equations.)

Farm-level heterogeneity

Here, we allow for the possibility that either (i) trans-

mission rates or (ii) immigration rates may vary

between farms. In both cases we consider the

straightforward scenario whereby a fraction of the

farms are assumed to have a higher transmission or

immigration rate than the others.

Farm-level variability in transmission rates

We assume that a fraction of farms, fFT, have a

transmission rate which is rFT times higher than the

transmission rate on the remaining farms. In math-

ematical terms, on a fraction of farms, fFT, the trans-

mission dynamics are governed by the equations

dPj=dt=f(Pjx1,Pj,Pj+1, s, rFTb, l,N), (2 a)

and on the remaining fraction, 1xfFT, the trans-

mission dynamics are governed by the equations

dPj=dt=f(Pjx1,Pj,Pj+1, s,b, l,N), (2 b)

Farm-level variability in immigration rates

Analogous to the previous section we assume that a

fraction of farms, fFI, have an immigration rate which

is rFI times higher than the immigration rate on the

remaining farms. Thus, on a fraction of farms, fFI, the

transmission dynamics are governed by the equations

dPj=dt=f(Pjx1,Pj,Pj+1, s,b, rFIl,N), (3 a)
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and on the remaining fraction, 1xfFI, the trans-

mission dynamics are governed by the equations

dPj=dt=f(Pjx1,Pj,Pj+1, s, b, l,N), (3 b)

Individual-level heterogeneity

Here, we allow for the possibility that either (i)

transmission rates or (ii) infectious period may vary

between animals. In this case, we need to incorporate

multiple classes of susceptible and infected individuals

into the model. Again, we consider the straight-

forward case whereby a fraction of individuals are

assumed to have either higher transmission rates or a

longer infectious period than others.

Individual-level variability in transmission rates

We assume that a random number of individuals

within each farm group, if infected, will have a trans-

mission rate which is rAT times higher than that of the

other individuals. Over the population as a whole, we

assume a mean fraction fAT, of individuals have this

property. The number of high-level transmitters of

infection, which we denote L, in a group of N in-

dividuals is assumed to follow a binomial distribution

with probability of success fAT.

A group of N individuals is, therefore, subdivided

into K normal individuals and L individuals which,

when infected, will transmit infection at high levels.

The number of currently infected individuals in these

categories are denoted by k and l respectively. The

probability, Pkl(t), of there being k normal individuals

infected and l high-level transmitters infected at time t

is given by

dPkl

dt
=s(k+1)Pk+1, l+s(l+1)Pk, l+1xs(k+l)Pkl

+(l+b(kx1)=N+rATbl=N)(Kx(kx1))Pkx1, l

+(l+bk=N+rATb(lx1)=N)(Lx(lx1))Pk, lx1

x(l+bk=N+rATbl=N)(Kxk))Pk, l

x(l+bk=N+rATbl=N)(Lxl)Pk, l: (4)

The probabilities Pkl(t) are calculated separately,

conditioning on different values of K and L. These

probabilities are then weighted with respect to the

binomial distribution for (K, L) and summed to give

an overall distribution Pkkl(t). The probability Pj(t), of

there being a total of j infecteds of either type in the

group at time t is given by

Pj(t)=
Pj
k=0

P0
kjxk(t):

Individual-level variation in infectious period

In this case we assume that a mean fraction fAI of

individuals has an infectious period which is rAI times

longer than that of the other individuals. As in the

previous section these individuals are assumed to be

distributed across the farm population according to a

binomial distribution, leading to the following defi-

nition of transmission dynamics

dPkl

dt
=s(k+1)Pk+1, l+

s

rAI
(l+1)Pk, l+1

x sk+
s

rAI
l

� �
Pkl

+(l+b(k+lx1)=N)(Kx(kx1))Pkx1, l

+(l+b(k+lx1)=N)(Lx(lx1))Pk, lx1

x(l+b(k+l)=N)(Kxk)Pk, l

x(l+b(k+l)=N)(Lxl)Pk, l, (5)

where Pkl(t) is the probability of there being k (of K)

normal individuals and l (of L) individuals with

longer infectious periods infected at time t. The

probability Pj(t) of there being a total of j infecteds

in the group at time t is defined as above (see

‘Individual-level variability in transmission rates ’

section).

Free choice of transmission rate at farm level

In the case of the longitudinal analysis we will con-

sider one further model in which each farm is allowed

to have its own individual transmission rate. Thus, on

each farm the dynamics are governed by dPj /dt=
f(Pjx1, Pj, Pj+1, s, bi, l, N), where bi is the trans-

mission rate on farm i.

Model fitting and parameter estimation

The models are fitted to the data using the method of

maximum likelihood [15]. In the above sections on

farm-level and individual-level heterogeneity we out-

line the calculation of the model likelihood for the

cross-sectional and longitudinal data. The parameter

space is searched systematically to identify those par-

ameter combinations which maximize the likelihood

(for mathematical convenience we equivalently

minimize the negative log-likelihood).

For both datasets, the method of sampling pats is

assumed to be well approximated by sampling with

replacements from the group; making the assumption

that different animals do not produce different
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numbers of pats, the number of positive samples will

follow a binomial distribution [18]. Therefore, if j

animals in a group of N are infected (giving a true

prevalence of j/N), the probability of finding Npos

positives in a sample of Ns is given by

Ns

Npos

� �
j

N

� �Npos

1x
j

N

� �NsxNpos

:

Likelihood calculation for cross-sectional data

The above sets of equations can be solved [analyti-

cally for equations (1), (2) and (3) ; numerically in the

case of (4) and (5)] to obtain equilibrium values of the

probabilities Pj. We assume that the transmission

dynamics on different farms are not correlated and

can, therefore, regard each data point as a sample

from such an equilibrium distribution.

The probability of obtaining the observed number

of positive samples from a given group of animals is

given by the sum of the probabilities of making that

observation for all possible group prevalences. Thus,

on farm i, with a group size Ni, a sample size NSi, the

probability Pi of observing Nposi positive samples is

given by

Pi(datajM)=
PNi

j=0

NSi

Nposi

� �
j

Ni

� �Nposi

1x
j

Ni

� �NSixNposi

p*
Mj

,

where p
Mj
* is the equilibrium probability for model M

of j of the Ni animals being infected. The total likeli-

hood of the data given the model is given by the

product of the probabilities Pi over all sampled farms,

and the negative log-likelihood, L(M) given by the

negative sum of the logged probabilities :

L(M)=x
P

i log (Pi(datajM)):

Likelihood calculation for longitudinal data

The longitudinal data comprise a time-series of

observations from a group of animals on each of 32

farms. In this case, calculation of the likelihood of the

observations made on a given farm must take into

account that successive measurements are not stat-

istically independent.

The first observation made on each farm is as-

sumed to represent a sample from the equilibrium

distribution of prevalences ; the probability of this

observation is calculated as defined above for the

cross-sectional data. The probability of each success-

ive observation is then calculated conditional on the

probability of the previous observation. The product

of these gives the likelihood of the sequence of

observations made on that farm.

Specifically the method is as follows:

(i) the equilibrium distribution of prevalences, p
Mj
* ,

is taken to be the pre-observation distribution,

pre_obsM(j, t1), for the on-farm prevalence at

time t=t1 ;

(ii) the probability of the observation, prob(data,

t1|M) at time t=t1 is given by

prob(data, t1jM)=
PN
j=0

Ns

Npos

� �
j

N

� �Npos

r 1x
j

N

� �NsxNpos

pre�obsM( j, t1);

(iii) the post-observation distribution of prevalences,

post_obsM(j, t1), calculated using the observation

made at time t=t1 is given by

post�obsM(j, t1)=

Ns

Npos

� �
j

N

� �NsxNpos

1x
j

N

� �Npos

pre�obsM( j, t1)

PN
j=0

Ns

Npos

� �
j

N

� �Npos

1x
j

N

� �NsxNpos

pre�obsM( j, t1)

;

(iv) the post-observation distribution of prevalences

at time t=t1, post_obsM(j, t1), defines an ‘ initial ’

state for the transmission dynamics model

[equations (1)–(5) depending on model under

consideration] ;

(v) the transmission model specifies how the distri-

bution of prevalences evolves until time t=t2 at

which point it defines the pre-observation distri-

bution for the distribution of prevalences at time

t=t2

post�obsM(j, t1) �!transmission model M
pre�obsM(j, t2);

(vi) the probability of the observation, prob(data,

t2|M), and the post-observation distribution,

post_obsM(j, t2), are calculated as above, and the

process repeated for all subsequent sampling

times

The likelihood of the sequence of observations

made on a given farm given a modelM is given by the

product of the probabilities of the observations at

times t=t1, t2, …, tnum_visits, and the negative log-

likelihood, L(M) by the negative sum of the logs of

the probabilities :

L(M)=x
Pnum visits

k=1
log (prob(data, tkjm)):
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The individual farm negative log-likelihoods are

summed to give the total negative log-likelihood.

Confidence intervals and model selection

Confidence intervals for the parameter estimates in

the cross-sectional analysis are calculated using the x2

approximation to the profile log-likelihood ratio [15].

The likelihood ratio test is used to discriminate be-

tween competing nested models and the Akaike in-

formation criterion (AIC) for non-nested models. For

models with equal numbers of parameters the method

of AIC corresponds to making a direct comparison of

the model likelihoods ; models with lower negative

log-likelihoods provide a better fit to the data.

For the longitudinal analysis, due to the small size

of the dataset and correlation between samples at the

within-farm stratum, these asymptotic methods are

not considered appropriate ; in this case confidence

limits are obtained by non-parametric bootstrapping

[19] of the data at the farm level to provide a distri-

bution of estimated parameters. In total, 1000 boot-

strapped samples were obtained and the 2.5th and

97.5th percentiles of the resulting distribution for each

of the fitted parameters provided by the confidence

limits.

The distributional assumptions underlying the

likelihood ratio test are invalid in the presence of

small samples and within-farm correlation, therefore,

we take a Monte Carlo-based approach to discrimi-

nate between the null and alternative models. An ap-

propriate test statistic is selected to compare formally

the observed data with that which would be expected

under the null model. For inference, we would ideally

simulate many realizations (often 1000) from the null

model directly, and compute the value of the test

statistic for each, ranking our observed test statistic

amongst those from the simulated data to generate a

P value corresponding to the test of alternative

against null. As a consequence of computational ex-

pense, however, we simulate 32 (corresponding to the

number of farms in the actual dataset) datasets under

the null model, and then bootstrap from these data-

sets to re-create the appropriate null distribution. We

select as our test statistic the difference between the

log-likelihoods for the null and alternative models,

draw 1000 bootstrap samples and recompute the test

statistic for each; for a ranking of the statistic from

the observed data as kth largest from n bootstrap

sample-based test statistics, the P value is computed

as k/(n+1).

The method of AIC is again used to compare like-

lihoods between the competing alternative models and

draw conclusions as to which provide the better fit.

RESULTS

We analyse the cross-sectional and longitudinal

data separately. In each case, maximum-likelihood

methods are used to fit models with different sources

of heterogeneity of the transmission dynamics to the

observed data. The null model assumes that all farms

and all animals are governed by the same underlying

dynamics. Competing models allow that (i) the trans-

mission and immigration rates may vary between

farms or (ii) that the transmission rate and infectious

period may vary between animals.

Analysis of cross-sectional data

As these data do not explicitly incorporate a time-

scale, the fitting process can only provide relative

estimates for parameters. In other words, we may

choose the time-scale such that the recovery rate, s, is

equal to 1. Estimates of transmission and immigration

rates are obtained relative to this time-scale.

We consider first the fit of the null model, which

assumes no differences between farms or animals, to

the observed data. Figure 3 compares the observed

data with the predicted prevalence distribution from

the null model generated using the maximum-likeli-

hood estimates of the transmission rate (b̂b=1.14,

95% CI 1.06–1.20), and immigration rate (l̂l=0.005,

95% CI 0.003–0.006). The null model explains a

substantial proportion of the variation in the data,

including the large number of zero prevalences, but

does not succeed in reproducing the long tail of the

distribution (Fig. 3b).

The fits of two alternative models which incorpor-

ate heterogeneities at the farm level are compared

with the null model in Table 1. We use the likelihood

ratio test to discriminate between the null model and

the alternatives which incorporate variation in either

immigration or transmission rates. Accordingly, a

difference in the negative log-likelihoods >3.0 (cor-

responding to a difference of 6 in twice the negative

log-likelihoods in accordance with the likelihood ratio

test) between a two-parameter and four-parameter

model is significant at the 95% level. It is clear,

therefore, that both models which incorporate het-

erogeneities at the farm level produce highly signifi-

cant improvements in the fit to the data over the
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null model. In both cases the estimated percentage

of farms with higher immigration or transmission

rates is of the order of 10%, but far greater hetero-

geneity in immigration rates (350 times) is required

than in transmission rates (three times).

We also investigate the fits of two models which

incorporate animal-level variation in either trans-

mission rate or infectious period (which is taken to

be the reciprocal of the recovery rate). Allowing a

proportion of animals to have longer infectious

periods succeeds in producing a marginally statisti-

cally significant improvement in model fit at the 95%

level (see Table 2 for a comparison of the fit of the

null model with the fits of models with animal-level

variation). However, far more substantial improve-

ments are found when a proportion of animals

is allowed to have higher transmission rates. The

maximum-likelihood estimates identify the best fit in

this model as occurring when 4% of animals have

transmission rates which are 50 times higher than

those of normal individuals. Figure 3 compares the

observed data with the predicted prevalence distri-

bution from the model with animal-level variation in

transmission rates. In this instance we can see that the

model succeeds in both reproducing the high number

of zero prevalences and the long tail of the distri-

bution (see Fig. 3b).

Applying AIC to discriminate between the (non-

null) competing models in this case corresponds to a

direct comparison of likelihoods, since all competing

models have equal numbers of parameters. We,

therefore, conclude that three models providing the

best fit to the data are those incorporating (i) farm-

level variation in immigration rate, (ii) farm-level

variation in transmission rate or (iii) animal-level

variation in transmission rate; all of which provide a

substantially better fit than the model incorporating

animal-level variation in the infectious period.

Analysis of longitudinal data

The three models which best fit the cross-sectional

data – farm-level variation in immigration rate; farm-

level variation in transmission rate; and animal-level

variation in transmission rate – are now fitted to the

longitudinal data. Since these data incorporate an

explicit time-scale, we can also estimate the recovery

rate (or equivalently the infectious period) and,

therefore, obtain absolute values for the transmission

and immigration rates.

We take our unit of time to be the sampling interval

(1 month) and compare model fits for infectious per-

iods of 0.5, 0.67 and 1.0 months. These numbers were

chosen on the basis of exploratory investigations of

parameter space to determine a range of infectious

periods which incorporates the maximum-likelihood

estimate for this parameter. For each of the models

considered the best fit occurs for an infectious period

of 0.67 (equivalent to a recovery rate of 1.5). In

Table 3 we compare the fits of the models with farm-

level variation in immigration and transmission rates

with that of the null model. It can be seen that the

confidence limits for the proportion of farms with a

higher immigration rate include zero, so the model

with heterogeneities in immigration rates cannot

be regarded as providing a statistically significantly

improved fit over the null model. Using the Monte

Carlo test described in the Methods section (which
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Fig. 3. (a) A comparison of model fits to the cross-sectional
data (%) for the (null) model containing no heterogeneities
(&) and the model containing animal level variation in
transmission rates ( ) – the super-shedder model. (b) As

panel (a) but with a restricted vertical axis to expose the tail
of the distributions.
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in this case requires a difference in negative log-

likelihoods of greater than 1.4 to reject the null model)

the model with farm-level variation in transmission

rates does provide a significant improvement in

model fit.

A further comparison is made with the model

incorporating animal-level variation in transmission

rates (Table 4). In this case, using the Monte Carlo

test (which in this case requires a difference in negative

log-likelihoods of >0.3 to reject the null model), the

model with animal-level variation in transmission

rates can be seen to provide a highly statistically

significant increase in goodness of fit over the null

model. The maximum-likelihood parameter estimates

identify the best fit as occurring when 11% of animals

have higher transmission rates and a relative trans-

missibility of 60.

Using AIC to discriminate between the competing

models, we conclude again that the model incorpor-

ating animal-level variation in transmission rates

Table 1. A comparison of maximum-likelihood parameter estimates (indicated by hats above characters) and model

fits to the cross-sectional data for the null model and two alternative models incorporating farm-level variation in

either the immigration rate or the transmission rate (95% confidence intervals are indicated within parentheses)

Null model
Farm-level variation
in immigration rates

Farm-level variation
in transmission rates

Transmission rate (b̂b) 1.14

(1.06–1.20)

1.10

(0.85–1.15)

1.10

(0.90–1.15)
Immigration rate (l̂l) 0.005

(0.003–0.006)
0.004
(0.002–0.006)

0.004
(0.002–0.006)

Fraction of farms with a

higher immigration rate (f̂FI)

0.07

(0.06–0.09)
Relative immigration rate (r̂FI) 350

(140–550)

Fraction of farms with a
higher transmission rate (f̂FT)

0.11
(0.06–0.12)

Relative transmission rate (r̂FT) 3.0

(2.1–4.0)
Number of parameters 2 4 4
Negative log likelihood (L) 1123.7 1067.9 1066.1

Table 2. A comparison of maximum-likelihood parameter estimates (indicated by hats above characters) and model

fits to the cross-sectional data for models incorporating animal-level variation in either the infectious period or the

transmission rate (95% confidence intervals are indicated within parentheses)

Null model
Animal-level variation
in infectious period

Animal-level variation in
transmission rates

Transmission rate (b̂b) 1.14
(1.06–1.20)

1.05
(0.95–1.10)

0.65
(0.60–0.75)

Immigration rate (l̂l) 0.005
(0.003–0.006)

0.003
(0.002–0.004)

0.008
(0.006–0.010)

Fraction of animals with

longer infectious periods (f̂AI)

0.010

(0.005–0.040)
Relative infectious period (r̂AI) 70

(10–100)

Fraction of animals with
higher transmission rates (f̂AT)

0.04
(0.03–0.06)

Relative transmission rate (r̂AT) 50
(40–60)

Number of parameters 2 4 4
Negative log likelihood 1123.7 1120.1 1057.7
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provides a substantially better fit to the data than

either of the models incorporating farm-level hetero-

geneity. However, since these models only incor-

porate heterogeneity in a relatively simple manner a

further comparison of the models with animal- or

farm-level variation in transmission rates was con-

ducted. In this case, rather than restricting the farm-

level variation to the straightforward case in which

some farms have high transmission rates and some

have low transmission rates, we allowed the model to

select transmission rates on a farm-by-farm basis

(whilst fixing the immigration rate across farms as

usual). Even with the additional degrees of freedom

used in this final model (an extra 30 parameters which

arises through fitting transmission rates on a farm-by-

farm basis) the lowest model negative log-likelihood

attained was 299.1, which is still substantially greater

(i.e. a worse fit) than that achieved by the model

containing animal-level variability in transmission

rates (294.7) – see Table 4. We conclude, therefore,

that the farm-level model is unable to provide as good

a fit to the data as the animal-level model.

DISCUSSION

In this paper, we have used a combination of math-

ematical modelling and statistical techniques to identi-

fy sources of variation in the cattle population which

might explain the strikingly overdispersed distribution

of prevalences of E. coli O157 shedding on Scottish

farms. Maximum-likelihood methods were used to

(i) fit stochastic models of transmission dynamics

to prevalence data (both cross-sectional and longi-

tudinal), (ii) obtain estimates for epidemiologically

important parameters and (iii) discriminate between

models with alternative sources of heterogeneity.

Our results suggest that the pattern of prevalence

across the Scottish cattle population can not be

adequately explained by the inherent stochasticity in

within-group infection dynamics (our null model).

Although incorporating the probabilistic nature of

infection and recovery events into the transmission

dynamics model can explain much of the variability in

the data (including the high proportion of farms with

entirely negative samples) the null model does not

reproduce the long tail of the distribution, corre-

sponding to the few farms on which very high shed-

ding prevalences were observed.

Incorporating variability in infection rates at either

the farm or animal level produced significant

improvements in the fit of the model to the cross-

sectional data. At the farm level, the possibilities

considered were that a proportion of the farms may

have either higher transmission rates (representing

higher levels of between-animal transmission) or

higher immigration rates ; the latter represents either

higher rates of infection from some on-farm environ-

mental reservoir, or higher rates of introduction of

Table 3. A comparison of maximum-likelihood parameter estimates (indicated by hats above characters) and model

fits to the longitudinal data for the null model and two alternative models incorporating farm-level variation in either

the immigration rate or the transmission rate (95% confidence intervals are indicated within parentheses)

Null model
Farm-level variation
in immigration rates

Farm-level variation
in transmission rates

Transmission rate (b̂b) 1.49

(0.89–1.72)

1.34

(0.97–1.64)

0.4

(0.1–0.95)
Immigration rate (l̂l) 0.003

(0.002–0.006)
0.003
(0.002–0.006)

0.005
(0.002–0.007)

Fraction of farms with a higher

immigration rate (fF̂I)

0.1

(0.0–0.4)
Relative immigration rate (r̂FI) 20

(5–50)

Fraction of farms with a higher
transmission rate (fF̂T)

0.40
(0.05–0.85)

Relative transmission rate (r̂FT) 3.1

(1.9–9.8)
Infectious period (T) 0.67 0.67 0.67
Number of parameters 2 5 5
Negative log likelihood (L) 325.2 322.8 322.1

Super-shedding cattle 139

https://doi.org/10.1017/S0950268805004590 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268805004590


infection via movement onto the farm of an already

shedding animal. In both cases, similar improvements

in model fit were found, but the variation required in

the immigration rate was much greater than that

required in the on-farm transmission rates. This is

because the correlated nature of outbreak events

arising on a farm with high levels of animal-to-animal

transmission means that such farms are more likely to

exhibit high prevalences than farms where high

prevalence could only be ‘built-up’ via infection

events occurring independently from the environment

or via animal movements into the group.

At the animal level, we considered the effect of

between-animal variability in infectious period and

transmission rates. Allowing a proportion of animals

to have a much longer shedding period (whilst keep-

ing the same transmission rate as the other animals)

produced a relatively slight improvement in model fit,

showing a continuing failure of the model to repro-

duce the long tail of the distribution. This occurs

because although the individuals with long recovery

periods will tend to produce higher numbers of

infections than the normal individuals, these will tend

to be spread out in time and consequently do not

produce the occasional high prevalences observed

in the data. As would be expected, estimates for the

immigration rate were substantially lower for this

model ; this is because the long infectious period of a

few individuals ensures that infection becomes extinct

in the group far less frequently and consequently

fewer re-introductions are required.

The best fit to the cross-sectional data is obtained

when we allow a proportion of animals to have much

higher transmission rates than the others. This model

is able to capture the key features of the cross-sec-

tional data – the high proportion of zero prevalences

and the long tail of the distribution comprising a

small number of farms with very high prevalences.

Conducting similar analyses of the longitudinal

data sheds further light on the most likely source of

heterogeneity. In this case, incorporating farm-level

variation in immigration and transmission rates pro-

vides a relatively small increase in goodness of fit; this

contrasts with the cross-sectional analysis for which

models incorporating either farm-level or animal-level

variability in transmission rates were able to provide

substantial improvements in fit over the null model.

However, allowing animal-level variation in trans-

mission rates is able, as it did for the cross-sectional

analysis, to produce highly significant improvements

in model fit.

The failure of the longitudinal farm-level models to

exhibit significant improvements in fitmight have been

due to the smaller dataset available in the longitudinal

study. However, the significant improvement in fit

seen for the model with animal-level variation in

transmission rates suggests that the different nature of

the information contained in the longitudinal data

does favour the animal-level model.

Although the models we have investigated incor-

porate heterogeneities in a relatively simple fashion,

these results suggest that the observed prevalence

patterns are better explained by models containing

between-animal heterogeneities than by those with

between-farm variation. This conclusion is supported

by the results of a further comparison between models

containing farm- and animal-level variation in trans-

mission rates ; rather than restricting the farm-level

variation to the straightforward case of having either

a high or low transmission rate, we allowed the model

to select transmission rates on a farm-by-farm basis.

Even allowing these degrees of freedom in the varia-

bility at the farm level, this model did not succeed in

fitting the longitudinal data as well as the model with

animal-level variability in transmission rates. The

longitudinal data allow a greater degree of discrimi-

nation between farm-level and animal-level models

than the cross-sectional data because they contain

information on the range of prevalences which can be

achieved on a given farm. This within-farm variability

Table 4. Maximum-likelihood parameter estimates

(indicated by hats above characters) and fit to the

longitudinal data for the model incorporating animal-

level variation in the transmission rate (95% confidence

intervals are indicated within parentheses)

Null model

Animal-level
variation in
transmission
rates

Transmission rate (b̂b) 1.49
(0.89–1.72)

0.25
(0.09–0.82)

Immigration rate (l̂l) 0.003

(0.002–0.006)

0.006

(0.003–0.011)
Fraction of animals
with higher transmission

rates (fÂT)

0.11
(0.02–0.15)

Relative transmission rate
(r̂AT)

60
(20–100)

Infectious period (T) 0.67 0.67

Number of parameters 5 5
Negative log likelihood 325.2 294.7
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cannot be adequately reproduced with models con-

taining homogeneous on-farm dynamics, and is much

better explained by the model containing between-

animal heterogeneity.

Overall, the results from both the cross-sectional

and longitudinal analyses therefore suggest that the

highly overdispersed distribution of prevalences is

best explained by within-farm rather than between-

farm variability, and that the within-farm variability

may arise as a result of animal-level variation in

transmission rates.

In support of these conclusions there exists ac-

cumulating evidence that some cattle may indeed

harbour and shed bacteria at higher levels than others

(the so-called super-shedders [13]). Several recent

studies [10–12] of slaughterhouse cattle have ident-

ified a proportion of animals as being high shedders

of E. coliO157. In each case, the count data have been

obtained on a basis of one sample per animal; in the

absence of longitudinal data it is not possible to dis-

criminate between the possibility that the range of

bacterial counts observed is a consequence of ob-

serving different stages of carriage in the individual,

rather than genuine between-animal variation in the

ability to harbour and shed the organism. However,

the success with which the super-shedder model

describes the prevalence data lends supports to the

former hypothesis – that the observed variation in

counts is indicative of between, rather than within,

animal variation in shedding levels.

Not only have these analyses allowed us to dis-

criminate between alternative biological hypotheses,

they also provide estimates of epidemiologically im-

portant parameters which have not been previously

reported in the literature. The basic reproduction

ratio, R0, which is the average number of infections

generated by one infected individual when introduced

into a naive population, is given by the ratio of the

transmission rate, b, and the recovery rate, s. If R0 is

>1 then on average the number of new infections will

grow, whereas if R0 is <1 new infections will decline

and a major outbreak cannot occur [14]. For the

model with animal-level variation in transmission

rates, the cross-sectional analysis estimates the basic

reproduction ratio for a normal animal to be 0.65

(0.60–0.75) which is below the threshold at which

new infections tend to increase. However, the pres-

ence of super-shedding animals in the group, which

are estimated to constitute on average 4% of the

population and have transmission rates 50 times

higher, can increase the average reproduction ratio to

1.9 (1.8–2.2) – well above the critical threshold. The

longitudinal data give estimates for R0 of 0.17 in a

group of normal animals whereas in a mixed group

containing high- and low-transmission-rate animals,

the mean R0=1.3. The difference in these estimates

may be attributable to different shedding rates in fin-

ishing cattle and beef suckler cows. However, in both

cases it is clear that control measures targeted at the

individuals transmitting at high levels would reduce

the within-group reproduction ratio to<1 and could,

therefore, have a substantial impact on the prevalence

of E. coli O157.

The longitudinal analysis additionally provides an

estimate for the infectious period – of the order of 3

weeks. This figure is not inconsistent with figures re-

ported for natural infections in the literature: two

studies [3, 20] both report typical shedding periods of

<1 month whilst a third [6] did not find any animals

that were positive for more than 2 months. It should

be noted, however, that our estimate does not

necessarily correspond directly to the typical shedding

period of an infected individual as we do not explicitly

model free-living stages in the environment; instead

our estimate may reflect the time-scale over which

faeces from shedding animals pose a transmission risk

to uninfected animals.

The extent of the cross-sectional prevalence data,

which comprises samples from 952 farms, has enabled

the use of a novel approach to the fitting of epide-

miological models to these data; viewing the data as

providing independent snapshots of a dynamic process

enables us to fit a dynamic epidemiological model and

estimate rate parameters from a static dataset. Our

methodology also provides an alternative to standard

techniques for analysing longitudinal data (e.g. [21])

and is one which provides a natural framework for

estimating epidemiologically important parameters.

Our approach contrasts with the standard risk factor

analysis which seeks explanatory variables which ex-

plain trends and variation in the observed data. The

benefit of underpinning the statistical analyses with a

dynamic model is to allow quantification of the role

of heterogeneities in epidemiologically important

parameters such as transmission and recovery rates.

Although beyond the scope of this paper, a combi-

nation of these approaches, which would relate risk

factors to transmission dynamics, would provide a

powerful tool for quantifying risk factors and the

impact of control measures.

In summary, fitting dynamic epidemiological

models to these datasets has provided estimates
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for parameters which have not been previously

quantified in the literature: the shedding duration

of infected cattle ; cattle-to-cattle transmission rates

and immigration rates of infection from external

sources. Moreover, using this approach to dis-

criminate between alternative biologically plausible

models, has identified super-shedding cattle as a

good candidate for the source of variation leading

to the observed distribution of prevalences of

E. coli O157 on Scottish farms. This provides a

step towards both identifying suitable targets for

control and quantifying the impact of control

measures.
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