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Abstract We study the existence of multiple solutions for a two-point boundary-value problem asso-
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1. Introduction

In this paper we are interested in the existence of multiple solutions to the equation

x′′ + A(t, x)x = 0, (1.1)

x ∈ R
2, t ∈ (0, π), satisfying the Dirichlet boundary conditions x(0) = x(π) = 0. We will

assume that A : [0, π] × R
2 → GLs(R2),

A(t, x) =

[
a11(t, x) a12(t, x)
a12(t, x) a22(t, x)

]
,

is a continuous function such that

lim
|x|→0

A(t, x) = A0(t) uniformly in t ∈ [0, π],

lim
|x|→∞

A(t, x) = A∞(t) uniformly in t ∈ [0, π];

that is, we assume asymptotically linear conditions at the origin and at infinity.
There exists an extensive literature concerning the existence of solutions of boundary-

value problems associated with asymptotically linear Hamiltonian systems. Regarding
first-order Hamiltonian systems and existence of periodic solutions, we can mention, for
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example, [3,4,9,11] and, among others, the more recent works [18,24,35] (see also the
references therein). In these papers, the existence of at least one solution, or, in some
cases, at least two, is met when the Maslov-type indices [2] of the linearizations at zero
and at infinity are different. When some additional conditions (like convexity, symmetry
in the space variable, or for autonomous equations) are guaranteed, multiplicity results
are obtained in [1,14,17,20,21,28,29]. For the particular case of R

2, multiplicity results
were obtained in [27] using no additional conditions by using the Poincaré–Birkhoff
theorem.

The existence of solutions of Hamiltonian systems satisfying Dirichlet and Bolza bound-
ary conditions was studied in [7] and [16], respectively.

The next set of references we wish to refer to deals with existence and multiplicity
results for second-order asymptotically linear systems. Interesting contributions in the
periodic setting can be found, among others, in [5,25,33], in which existence results are
obtained, and in [6], where multiplicity of solutions is proved in the autonomous case.
The literature is not so rich in contributions as far as Dirichlet problems associated with
second-order systems are concerned. In this direction, we refer the reader to [10, 24,
32], containing existence results for systems of partial differential equations. Multiplicity
results have recently been obtained under some extra assumptions in [8,15] for ordinary
differential equations and in [30,34] for partial differential equations. It is worth noting
that in these works it is shown that the bigger the gap between suitable indices associated
with the linearizations of the problem at the origin and at infinity, the larger the number
of solutions. In particular, in [8] the authors consider (1.1) in R

n and obtain multiplicity of
solutions satisfying the Dirichlet boundary conditions under asymptotically linear growth
conditions. The results are deduced via a generalized shooting approach using the notion
of moments of verticality and phase angles. However, the number of solutions obtained
depends on the cardinality of a suitable set which sometimes can be empty. On the
other hand, in [15] the author proved the existence of multiple solutions to the Dirichlet
problem associated with the equation x′′+V ′(t, x) = 0 (which is a particular case of (1.1),
as is shown in [8]) assuming asymptotically linear conditions and a symmetry condition
on the potential V : that is, V (t, x) ≡ V (t, −x).

In this paper we re-examine this problem in the case of R
2 and prove the existence of

multiple solutions of (1.1) satisfying Dirichlet boundary conditions. The aim of this paper
is to try to generalize the results of [15] to a context where no symmetry assumptions
are required. To reach this goal, we must assume some sign conditions for the matrix
A(t, x) (see Theorem 2.3). Under these conditions and whenever there is a gap equal
to N between the indices of the linearizations at the origin and at infinity, we are able
to guarantee the existence of 2N solutions to (1.1) satisfying Dirichlet boundary condi-
tions. Our proof is developed in the framework of shooting methods. Multiplicity results
follow by combining degree theory with some preliminary results about eigenvalues and
eigenvectors of second-order Dirichlet problems, proved in Propositions 2.4 and 2.6.

In the following we denote by GLs(R2) the group of 2 × 2 real symmetric matrices
and by I2 the identity matrix in that group. According to the notation of [15], for any
B1, B2 ∈ L1([0, π]; GLs(R2)) we write B1 < B2 if B1(t) � B2(t) for a.e. t ∈ (0, π) and
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B1(t) < B2(t) on a subset of (0, π) with positive measure. Also, we denote by R
+ the set

of positive real numbers and, when no confusion arises, by 0 the origin in the plane.

2. Main result

Let us consider the two-point boundary-value problem

x′′ + A(t, x)x = 0, x ∈ R
2, t ∈ (0, π),

x(0) = x(π) = 0,

}
(2.1)

where A : [0, π] × R
2 → GLs(R2),

A(t, x) =

[
a11(t, x) a12(t, x)
a12(t, x) a22(t, x)

]
,

is a continuous function such that uniqueness of solutions of Cauchy problems associated
with system (2.1) is guaranteed. We will assume that

lim
|x|→0

A(t, x) = A0(t) uniformly in t ∈ [0, π], (2.2)

lim
|x|→∞

A(t, x) = A∞(t) uniformly in t ∈ [0, π]. (2.3)

Under the condition (2.3) we conclude that A is bounded and hence the continuability
of the solutions of Cauchy problems associated with system (2.1) is guaranteed.

In order to state our main result, we recall the definitions of index and of nullity of a
path of symmetric matrices [15]. To do this, we first reformulate the proposition proved
in [15].

Proposition 2.1. Given B ∈ L∞([0, π]; GLs(R2)), consider the boundary-value prob-
lem

x′′ + (B(t) + λI2)x = 0, x ∈ R
2, t ∈ (0, π),

x(0) = x(π) = 0.

}
(2.4)

There exists a sequence of eigenvalues of problem (2.4), λ1(B) � λ2(B) � · · · , and
λj(B) → +∞ as j → +∞ such that, for each j, there exists a space of dimension 1 of
non-trivial solutions (eigenvectors of B) of the problem (2.4) with λ = λj(B). Moreover,

H1
0 ([0, π]; R2) := {x : [0, π] → R

2 | x(·) is continuous on [0, π],

satisfies x(0) = 0 = x(π) and x′ ∈ L2([0, π]; R2)}

admits a basis of eigenvectors of B.

Definition 2.2. Given B ∈ L∞([0, π]; GLs(R2)), its index i(B) is defined as the
number of negative eigenvalues of problem (2.4) and its nullity ν(B) is the number of
zero eigenvalues of problem (2.4) (both counting their multiplicities).
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The index of B ∈ L∞([0, π]; GLs(R2)) as we have just defined it coincides with the
Morse index of the boundary-value problem x′′ + B(t)x = 0, x(0) = x(π) = 0 in the
non-degenerate case [28].

Note that in the sequence of the eigenvalues of problem (2.4) we cannot have the
same value repeated more than twice. In the case when it is repeated twice, we say
that the corresponding eigenvalue λ(B) = λj(B) = λj+1(B), for some j, has a space
of eigenvectors of dimension 2. Otherwise, we say that the space of eigenvectors has
dimension 1.

Now we are in position to state the main result.

Theorem 2.3. Assume that A(t, x) satisfies (2.2) and (2.3). Suppose moreover that

a11(t, x) < 0, a22(t, x) < 0 ∀(t, x) ∈ [0, π] × R
2 and

either a12(t, x) � 0 or a12(t, x) � 0, ∀(t, x) ∈ [0, π] × R
2.

}
(2.5)

Then if i(A0) > i(A∞) and ν(A∞) = 0 (or i(A0) < i(A∞) and ν(A0) = 0), the prob-
lem (2.1) has at least 2|i(A0) − i(A∞)| non-trivial solutions.

Before proving the theorem, we need to state some preliminary results. First we present
some results about eigenvalues and eigenvectors of problem (2.4) that will be useful in
the proof of Theorem 2.3. Analogous results for the case of a second-order equation can
be found in [22,23].

Proposition 2.4. For each j = 1, 2, . . . , λj : L∞([0, π]; GLs(R2)) → R, B → λj(B) is
continuous on {B ∈ L∞([0, π]; GLs(R2)) : B < 0} with respect to the topology induced
by L1([0, π]; GLs(R2)) on L∞([0, π]; GLs(R2)).

Proof. According to [13], each eigenvalue λj(B) satisfies λj(B) = 1/µj(B), where

µj(B) = sup
Fj

inf
{ ∫ π

0
|u|2 : ‖u‖aB

= 1, u ∈ Fj

}
,

where Fj varies over all j-dimensional subspaces of H1
0 ([0, π]; R2) and ‖ · ‖aB

is the norm
associated with the inner product

(u, v)aB
=

∫ π

0
[u′(t) · v′(t) − B(t)u(t) · v(t)] dt.

The result follows from the fact that, given ε > 0, B ∈ L1([0, π]; GLs(R2)), B < 0
and j ∈ N, there exists a positive constant δ = δ(ε, B, j) such that, for each B1 ∈
L1([0, π]; GLs(R2)) with B1 < 0 and ‖B − B1‖L1 < δ, for each j-dimensional subspace
Fj of H1

0 ([0, π]; R2) and for each u ∈ Fj with ‖u‖aB
= 1 (or ‖u‖aB1

= 1), there exists
v ∈ Fj with ‖v‖aB1

= 1 (respectively, ‖v‖aB
= 1) such that∣∣∣∣

∫ π

0
|u|2 −

∫ π

0
|v|2

∣∣∣∣ < ε.
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To prove this, for every Fj we can choose an orthonormal basis with respect to the
new inner product (· , ·)aB

, φi, i = 1, . . . , j. Taking into account the equivalence between
‖ · ‖aB

and the usual norm of the Hilbert space H1
0 ([0, π]; R2) (see [15] and the references

therein), it is easy to see that |(φi, φk)aB1
− 1| and |(φi, φk)aB1

| are small if ‖B − B1‖L1

is small, whenever i, k ∈ {1, . . . , j}, i �= k. Thus, for each u =
∑j

i=1 ciφi we can choose

v =
j∑

i=1, i �=k

ciφi + (ck + η)φk,

for an adequate k and a sufficiently small η. �

Corollary 2.5. Let j = 1, 2, . . . . For a fixed M > 0, B → λj(B) is continuous on
{B ∈ L∞([0, π]; GLs(R2)) : ‖B(t)‖ < M for a.e. t ∈ (0, π)} with respect to the topology
induced by L1([0, π]; GLs(R2)) on L∞([0, π]; GLs(R2)).

Proof. Consider B ∈ L1([0, π]; GLs(R2)) satisfying ‖B(t)‖ < M for a.e. t ∈ (0, π).
It immediately follows that |B(t)x · x| � |B(t)x| |x| < M |x|2 for every x ∈ R

2 and for
a.e. t ∈ (0, π). This implies that B < MI2. According to [13,15], each eigenvalue can be
expressed by the relation

λj(B) =
1

µ̃j(B)
− M,

where

µ̃j(B) = µj(B∗) = sup
Fj

inf
{ ∫ π

0
|u|2 : ‖u‖aB∗ = 1, u ∈ Fj

}
,

with B∗(t) = B(t) − MI2. By combining the continuous dependence of µj(B∗) with
respect to B∗ ensured by the previous proposition with the continuity of the map B → B∗

from L1([0, π]; GLs(R2)) into itself, we prove the claim. �

The next result concerns the possibility of considering continuous branches of eigenvec-
tors when the equation depends continuously on a parameter. We state it in the case of
the zero eigenvalue but it is still valid if we consider eigenvalues depending continuously
on a parameter. A similar result can be found in [22]. In the statement we denote by S1

the circle of centre at the origin and radius 1 in the plane.

Proposition 2.6. Let C be a continuum of R
2 and assume that B : [0, π] × C →

GLs(R2) is continuous. Suppose that, for each α ∈ C, zero is an eigenvalue of problem

x′′ + (B(t, α) + λI2)x = 0, x ∈ R
2, t ∈ (0, π),

x(0) = x(π) = 0,

}
(2.6)

and that there exists (a, b) ∈ S1 such that for each α ∈ C the solution of x′′+B(t, α)x = 0
which satisfies x(0) = (0, 0) and x′(0) = (a, b) does not vanish at t = π. Then, we can
choose a continuous function from C to (C1([0, π], R2))2, α → (vα(·), v′

α(·)), such that,
for each α, vα is an eigenvector of (2.6) associated with the zero eigenvalue.
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Proof. Consider the solutions U i(· , α) : [0, π] × C → R
4, i = 1, 2, of

x′ = y,

y′ = −B(t, α)x

}
(2.7)

satisfying U1(0, α) = (0, 0, a, b) and U2(0, α) = (0, 0,−b, a). We will denote by U i
j(· , α)

the jth component of U i(· , α).
We want to construct a continuous function α → (vα(·), v′

α(·)) such that, for each α,
(vα(·), v′

α(·)) satisfies (2.7), vα(·) is not identically zero and vα(0) = vα(π) = 0. That
is, for each α, (vα(·), v′

α(·)) will be a non-zero linear combination of U i(· , α), i = 1, 2,
satisfying vα(π) = 0.

Let us recall that, by assumption, (U1
3 (0, α), U1

4 (0, α)) = (a, b) for each α ∈ C. This
implies that (U1

1 (π, α), U1
2 (π, α)) �= (0, 0) for each α ∈ C.

As a consequence of the theorems on continuous dependence on parameters (see, for
example, [19]), the functions U i are continuous in α.

We now choose

c1(α) := −U1
1 U2

1 + U1
2 U2

2

(U1
1 )2 + (U1

2 )2
(π, α) and c2(α) := 1.

By the remark above, c1 and c2 are well defined and are continuous on α.
Finally, let us set (vα(t), v′

α(t)) = c1(α)U1(t, α) + c2(α)U2(t, α).
Note that the continuity of α → (vα(·), v′

α(·)) is guaranteed. Since, by assumption,
zero is an eigenvalue of problem (2.6) for every α ∈ C, it follows that (U1

1 U2
2 )(π, α) =

(U2
1 U1

2 )(π, α), implying vα(π) = 0 for every α ∈ C. To complete the proof, it remains to
show that vα(·) is not identically zero for each α ∈ C or, equivalently, that v′

α(0) never
vanishes. This is a consequence of the fact that v′

α(0) = c1(α)(a, b) + (−b, a) and that
(a, b) and (−b, a) are linearly independent. �

Now we state two preliminary lemmas which will be important for the proof of the
main result.

Lemma 2.7. Consider the problem

x′′ + B(t)x = 0, t ∈ (0, π),

x(0) = x(π) = 0,

}
(2.8)

where B ∈ L∞([0, π]; GLs(R2)) and

B(t) =

[
b11(t) b12(t)
b12(t) b22(t)

]
.

Assume that b11(t) < 0 and b22(t) < 0 for every t ∈ [0, π]. Then we have that if b12(t) � 0
(or b12(t) � 0) for every t ∈ [0, π], there are no non-trivial solutions of the Dirichlet
problem (2.8) such that x′(0) lies in the first or the third (respectively, second or fourth)
quadrant.
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Proof. Assume that b12(t) � 0 for every t ∈ [0, π]. We are first interested in proving
the strict monotonicity of each component of every solution x = (x1, x2) to the problem

x′′
1 = −b11(t)x1 − b12(t)x2,

x′′
2 = −b12(t)x1 − b22(t)x2,

x(0) = 0,

⎫⎪⎬
⎪⎭ (2.9)

whenever x′
1(0)x′

2(0) > 0.
Suppose that x′

i(0) > 0 for each i ∈ {1, 2}. This implies that there exists δ > 0 such
that xi(t) > 0 for each t ∈ (0, δ] and for each i ∈ {1, 2}. By the sign assumption, it can
immediately be seen that x′′

i (t) is positive and, consequently, x′
i(t) > x′

i(0) > 0 for every
t ∈ (0, δ], i ∈ {1, 2}. In particular, as long as x′′

1 and x′′
2 remain positive, x1 and x2 keep

on increasing. This allows us to conclude that each component of x′′ never vanishes in
R

+ if x = (x1, x2) is a solution of (2.9) satisfying x′
i(0) > 0 for each i ∈ {1, 2}. Thus, x1

and x2 are strictly increasing in R
+.

Consider now a solution x = (x1, x2) of (2.9) with x′
i(0) < 0 for each i ∈ {1, 2}. As

the problem (2.9) is linear, −x is also a solution. By the previous step, it follows that
−x′

i > 0 in R
+ for each i ∈ {1, 2} and, consequently, x1 and x2 are strictly decreasing

in R
+.

We have therefore proved that the problem (2.8) does not admit any solution x =
(x1, x2) satisfying x′

1(0)x′
2(0) > 0.

Our next aim consists in showing that there are no non-trivial solutions x of the
Dirichlet problem (2.8) with x′

h(0) = 0, h fixed in {1, 2}. Let x̃ be the solution of (2.9)
verifying x̃′

h(0) = 0, x̃′
k(0) �= 0, with h �= k, h, k ∈ {1, 2}. We want to prove that x̃(π) �= 0.

By the linearity of the problem, it is not a restriction to assume that x̃′
k(0) > 0. Moreover,

for every ε > 0, let us consider the solution xε = (xε,1, xε,2) to the Cauchy problem (2.9)
with x′

ε,h(0) = ε > 0 and x′
ε,k(0) = x̃′

k(0) > 0. By the theorem of continuous dependence
of the solutions to Cauchy problems with respect to the initial data, we can deduce
that (xε, x

′
ε) tends uniformly to (x̃, x̃′) on the interval [0, π] as ε tends to 0. As by the

previous step each component of x′
ε is positive in [0, π], we deduce that x̃′

i(t) � 0 for
every t ∈ [0, π], i ∈ {1, 2}. From the fact that x̃′

k(0) > 0, it follows that x̃(π) �= (0, 0).
This completes the proof under the assumption b12(·) � 0 on [0, π].
The case involving opposite inequalities can be treated in an analogous way. �

In order to state the other preliminary lemma, we consider the Cauchy problem

x′′ + A(t, x)x = 0,

x(0) = 0,

x′(0) = α

associated with the system in (2.1). For each α ∈ R
2, we denote by xα its unique solution.

We now concentrate on the linear, parameter-dependent equation

x′′ + A(t, xα(t))x(t) = 0 (2.10)

with α ∈ R
2 \ {(0, 0)}.
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In [8], where equation (2.10) is considered, a relation is established between the initial
data α of the Cauchy problem and the behaviour of the parameter-dependent matrix
introduced above, whenever the asymptotically linear assumptions (2.2) and (2.3) are
verified. In particular, the following lemma holds.

Lemma 2.8 (Capietto et al . [8]). Suppose that the continuous function A : [0, π]×
R

2 → GLs(R2) satisfies assumptions (2.2) and (2.3). Then

A(t, xα(t)) → A∞(t) in L1([0, π]) if |α| → +∞,

A(t, xα(t)) → A0(t) in L1([0, π]) if |α| → 0.

Note that the above lemma was used in [8] in order to obtain multiplicity of solutions
to asymptotically linear vectorial problems.

Proof of Theorem 2.3. Let us assume that i(A0) > i(A∞); the other case can be
treated similarly. By the definition of index there are exactly i(A0) negative eigenvalues
λl(A0), l ∈ {1, . . . , i(A0)}. Also there are exactly i(A∞) negative eigenvalues λj(A∞),
j ∈ {1, . . . , i(A∞)}. Moreover, from the further assumption that ν(A∞) = 0 we obtain
that λj(A∞) is positive for every j ∈ N with j � i(A∞) + 1.

Consider now h ∈ N satisfying i(A0) � h � i(A∞) + 1. From the monotonicity prop-
erties of the sequence of eigenvalues, we immediately deduce that

λh(A0) < 0 < λh(A∞). (2.11)

We now concentrate on the study of the parameter-dependent problem

x′′ + A(t, xα(t))x(t) = 0,

x(0) = x(π) = 0.

}
(2.12)

Assume that a12(t, x) � 0 for every (t, x) ∈ [0, π] × R
2. Lemma 2.7 ensures that there

are no solutions of the Dirichlet problem (2.12) such that x′(0) lies in the second or the
fourth quadrant. Let Q1 := [0, +∞) × [0, +∞) and Q3 := (−∞, 0] × (−∞, 0] denote the
first and the third quadrant, respectively.

Our next aim consists in proving the existence of αi,h ∈ Qi \ {(0, 0)}, i ∈ {1, 3}, such
that λh(A(· , xαi,h

(·))) = 0 and xαi,h
(π) = 0. We will focus on the search for α1,h ∈

Q1 \ {(0, 0)}; the case α3,h ∈ Q3 \ {(0, 0)} can be treated analogously.
By combining Lemma 2.8 and Corollary 2.5 with the inequalities (2.11), we obtain

lim
|α|→0

λh(A(· , xα(·))) < 0 < lim
|α|→+∞

λh(A(· , xα(·))). (2.13)

Hence, we can choose 0 < R1 < R2 such that λh(A(· , xα(·))) < 0 for every α ∈ Q1 with
|α| = R1 and λh(A(· , xα(·))) > 0 for every α ∈ Q1 with |α| = R2.

From an application of the theorems on continuous dependence on initial data, we
can deduce the continuity of the map γ : R

2 → C([0, π], GLs(R2)), defined by γ(α) :=
A(· , xα(·)). Therefore, also taking into account Corollary 2.5, we have that g : [R1, R2]×
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[0, 1
2π] → R defined by g(r, θ) = λh(A(· , x(r cos(θ),r sin(θ))(·))) is a continuous function. As,

for each θ, g(R1, θ) < 0 < g(R2, θ), we have that deg(g(· , 0), (R1, R2), 0) �= 0, where we
denote by ‘deg’ the Brower degree, and also that g(r, θ) �= 0 if r = R1 or r = R2. Hence,
using the Leray–Schauder continuation theorem [26, Théorème Fondamental] we infer
the existence of a closed connected set C∗ ⊂ {(r, θ) ∈ (R1, R2) × [0, 1

2π] : g(r, θ) = 0}
such that C∗ ∩ ([R1, R2] × {0}) �= ∅ and C∗ ∩ ([R1, R2] × { 1

2π}) �= ∅. Thus, we may infer
the existence of a closed connected set C ⊂ Q1 \ {(0, 0)} such that C ∩ ({0} × R

+) �= ∅,
C ∩ (R+ × {0}) �= ∅ and

λh(A(· , xα(·))) = 0 ∀α ∈ C.

Let us now prove that all the assumptions of Proposition 2.6, considering B : [0, π]×C →
GLs(R2) defined by B(t, α) = A(t, xα(t)), are satisfied. From the continuity of γ, it easily
turns out that the map B(t, α) is continuous too. Finally, by combining Lemma 2.7 with
assumptions (2.5) we deduce that for every α ∈ R

2 there are no solutions φα = (φ1,α, φ2,α)
to the Dirichlet problem (2.12) with φ′

1,α(0) = 0. Note that this implies that all the
solutions of x′′ + A(t, xα(t))x(t) = 0 satisfying x(0) = (0, 0) and x′(0) = (0, 1) do not
vanish at t = π (and hence the space of eigenvectors associated with a zero eigenvalue
has dimension 1). We can now apply Proposition 2.6 and conclude the existence of a
continuous function defined on C, α → (vα(·), v′

α(·)), such that, for each α, vα is an
eigenvector of x′′ + (A(· , xα(·)) + λI2)x = 0, x(0) = x(π) = 0, associated with the zero
eigenvalue.

For each α ∈ C we can set β(α) := v′
α(0) ∈ R

2 \ {(0, 0)}; hence, vα is a non-trivial
solution of the system

x′′ + A(t, xα(t))x = 0,

x(0) = x(π) = 0

}
(2.14)

satisfying x′(0) = β(α).
Taking into account Lemma 2.7 and the fact that a12(t, x) � 0 for every (t, x) ∈

[0, π]× R
2, we note that β(α) = (β1(α), β2(α)) ∈ Q1 ∪Q3 and β1(α)β2(α) �= 0. Since the

problem (2.14) is linear, we can restrict ourselves to the case when β(α) ∈ Q1 \ {0, 0}.
Now we prove that for some ᾱ ∈ C there exists C > 0 such that β(ᾱ) = Cᾱ, from

which we obtain xᾱ = xβ(ᾱ)/C and, consequently, xᾱ(π) = 0. In particular, we can choose
α1,h = ᾱ.

Consider γ in the polar coordinates (ϑ, ρ) in the plane: γ1 = ρ cos ϑ, γ2 = ρ sin ϑ. Since
the function α �→ β(α) is continuous from C ⊂ Q1 \ {(0, 0)} to Q1 \ {(0, 0)}, the function
α �→ ϑ(β(α)) − ϑ(α) from C to (− 1

2π, 1
2π) is also continuous.

There exist α̃ = (0, α̃2), α̂ = (α̂1, 0) ∈ C. Observe that ϑ(β(α̃)) − ϑ(α̃) < 0 and
ϑ(β(α̂))−ϑ(α̂) > 0. Hence, recalling that C is a connected set, we may infer the existence
of ᾱ ∈ C such that ϑ(β(ᾱ)) = ϑ(ᾱ).

Arguing as above in the third quadrant, at the end we find αi,h ∈ Qi \ {(0, 0)} such
that λh(A(· , xαi,h

(·))) = 0 and xαi,h
(π) = 0 for every i ∈ {1, 3}. In particular, for

each i ∈ {1, 3}, xαi,h
is a non-trivial solution of the Dirichlet problem (2.1), satisfy-

ing λh(A(· , xαi,h
(·))) = 0, where h is an arbitrary natural number with i(A0) � h �

i(A∞) + 1.
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To complete the proof of the case when a12(·) � 0 on [0, π] × R
2, it remains to show

that all the values αi,h that we found above are pairwise different, or, equivalently, that
all the solutions of the form xαi,h

are mutually different.
Assume, by contradiction, that there exist two natural numbers h, k ∈ [i(A∞)+1, i(A0)]

with h �= k such that αi,h = αi,k. Let us set α̃ := αi,h = αi,k. In this case
λh(A(· , xα̃(·))) = λk(A(· , xα̃(·))) = 0 and this contradicts the fact that under our
assumptions the space of eigenvectors associated with the zero eigenvalue has dimen-
sion 1.

Since the case when a12(t, x) � 0 for every (t, x) ∈ [0, π] × R
2 is similar to that above,

we omit the corresponding proof. �

Remark 2.9. By using arguments analogous to those used in this paper, the existence
of multiple solutions can also be obtained for the scalar, Dirichlet problem

x′′(t) + A(t, x(t))x(t) = 0, x(0) = 0 = x(π),

where A : [0, π] × R → R is continuous, satisfies the asymptotically linear conditions at
the origin (2.2) and at infinity (2.3) and is such that uniqueness of solutions of Cauchy
problems associated with the above equation is guaranteed. The multiplicity results which
we are able to obtain in this scalar setting coincide with well-known results concerning
asymptotically linear Dirichlet scalar problems (see, for example, [12,31] and references
therein). We point out that in the literature more general nonlinearities have been studied
and multiplicity of solutions has been proved also without uniqueness assumptions on
the solutions of the initial-value problems.

The following remarks are devoted to possible extensions of Theorem 2.3 to more
general contexts. Both the generalizations stated below can easily be proved by following
procedures analogous to that used to prove our main result.

Remark 2.10. In Theorem 2.3, instead of condition (2.5) we could have imposed
other kinds of condition which guarantee the result of Lemma 2.7.

In particular, the conclusion of Theorem 2.3 holds true if we replace the condition (2.5)
with

a11(t, x) � 0, a22(t, x) � 0 and a12(t, x) �= 0 ∀(t, x) ∈ [0, π] × R
2.

Remark 2.11. Note that by removing the assumption ν(A∞) = 0 (or ν(A0) = 0) in
the statement of Theorem 2.3 we can prove the existence of at least 2|i(A0)− i(A∞)| − 4
non-trivial solutions to problem (2.1), provided that we assume the positivity of the value
|i(A0) − i(A∞)| − 2.

Remark 2.12. Assume that there exists (a, b) ∈ S1 such that for every continuous
function g : [0, π] → R

2 there are no solutions of the Dirichlet problem

x′′ + A(t, g(t))x = 0, t ∈ (0, π),

x(0) = x(π) = 0,

satisfying x′(0) = (a, b). Then the conclusion of Theorem 2.3 still holds.
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Theorem 2.3 holds true if we generalize the asymptotically linear conditions (2.2) and
(2.3) by assuming the existence of A1, A2, B1, B2 ∈ C0([0, π]; GLs(R2)) such that

B1(t)z · z � lim inf
|x|→0

A(t, x)z · z � lim sup
|x|→0

A(t, x)z · z � B2(t)z · z, (2.15)

A1(t)z · z � lim inf
|x|→∞

A(t, x)z · z � lim sup
|x|→∞

A(t, x)z · z � A2(t)z · z (2.16)

uniformly in t ∈ [0, π] and z ∈ R
2. In particular, the statement of Theorem 2.3 can be

extended into the following.

Corollary 2.13. Assume that A(t, x) satisfies (2.5), (2.15) and (2.16).
Then if i(B1) > i(A2) and ν(A2) = 0 (or i(A1) > i(B2) and ν(B2) = 0), the prob-

lem (2.1) has at least 2(i(B1) − i(A2)) (or 2(i(A1) − i(B2))) non-trivial solutions.

Sketch of the proof. The first step of the proof consists in generalizing Lemma 2.8 by
adopting arguments analogous to that used in the proof of [8, Proposition 4.4] and by tak-
ing into account the fact that, under the assumptions of Corollary 2.13, ‖A‖ is bounded.
More precisely, we prove that, for every sequence αn ∈ R

2 satisfying limn→+∞ |αn| = +∞
and for a.e. t ∈ [0, π], the inequalities

A1(t)z · z � lim inf
n→+∞

A(t, xαn(t))z · z � lim sup
n→+∞

A(t, xαn(t))z · z � A2(t)z · z (2.17)

hold uniformly in z ∈ R
2. By using the Fatou lemma, Lebesgue’s dominated convergence

theorem and the boundedness of the matrix A(t, x), one can pass from (2.17) to integral
inequalities. More precisely, for every sequence zn ∈ L∞([0, π]; R2) with limn→+∞ zn = z0

in ‖ · ‖∞, we get∫ π

0
A1(t)z0(t) · z0(t) dt � lim inf

n→+∞

∫ π

0
A(t, xαn(t))zn(t) · zn(t) dt

and

lim sup
n→+∞

∫ π

0
A(t, xαn(t))zn(t) · zn(t) dt �

∫ π

0
A2(t)z0(t) · z0(t) dt.

By using the same procedure, from (2.15) it is possible to deduce integral inequalities
analogous to the one above, in which αn is replaced by βn → 0 as n → +∞ and where
Ai is replaced by Bi for each i ∈ {1, 2}.

The final steps of the proof are based on a generalized Sturm comparison result
contained in [15] and, in particular, on its Proposition 2.6, where it is proved that
i(B) � i(C) if B(t) � C(t) for a.e. t ∈ (0, π) and i(B) + ν(B) � i(C) if B < C,
whenever B, C ∈ L∞([0, π]; GLs(R2)).

By combining this result with the continuity of the eigenvalues proved in Corollary 2.5,
it is easy to show that

∃ε0 > 0 : ∀ε ∈ (0, ε0], i(B − εI2) = i(B) and i(B + εI2) = i(B) + ν(B). (2.18)
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Taking into account the techniques used to prove Proposition 2.6 in [15], the integral
inequalities exhibited above and (2.18), we prove that

∃R > 0 : ∀α ∈ R
2, |α| > R, i(A1) � i(A(· , xα(·))) � i(A2),

∃δ > 0 : ∀α ∈ R
2, |α| < δ, i(B1) � i(A(· , xα(·))) � i(B2).

}
(2.19)

Let us now concentrate on the case in which i(B1) > i(A2) and ν(A2) = 0. Consider
h ∈ N satisfying i(B1) � h � i(A2) + 1. According to (2.19), it turns out that

∀α ∈ R
2, |α| > R : λh(A(· , xα(·))) > 0 and ∀α ∈ R

2, |α| < δ : λh(A(· , xα(·))) < 0.

This relation recalls the relation (2.13) on which the proof of Theorem 2.3 is based. The
claim follows by proceeding as in the proof of our main theorem. �
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