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Abstract

A cohomology theory for locally trivial, locally compact topological groupoids with coefficients
in vector bundles is constructed, generalizing constructions of Hochschild and Mostow (1962)
for topological groups and Higgins (1971) for discrete groupoids. It is calculated to be naturally
isomorphic to the cohomology of the vertex groups, and is thus independent of the twistedness
of the groupoid. The second cohomology space is accordingly realized as those "rigid"
extensions which essentially arise from extensions of the vertex group; the cohomological
machinery now yields the unexpected result that in fact all extensions, satisfying some natural
weak conditions, are rigid.

Subject classification (Amer. Math. Soc. (MOS) 1970): 18 H 40, 20 L 05.

Introduction

There already exist cohomology theories for discrete groupoids (Higgins (1971))
and for topological groups (Hochschild and Mostow (1962)). In this paper we
construct the natural common generalization of these two theories, giving a
cohomology theory for locally compact, locally trivial topological groupoids, and
study the extension theory of these groupoids.

We have called this the "rigid" cohomology on account of the nature of the
extensions classified by the second cohomology space: these extensions £>-> <1> - » Q
are rigid in the sense that G> is twisted exactly as O is (<J> and Q. have the same local
triviality properties). Since a locally trivial topological groupoid is determined by
its vertex groups and its twistedness, one expects that rigid extensions will corre-
spond to extensions of the vertex groups and this turns out to be so (7.4). In fact
we prove (Theorem 3) that H*(Cl,E) is naturally isomorphic in all degrees to the
continuous cohomology of any vertex group. Although this is a natural result for
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278 K. A. Mackenzie [2]

trivial groupoids (in particular for discrete groupoids (Higgins (1971)), it is
surprising that it holds in general for arbitrarily twisted groupoids. What is more
surprising is that all extensions, satisfying some mild conditions, are in fact rigid.
This result (Theorem 4) resists a direct proof, but the cohomological apparatus
developed here allows it to be reduced to the semi-direct case, where it follows
from a version of the result that principal bundles with vector groups are trivial.

We give no applications beyond this at present, but in a future paper we will
construct an analogous cohomology for locally trivial Lie groupoids and relate it
to the cohomology of their Lie algebroids, obtaining a van Est theorem for locally
trivial Lie groupoids and a new approach, in this case, to the theorem of Pradines
(1968).

The theory developed here is related to, but independent of, the cohomology
sketched by Bott (1975) in a report only available to the author after this manuscript
had been prepared. This paper gives full details, realizing the Hn{Q.,E) as derived
functors on a category of coefficient modules, and studies the extension theory.
For an account of continuous cohomology from the classifying space approach,
see the forthcoming survey article by Stasheff (1978). The author is grateful to a
referee for referring him to Professor Stasheff for this reference.

The newly revised theory of Moore (1976) clearly should extend to groupoids
and generalize the present theory, but in the application to Lie groupoids and the
van Est theory it is the Hochschild-Mostow approach which is necessary, and so
we do not consider Moore's theory here.

1. Topological groupoids

Topological groupoids were introduced by Ehresmann (1959). Accounts of
their elementary properties already exist in, for example, Brown and Hardy (1976)
and the references given there. We therefore only establish our notations and
conventions and record some observations need in the sequel.

DEFINITION 1.1. Let £ be a set. A groupoid with base B (or on B) is a small
category D in which every element (morphism) is invertible, and whose set of
objects is identified with B. For xeB we denote by x the corresponding identity.
The source and target maps Q.-+B are denoted by a and b respectively and

O.*Q. = {(£,1)eQ.xQ.\a£ = brj}

is the set of composable pairs. For U, V<^Bv/e write Q^ = a"1 U, i i r = b~x Fand
Q%j = Q.vn Q.r. In particular, Q* is the vertex group at x eB. Lastly, £2 is transitive
if Q.% is nonvoid for all x,yeB.
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DEFINITION 1.2. If Q and £2' are groupoids with base B then a morphism from
ii to Q! is a map 95: D-*Q' such that <p(x) = x for all xeB, a' 095 = a and b' o<p = b,
and 93(̂ .-17) = ?>(£)• ?>0?) for

DEFINITION 1.3. Let B be a Hausdorff space. A topological groupoid on 5 is a
transitive groupoid Q. with base B equipped with a Hausdorff topology making
a and b, the multiplication Q*ii->D, and the inversion £+->£-1, continuous and
the identification x+->x, B->£1 a homeomorphism into. (Q*O has the pull-back
topology.)

A morphism of topological groupoids is a morphism of the underlying groupoids
which is continuous.

If B is a space and G a topological group (both Hausdorff) then BxGxB with
the product topology and groupoid structure a(y,g,x) = x, b(y,g,x) — y and
(z,h,y).(y,g,x) = (z,hg,x) becomes a topological groupoid, called a product
topological groupoid. In the algebraic theory, all groupoids are isomorphic to
product groupoids; the interest of the topological theory is that this is not so.

DEFINITION 1.4. The topological groupoid Q on base B is locally trivial if the
map [b,a]: Cl->BxB, £+->(bt;,a£) is a topological submersion (that is, it admits
local right-inverses at each point of its range (Hardy (1971))). Equivalently, Q. is
locally trivial if there exists a weB, an open cover {[/J of B and continuous maps
aa: Ua^-ilw such that aa(jc)eQ* for xeUa and ajw) = w whenever weUa.

{l/J- is then said to be a decomposing cover for D, and is said to decompose D.
through the family {aj. The maps safi: Uafi = UatiU/l-+Q%, x+^a^x)'1. o^x) are
the transition functions for Q with respect to {aj .

Using {OQ} we define decomposing homeomorphisms ha: UaxQ.w^>-£lUa by
(x, £)+-> K W " 1 w i t n restriction haiX: £lw->£lx and S a : UaxQ™x l/a-»Og« by

Sa is a (topological) isomorphism from the product groupoid Ua x Q™ x Ua onto
Q^«, the restriction of Q to Ua. Since any topological isomorphism Q.%->Ux Q™ x U
defines a continuous CT^: E/->-£2 ,̂ we take the view that the decomposing
covers of B give a measure of the 'twistedness' of £2, that is, of how far it departs
from being globally isomorphic to a product groupoid.

PROPOSITION 1.5. If <p: Q->£2' is a morphism of topological groupoids and Q. is
locally trivial with {t/a} a decomposing cover then O' is also locally trivial and
decomposed by {l/J.
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PROOF. If aa: Ua^-Q^" are continuous then clearly y>ooa: l/a->£2'£,'<« are also.
Thus "morphisms reduce twistedness" and in the category of locally trivial

topological groupoids on a given base B, morphisms only exist between groupoids
with compatible twistedness.

DEFINITION 1.6. A topological groupoid O on base B is locally compact if the
space Q is locally compact.

It follows then that all Clx and Q* are locally compact.
For Zand Fany topological spaces, C(X, Y) denotes the space of all continuous

maps X-> Y with the compact-open topology. As is well known this topology
only behaves well for locally compact X and for this reason we have to restrict
attention to locally compact groupoids.

2. Continuous vector bundles

The category of vector bundles of finite rank is not large enough to accommodate
the injective resolutions of Section 3. We therefore introduce the natural generali-
zation in which the fibres may be arbitrary locally convex spaces. That this is the
appropriate concept is shown by Proposition 2.3 and Theorem 3 of Section 7.

Throughout the rest of the paper, B denotes a paracompact and connected C°
manifold. A Hausdorff locally convex R-vector space is referred to as an LCS.
For the properties of LCS's which we use, see Choquet (1969). Recall that an LCS
is locally compact if and only if it is finite dimensional.

DEFINITION 2.1. A continuous vector bundle (CVB) on B is a triple (E,p,B) in
which E is a space and p a continuous onto map with Ex = p~\x) an LCS for all
xeB and the local triviality property: there exists an open cover {Ua} of B, an LCS
A and decomposing maps tffa which are homeomorphisms Ua x A ->EUa = p~1(Ua)
such that poifja = 7T1: UaxA->Ua and the restrictions tfiax: A-+Ex, a+->ifia(x,a)
are linear homeomorphisms.

For CVB's E and E' on B a CVB morphism is a continuous, fibre-preserving,
fibrewise linear map <p: E-*-E'.

REMARK. Vector bundles, and their morphisms, in the sense of Lang (1975)
are clearly particular cases of (2.1).

For an LCS A, we prefer to leave the set of linear homeomorphisms A-*-A
without a topology and regard the transition functions as continuous maps
Ua/SxA^-A. The following construction principle can be easily provided.
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PROPOSITION 2.2. If B is a C° manifold, paracompact and connected, A is an LCS
and Ex is an LCS for each xeB, E is the disjoint union of the Ex, xeB and p:E^-B
is the obvious projection, then if there are linear homeomorphisms </>a-x: A-*Er,
xeUafor all Ua in an open cover of B such that the transition functions Ua/}x A^-A
by (x, a)+-t I/J~X o 4>fi,x(

a) are continuous, then there is a unique topology on E which
makes (E,p,B) into a CVB with decompositions >pa: UaxA^-EUa, (x,a)+Jy>paiX(a).

Thus the usual functorial constructions (direct sums, bundles of linear maps
and so forth) can be carried out with CVB's. The following construction will be
needed in the sequel.

(2.3). Let Q be a locally trivial, locally compact topological groupoid on B, and
(E,p,B) a CVB on B. FoixeB, C(fix,Ex) denotes the LCS of all continuous maps
Q.x ->EX with the compact-open topology. We construct a natural CVB F(Q, E)
on B with F(O, E)x = C{Q,X,EX) for xeB.

Let {{/(J be an open cover of B which decomposes Q. through aa: Ua^>£lw and
E through i(ia: UaxA^-EUa. Write P = O.W and ha:UaxP-^Q,Ua for the map
(x, £)-*C-oJix)-1. Then boh\ = bon2 (TT2: UaxP^P) and hjx,r)£) = rj.hjx, Q.
Define

fa x: C(P,A)-> C(QX, Ex) (x e UJ

by

Then $aa. is clearly linear; to prove its continuity we consider the associate map
C(P, A)xQ.x^-Ex, which is the composite of <pax: A->EX and C(P, A)xQ.x->-A by
(/, €)+->f(h-*x(£)) which is continuous because it is

id xh-}x: C(P, A)xQx->C(P, A)xP

followed by the evaluation map C(P,A) xP->A of the locally compact P. Similarly
$^. is continuous and so $ax is a linear homeomorphism.

The transition function Ua/}xC(P,A)^-C(P,A) has associate

by
(x,f, O-^nio^o^xJi^ohfohJ^x, 0))

where TT£ : Uap xA->A and 7rf: Ua/S xP->P are the projections, and the continuity
of this follows from that of nf o ip'1 o ip^: XJap xA->A and irg o h j 1 oha: l/a/J xP-+P
and of the evaluation map C(P,A)xP^-A of the locally compact P.
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So by Proposition 2.2 we have proved:

PROPOSITION 2.3. Given a locally trivial, locally compact topological groupoid £2
and a CVB E, both on base B, there is a unique CVB F(Q,E) on B with
F(Q, E)x = C(D.X, Ex) and such that if {Ua} decomposes both Q, and E then it also
decomposes F(Ci, E) as described above.

We complete this section with the following description of the topology for TVE,
the space of continuous local sections of E over U.

PROPOSITION 2.4. Let (E,p,B) be a CVB on B and U<^B an open set. IfiU^ is a
finite decomposing cover for Ev with decomposing homeomorphisms t//a: UaxA-> EUa

and {pj} is a family of semi-norms on the LCS A which define its topology, define
p?K:TuE^R+ by p?z(a) = sup{Pi(f-X(o(x)))\xeK}, otYvE for compact
K<=Ua and any j,a. Then the {pfK} define the compact-open topology on TVE,
which therefore makes Tv E an LCS.

3. The category of continuous Q-modules

In this and the next two sections we construct the rigid cohomology of a locally
trivial, locally compact topological groupoid as the derived functors of a natural
fixed-point functor. We follow the techniques of Hochschild and Mostow (1962)
in general, but the nature of groupoids forces some changes which make the
details more difficult. (This becomes more apparent in the Lie case.)

Throughout Sections 3-5, D is a locally trivial, locally compact topological
groupoid with base B.

DEFINITION 3.1 (Ehresmann (1959)). A continuous D.-module is a CVB (E,p,B)
together with a continuous action Q.*E->E, (£,u)+->t;.u of Q. on E. Here

has the pullback topology, and that Cl*E->-E is an action means that
(i) />(£II) = b£ for all (£«)eO*£,
(ii) f: 2sa£->2s6j, M+-> £.u is a linear homeomorphism,
(iii) 7). (g. u) = (r). i). u whenever either side is defined,
(iv) pu.u = u for all ueE.
It was proved by Seda (1975) that if a vertex group Qj acts on a vector space V

linearly, then there is a vector bundle on B with fibre type V on which Q acts
continuously. Thus there are always many continuous i2-modules.
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It can be proved that if E is a continuous Q-module then the associate map
£1->H(E) is a continuous morphism where H(E) is the topological groupoid of
isomorphisms between fibres of E with the compact-open topology on each H(E)v.

DEFINITION 3.2. If E and E' are continuous Q-modules, then a continuous
Q-module morphism <p: E-+E' is a CVB morphism for which ?>(£.«) = i<p(u) for

The set of all continuous Q-module morphisms E->E' forms an R-vector space
Homn(E, £'). We will not need to consider a vector topology on Homn(£", £") in
general and so it remains a vector space without topology.

Thus we have the category of continuous Q-modules and their morphisms,
denoted Q-Mod. It is easily seen to be an abelian category (note that kernels and
quotients exist because continuous Q-module morphisms are automatically of
constant rank). Like Hochschild and Mostow, we will actually be deriving functors
relative to the class of exact sequences in Q-Mod which split in the CVB category,
but we will not use the terminology of relative homological algebra.

DEFINITION 3.3. A sequence E > £" > E" of continuous Q-module
morphisms is exact at E' if it is exact as a sequence of CVB morphisms in the
usual sense and there are CVB morphisms A: E'^-E and p: E"->E' such that
930X + pot/j = id^ and Xop = 0: E"->E.

An Q-monomorphism, denoted 9s: E^->E', and also called a continuous imbedding

of E into E' is a continuous Q-module morphism <p such that Q-+E > E' is

exact at E.
An Q-epimorphism, denoted <p: E-»E' is a continuous Q-module morphism <p

such that E—^-* E' > 0 is exact at E'.
Thus a 1 : 1 continuous Q-module morphism 9?: E->E' is an Q-monomorphism

if and only if there is a CVB morphism A: .E'-^-issuch that A09S = idB. If £ a n d E'
are of finite rank then A exists automatically. The dual statements for Q-epi-
morphisms also hold.

DEFINITION 3.4. A continuous Q-module E is continuously injective if, given any
continuous Q-module morphism 9s: E'->E and an Q-monomorphism tfi: E'^-E",
there exists a lifting, that is, a continuous Q-module morphism <p: E"-*E such
that ipotfi = <p.

Consider now one continuous Q-module E until the end of Section 3. We
constructed in (2.3) the CVB i^Q, E) on B and we now make it into a continuous
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D-module by defining

(3-5) (f ./)(>,) = i-AriO

for ^eQ«,feF(Q,E)x, ijeQ, and any x,yeB.

PROPOSITION 3.6. F(Q, E) is a continuous Q.-module under the action (3.5).

PROOF. The algebraic properties are easily verified. It remains to show the
continuity of Q * F(C1, E) -> F(Q, E). Using the notation of (2.3), it suffices to prove
that

Qgf * (Ua x C(P, A)) -+Ufix C(P, A),

is continuous, and this reduces as before to the associate map, and so since ir
is continuous we need only show that

is continuous. This is the composite of

Qgf x C(P,

which is continuous since the operations in Cl are continuous,

idxev: Qgf xPx C(P,

which is continuous since P is locally compact, and

gf x A -> £ P i , (£

which is continuous because E is itself a continuous Q-module. Thus the continuity
of Q.*E^E is lifted to show the continuity of Q*F(Q,E)->F(Q,£) and this
completes the proof.

PROPOSITION 3.7. F(Cl, E) is a continuously injective D.-module.

PROOF. Let
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be given with A a CVB morphism such that \oift = idE.. Define f:

by $&)(£) = £~K?<A(£ •»))(*£)) for £eQx, veEx and xeB. <p can be shown to
be a CVB morphism by standard techniques, and is easily verified to be an
Q-morphism. Lastly,

(f . 0) («) ( 0 = f-1. (<p( A o M.«)) (b£)) = | - i . (tff. ii

for all a e ^ , leQ,,. and xe.fi. SO po^r = <p as required.

PROPOSITION 3.8. The constant map K: E-*F(Q.,E), defined by K(U)(£) = u for
ueEx, £eQ.x, xeB, is an £l-monomorphism.

PROOF. That K is a CVB morphism is obvious; for ueEx, £eQ% and r)e£ly we

have (^.f(«))(•>?) = ^.(f(M)(r?D) = | .w = K(|.«)(•»?) and so K is a continuous

Q-module morphism. It is clearly 1 : 1 and A: F(Q.,E)->E, f+*f(p{f)) is a CVB

morphism and a left inverse for K.
We have thus proved:

THEOREM 1. A continuous Q-module can be continuously imbedded in a continuously
injective ^.-module. In particular, Q.-Mod has sufficiently many injectives.

With this result we can apply the standard techniques of homological algebra
in the category Q-Mod.

REMARK. It is clear when B is a point, so that Q. is in fact a locally compact
group, that the category of continuous Q-modules coincides with that of Hochschild
and Mostow (1962). For a continuous Q-module E, the CVB (that is, LCS) F(Q, E)
coincides with that defined by Hochschild and Mostow, and the ii-module structure
(3.5) is equivalent to the second action defined by Hochschild and Mostow under the
automorphism f+->f where / ' (£) = / ( I " 1 ) for all £ e Q . (This equivalence is a
CVB morphism only when B is a point.) For general groupoids, there is no
analogue of Hochschild and Mostow's first and simpler action, and this is the
source of some technical complications, especially in the Lie case.

4. The fixed-point functor

The product CVB Bx R-+B is a continuous Q-module under the trivial action
£.(x,t) = (y,t) for £eQ*J, JeR, and we consider the fixed-point functor
Hom n (5 x R, —) from Q-Mod to, at present, the category of R-vector spaces and
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write

H°(Q, E) = Ea = Homi2(fl x R, £) and 0* = HomCi(B x R, 0)

for objects E and morphisms 6 in D-Mod.
Elements of H o m n ( 5 x R , £ ) are CVB morphisms <p: BxR^-E such that

?(y, 0 = f • ?ix, t) for all £eQ", 1eR and x,y e B. If <p is restricted to {n} x R - > £ w

for some fixed w e B, we get an element of HomG(R, A) where G = Q™ and ^ = £„,.
On the other hand, x++tp(x, 1) defines a section a of E which is invariant in the
sense that £.o(a£) = o(bg) for all | e£2 . There are thus maps

Homn(5 x R, E) -> HomG(R, ^ ) , HomQ(fi x R, £) ->(VE)Q,

when (F£0n denotes the invariant sections of E, and by defining

we get a commutative diagram

Homn(.B x R, E) »• HomG(R, A)

(4.1)

in which each side is a linear isomorphism. Thus a e (F£) n defines

<p e Hom£2(fl x R, £)

by p(jc,t) = t.cr(x) and /eHom G (R,A) defines a <p in Hom n (5xR,E) by
<p(x, t) = £. / ( r ) for any | e Q^,. An element ueAG defines a a e (RE)" by o(x) = $. u
for any £e£2*, also well defined, and an feHomG(R, A) by/( /) = t.u for reR.

Now ( r£ ) Q , AG and HomG(R,^) are all LCS's under natural topologies: (TE)n

and A° as subspaces of YE and 4̂ respectively and HomG(R, A) with the compact-
open topology as a function space. It is easily verified that the two maps between
these spaces are linear homeomorphisms, and so one can put a unique structure
of LCS on Homn(B x R, E) so that each side of (4.1) is a linear homeomorphism.
This is most easily defined by the seminorms

(w, 1)),

where {qfi are the seminorms on A.
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It can now easily be verified that Homn(B x R, -) is a functor from D-Mod to
the category of LCS's.

PROPOSITION 4.2. Homa(B x R,-) is left exact.

e 6'
PROOF. Let 0 >E > E' >E" be an exact sequence in D-Mod. Thus

there are CVB morphisms A: E'-+E and p: E"->E' such that Ao0 = i d E and

0 o A+pod' = id£/. Consider

(4.3) 0 s- Homn(5 x R, E) — ^ Homn(5 x R, E') — ^ Homn(5 x R, E").

One proves easily that 0* is 1 : 1 and that im6%<=ker 0*. If p e Homn(5 x R, £")
is in ker 0* so that 6' o <p = 0 then we can prove that A o <p e Hom^i? x R, E) by
using the fact that 8* is 1 : 1 and noting that

(0»(A o cp)) (y, t) = cp{y, t)-P.6'o <p(y, t) = <p(y, t)

whilst

0*(£• (Ao9))(x,t) = £. 0((Ao9)(JC, t)) = £.<p(x, t) = cp(y, t) for f efig.

Hence ker0'#cim0*. It appears not to be true that (4.3) is exact in the stronger
sense of (3.3) (this already occurs for groups). However, a similar calculation shows
that A,,,: E'W->EW restricts to a continuous linear map ker 6'%-»• Homn(5x R,E)
where ker 0'* is identified with a subspace of E'w.

This justifies the notation H\Q.,E) = Homn(fixR,£); if

c d° dl d \
C A° ' A1 C A 2 """̂

is a continuously injective resolution of E in ii-Mod, then ker*/^. = imc* is
topologically and linearly isomorphic to Homn(fi x R, E) under c* with inverse the
restriction of AjJ,.

For «>0,

is the rigid cohomology ofQ. with coefficients in the continuous Q.-module E; standard
arguments prove that the quotient is independent up to natural linear homeo-
morphisms, of the continuously injective resolution chosen (cf. Hochschild and
Mostow (1962)).
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Similarly one proves that an exact sequence of continuous Q-modules
E>~->E'-»E" induces a long exact (in the weak sense of (4.2)) sequence in
cohomology

0 • H°(Cl, E) > H°(Q, E') > #»(Q, E") > H\£l, E) > ...

with the usual functorial properties, so that the Hn(£l,-) form a connected
sequence of functors.

PROPOSITION 4.4. For E a continuously injective D.-module, Hn{Q., E) = (0) for
alln>0.

PROOF.

id
0 > E > E > 0 -

is a continuously injective resolution for E.
The diagram (4.1) can now be summarized in

PROPOSITION 4.5. For any continuous Q-module E, and weB, there is a natural
linear homeomorphism H°(£l, E) s H°(Q%. Ew).

When B is a point, HomQ(fixR,-) is the fixed-point functor considered by
Hochschild and Mostow (1962). Therefore when O is a group, Hn(Q.,E) is the
Hochschild-Mostow continuous cohomology of Q..

5. The standard resolution

Throughout Section 5, E is a fixed continuous D-module. Define continuously
injective Q-modules F("'(O, E) by

F<°>(Q, E) = F(C1, E), /•<»+1>(Q, E) = F(Q, F««>(Q, £)), n > 0.

We construct isomorphic copies of the Fln)(Cl, E) which are easier to work with.
For each xeB, let Fn(Cl,E)x be C(Q.%+1,EX), the space of all continuous maps

from the (« + l)-fold product of £lx to Ex with the compact-open topology
We make

Fn(Cl,E)= \JFn(£l,E)x
xeB

into a CVB in the obvious way by defining (notation of (2.3))
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1V/++^»x«/»(*jy*+1- I f w e d e f i n e

(5,1) Q

then we we can prove, as in (3.6), that Fn(Q, is) is a continuous Q-module. Clearly
F°(Q,E) = F(Q,E).

PROPOSITION 5.2. There are natural continuous Q-module isomorphisms

r:F(n)(Q,E)

with inverse

PROOF. (Induction.) 7° is the identity on F(C1,E). Assume In given and let
In:Fln+1}(Q,E) = F(Q,Fin)(Q,E))-^F(Cl,Fn(Q,E)) denote the induced iso-
morphism. We will prove that s/: F(Q, Fn(Q, E)) -+ Fn+t(Q, E) by

is an isomorphism of continuous Q-modules, and then set 7n+1 = srfoln. Since
£2,. is locally compact, each stx: C{Q.X,C{^+1,EX))^-C(Q^+2,EX) is a linear
homeomorphism, and so, noting that $%+1o(idUaxj!/w) = s/oijia as maps
UaxC(P,Fn(P,A))-*'F1t+1(&,E)ua

 ii:follows that stf is a CVB isomorphism (&, is
the chart on i^Q, Fn(Cl, E))). That JS/ preserves the actions is easily verified, as is
the last statement of the proposition.

Thus the Fn(Q.,E), n^O, are continuously injective Q-modules. We define a
coboundary by the usual formula:

(5.3) d»: FM(Q, E) -> Fn+HQ, E)

n+l .

£n+1)= s(-iy/(fo,-.?>...., f.u)

i-o

and dn is easily seen to be a continuous Q-module morphism.
PROPOSITION 5.4.

d° dx

(5.4) 0 > E > F°(Q, E) > /^(Q, E) ^

is a continuously injective resolution of E, called the standard resolution.
10
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PROOF. It only remains to be shown that (5.4) is exact. It is easily seen that
A»+i: F

n+\Q,E)-+F»(Q,E) by A»+V)(£o,..., U =f(x, £0,..., f J for

feFn+l(Q,E)x, €jeQx,xeB and A0: F°(Q,£)->-£

by A°(/) =/(*) for/eF(Q,£)x. xeB, are CVB morphisms and satisfy A0OK = id£,
/foA0+A1o^0 = idF ( a B ) , and An+2o</»+1+</noAB+1 = idj»+,(£U;). Thus (5.4) is
exact.

Applying Homn(flxR,-) to (5.4) yields the homogeneous cochain complex

d° dl

0 > C%(Q,E) > CtfQ,E) • ...

where C£(Q, E) = Homn(5 x R, F»(Q, £)) and J j is abbreviated to dn.
We regard elements of C£(Q, £) as invariant sections of Fn(Q, E), that is, as

maps

p U

which commute with the projections and satisfy the homogeneity condition

(5-5) <px(r)0 t-,-r)n£)= t'1 • ?u(^ • • •»Vn)

for 7]jeQy, tjeQv and x,yeB. Such maps are automatically continuous (given
that each <px: D.^+1-^EX is) since invariant sections of a CVB are automatically
continuous.

In practice it is easier to work with nonhomogenous cochains, which are denned
in the usual way. (We omit most proofs of continuity considerations from this point
the verifications following an established pattern.)

For n > 0,

a& = 66+1 for

denotes the set of composable n-tuples from Q with the subspace topology. It forms
a fibre bundle over B with respect to the projection (|0,..., €n)+->at;n. Given a
continuous 0-module E one can form a CVB whose fibre over xeB consists of all
continuous maps from * " O | x to Ex, and the continuous sections of this CVB are
the nonhomogeneous cochains:

DEFINITION 5.6. C#H(Q, E), the LCS of nonhomogeneous n-cochains, is the set
of all maps / : *nQ^-E such that pifi^, •••, !„)) = a%w continuous as defined
above, and with the compact-open topology as a space of sections.
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Define 8-: Q H (O, £)-• CB#(O, £) by

(5.7) (

for (£lt..., | n + 1 ) e* n + 1 Q . As in the group case, we have

PROPOSITION 5.8. There are linear homeomorphisms Tn: C%{Q.,E)->C%H(Q.,E)
such that S" oTn = r»+ ] odn (n> 0), J / M by

(5.8) 7

For most purposes we will regard Hn(Q,E) as ker S"/im 8n~1 and we denote
Cj5H(Q,£) simply by C"(D,£).

When M = 0, we identify *n i2 with B, so that C°(Q,£) is identified with TE.
Accordingly, (5.7) becomes

for M e T£ = C«(D, £),

and (5.8) becomes

r°(?)(*) = ?(*), xefi, peCy/Q.f),

and

6. Extensions of topological groupoids

In (4.1) and (4.5) H\Q., £) was described as the space of invariant sections of £,
and shown to be naturally isomorphic to any H\Q.™, Ew). In Section 7 we will prove
that Hn(Q,£)S Hn(Q%,Ew) for all n^O, but first we study the extensions classified
by H\£l,E) and use them to interpret H\0.,E).

As always, we work over a base B which is a paracompact connected C°
manifold.

https://doi.org/10.1017/S1446788700011794 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011794


292 K. A. Mackenzie [16]

DEFINITION 6.1. If O is a topological groupoid on B and (E,p,B) is a CVB then
a general extension of Q by E is a topological groupoid O on B and an exact
sequence

(6.1)

in which i is a relatively open continuous morphism and v is a topological sub-
mersion and a continuous morphism.

REMARKS, (i) A topological submersion is a continuous onto map which admits
local right-inverses at every point of its range (Hardy (1971)).

(ii) That i is a continuous morphism means that i is continuous, maps each Ex

into O* and i(u+v) = i(u)i(v) for all u,veEx, xeB.
(iii) That (6.1) is exact means that IT is onto, t is 1 : 1 and, for £eO, 7r(£)e.fl<=£2

if and only if £ = i(w) for some ueE. In particular, each vertex sequence
Ex >-* O*-*> Q* is exact.

This is the most general viable concept of topological groupoid extension; it
satisfies the minimal requirements of inducing a continuous action of £2 on E, and
permitting a 1 : 1 correspondence between left and right transversals (when they
exist).

Clearly each Ex >-> O£-» Q* is an extension of the topological group Q.% by Ex;
it can be easily verified that each inner isomorphism O^-^-O ,̂ £+->£. f .£ - 1 for
£ e O» induces an isomorphism of Ex ^» O* - » £2* with Ey v-> O£-» £2".

PROPOSITION 6.2. The general extension (6.1) induces a continuous, but not
necessarily linear, action oftlonE by

(6.2) I(7T(£).M) = £.I(M). £-1 for £GO^, ueEx, x,yeB.

(That is, (6.2) satisfies all the conditions of (3.1) except that Ex^-Ey need not be
linear.)

PROOF. If GO denotes the bundle of vertex groups of O, that is, GO = [JxeB®Z
with the subspace topology, then O*GO->-GO, (£, A)+->£.A. £~x is continuous,
and induces O * E-> i(E)cz GO. Since i is relatively open O * E^-E is continuous.
Ifnowa: t/<=Q-*O is a local section of TT then a*idEalu): U*Eaiu)-+$*E is a
local section of iT*idE. Hence IT*idE has local sections and is therefore an
identification. Since £2*E-+E composed with IT*idE is the continuous O*E->E
it follows that (6.2) is continuous.
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DEFINITION 6.3. A transversal (ox right-transversal) of the general extension (6.1)
is a continuous map n: Q -»<1> such that n on = idn. A left-transversal is a continuous
m: <P->E such that mot = idE.

Since i and n are initial and final maps respectively, the following result is proved
by an algebraic manipulation.

PROPOSITION 6.4. If n is a right-transversal o/(6.1) then m:<&-*-E defined by
i(m(O) = « W O ) " 1 ^ . f e O , is a left transversal. Conversely, if m is a left-
transversal, then n: Q, -*• <1> defined by /J(TT(£)) = £. (i o w(O)"1, £ e O, iy a well-defined
right-transversal.

The crucial property of an extension is, of course, whether it admits transversals.
Thus we make the

DEFINITION 6.5. The general extension (6.1) is rigid if it admits a global transversal
n: £2-*•<!>. It is locally rigid if there is an open cover {UJ of B and local transversals
na: Q^»->O^« over each UaUa.

Observe that in a locally rigid extension if;->-<t>-»Q each vertex extension
Ex>-><!>*-*> Q* n a s a global transversal and can therefore be described by the
Hochschild-Mostow cohomology (Theorem 3). In studying the question of global
extensions for groupoids it is natural to assume that on the vertex group level the
extension is well behaved and so the following proposition demonstrates that local
rigidity is the appropriate concept in the context of locally trivial groupoids.

PROPOSITION 6.6. (i) If, in the general extension (6.1) both D and O are locally
trivial and the vertex group extensions admit transversals Q.% -*• Q>% then the extension
is locally rigid.

(ii) A general extension of a locally trivial groupoid is locally trivial.

PROOF, (i) If n: Qj£ -> <J>|£ is a vertex group transversal over weB and {ra: Ua -*• <!>„,}
is a family of decomposing sections for $ , then na: Q^«-><1>^« defined by
«a(^) = Ta(6^).n(aa(60-1.^.aa(af)).Ta(a0~1. where aa = nora, is a local
transversal over IL.Jar

t IT
(ii) If E> ><t> » Q is a general extension of the locally trivial topological

groupoid ii , then [b,a]0 = [b,a]noir and since both [b,a]n and tt are topological
submersions, it follows that [6,o]o is also.

PROPOSITION 6.7. In any locally rigid extension E>->Q>-»£1 of the locally
trivial Q, there are continuous maps nx: Qx->Oa. with nonx = idnx for each xeB.
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PROOF. (Observe that local rigidity makes <&x a principal fibre bundle oxer £lx

with vector structure group Ex and as in the finite dimensional case, it is therefore
trivial.) There exists an open cover {(/„} of B with decomposing sections ra: Ua -> <t>w

and local transversals na: Qĵ «->-<J>g«. Then define «aic: Q£«-><!>£» by

Since 5 is paracompact there is a partition of unity {ja} subordinate to {Ua} and
nw: L~lw-+<frw defined by

now has the desired properties.
Since nw has no multiplicative properties, it is not possible to extend it to £}-*•<!>.

However, we will deduce in Section 7 that in fact all locally rigid extensions of
locally trivial groupoids are rigid.

From now to the end of Section 6, let Q be a locally trivial, locally compact
topological groupoid on B and let (E,p, B) be a continuous Q-module.

DEFINITION 6.8. A general extension E> ><& »£l is an operator extension
of Q. by the continuous Q-module E if the action of Q. on E induced by the extension
coincides with the module action.

Two operator extensions E> >Q>j »&p y = 1,2, are equivalent if there
exists a continuous morphism (necessarily an isomorphism) e: (Pl^-(^2 such that
e o tj = i2 and TT2 O e = v-^.

The set of equivalence classes of operator extensions is denoted by Opext(Q,£);
clearly equivalence preserves transversals so we have the subsets LocROpext (£2, E)
of locally rigid operator extensions and ROpext (D, E) of rigid operator extensions.

One can show, in a straightforward fashion, that Opext (Q, E) forms an abelian
group under a Baer sum, and that LocROpext (ii, E) and ROpext (L~l,E) are
subgroups. If <I> and T are groupoids over B then their "Whitney product" O A T
is the groupoid over B with (OAY)* = O ' x 1 ^ for x,yeB and componentwise
multiplication. When O and T are topological groupoids, O A f is also, with the
relative product topology. Push-outs and pull-backs do not exist in general in the
locally trivial context, so it is necessary to use the older definition of the Baer sum:

given if>—?L->-<b1—V>D and E>—^-+<t>2—^>O, one considers the subgroupoid
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{(£1, Q i ^i £i = "2 Q of $1 A 1*2 a n d quotients it over {(tx(«), i2( - u) \ u e E). When
the given extensions are locally rigid, one then shows easily that this quotient
groupoid is locally trivial, and so (6.6(i)) shows that the sum of the extensions is
locally rigid.

There is now a morphism

(6.9) -T: LocROpext (Q, E) -> ROpext (Q™, Ew)

which sends £>-»-<I>-»Q to the vertex group extension E

THEOREM 2. Let Q be a locally trivial, locally compact topological groupoid on B,
and let (E,p, E) be a continuous Q.-module.

(i) Let f be a nonhomogeneous 2-cocyle, thus f: ie2Cl->-E continuously,

/(£, &eEait and Ait, to+Aii, it- to =/(&• &, to + fr-Aii, to for all

Then if <t>f is the pull-back Q * E = {(g,u)\ag = />«} anJ we *fe/zne jowrce
maps d(£, u) = pu, b($, u) = b$ and a composition

Hv «l) • (it, «2) = H1 • &, "2 + fr1 • «1 +/(^1> fl))

w a locally trivial topological groupoid on B. The identities are

)) and d,u)-1 = (i-\-i.u

With Trf:Of-^il by wy(£,w) = f and if: E^-<t>f by ifiu) = (pu,u—Apu,pu)),

E> > ^ »Q becomes an operator extension of D. by E, and « / £ ) = (£,0ag)

defines a global transversal n): £l-><&f. Note that <bf is locally compact if and only if
E is of finite rank.

I TT

(ii) Conversely, ifE> • <!> ^> Q is a rigid operator extension with transversal
n: Q^(D and we define f: **Q^E by •(/!&, &)) = n(^ ^~ln(Qn(^ then f
is a nonhomogeneous 2-cocycle, and the map $n:<bf^>-<&, (^,u)+^n(0).i(u) is

an equivalence ofE> >• <& » Q with E> > <S>f » Q preserving transversals,
gnonf = n. On the other hand, the cocycle defined by nf is f itself.

For f and f both 2-cocycles, there is a natural equivalence from O/ + / , to the Baer
sum ofQ>f and<bj,.

(iii) Let g be a nonhomogeneous l-cochain, thus g: Q^-E is continuous, pog = a,
and
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for(£v & ) e * 2 O . Given any 2-cocyclef, themap eg: <!>,-* <!>,-
is an equivalence ofE>->^/-*>Q, with

i' IT' I IT
(iv) Conversely, if E> * •<!> ' »£2 and E> >•<!> »£2 are rigid operator

extensions with transversals ri and n defining cocyclesf andfandcp: O-*<!>' is an
equivalence, then there is a (unique) l-cochain g such that <p = S'^otgoS'1, namely
g = m'o})on, and Sg =f—f.

Indeed each l-cochain g induces a permutation of the transversals in any given

extension. If E> ><E> >->Q is a rigid extension and n is a transversal for it, then
rP defined by n°(g) = n( |) i(g($)), £ e Q, is another and defines the cocycle f+ 8g,
where f is the cocycle defined by n. The different equivalences are related by

PROOF. This is a straightforward verification; the algebraic computations follow
closely the corresponding results for groups (see, for example, MacLane (1963))
and the topological considerations are of a type considered already.

COROLLARY 6.10. The assignment f+-><S>f of the theorem induces an isomorphism
, E) -> ROpext (Q, E).

Needless to say, the topology of H\Q.,E) can be transferred to ROpex

PROPOSITION 6.11. If E> ><I> »Q is a rigid extension of the locally trivial,

locally compact topological groupoid Q, then an open cover of B will decompose Q

if and only if it decomposes O. If {U^ decomposes Q through {aa: Ua->£lw} with

transition functions {sap} and n: Q - > O is a transversal defining the cocycle f, then

are transition functions for $ .

PROOF. By (1.5) we know that if {UJ decomposes <J> through {ra: Ua-><bw} then

{noTa: [ / a^-Qw} will decompose Q. We need only note that <p need not be a

morphism in (1.5) bu t need only preserve the source and target maps, so the same

remark applies to n: Q-*•<!>. The formula is a straightforward calculation of

= H( a a (*) )~ l n ( °>(x) ) using Theorem 2(ii).

Lastly, H^Q, E) can be interpreted as automorphisms of the zero extension
modulo those inner automorphisms which are induced by sections of E, in the
usual way.
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7. Relationship with the vertex group cohomology

Throughout Section 7, Q is a locally trivial, locally compact topological groupoid
on base B, unless explicitly described otherwise.

Choosing a weB there is a natural restriction functor !%: Q-Mod-> G-Mod,
where G = O|£, which takes a continuous Q-module E to Ew and a continuous
fl-module morphism <p: E1-^-E2 to <pw: E^^-E^.

The mixing process also allows us to define a functor ~#: G-Mod->-Q-Mod by
assigning to Ae G-Mod the fibre bundle associated to O.W(B, G) with respect to
the module action of G on A. The construction is given by Seda (1975) but we
review the notation.

The set JK{A) is the set of equivalence classes (£, u) with $e£lw and us A, where
(£-g>u)~(£,gu) for geG is the equivalence; *#(A) has the identification topology
from the product space ClwxA. The bundle projection is ( | , M)+->££ and the

operations in Ex are A. (£, u) = (£, AM) and (£l5 «i) + (£2, w2)
 = (£i> Mi + ^r1 • I2 "2)

(here AeR). Then ~4f(A)->B is a CVB and a continuous ii-module under the
action £.(£,«) = (££,w).

If 95: Ay^-A2 is a continuous G-module morphism then (£,«)+-•(£, g?(«)) is well
defined and is in fact a continuous Q-module morphism ~tf(<p): ^(A1)-^^(A^).

PROPOSITION 7.1. J( and £% are adjoint.

PROOF. The core of this is proved by Seda (1975). We only give an outline. For
Ae G-Mod define eA: A^-3lo^#(A) by u+->(w,u) and for ifeQ-Mod define
6E: «#o3%{E)->E by (£, M)+->|.M. Then Seda proves that e and 9 are natural
equivalences idG_Moi->3lo^ and u^o^->-idn.M o d respectively, and one easily
verifies that 6^U)o^(eA) = i d ^ ^ ) and 32(9E) ° e9tiE) = l&3i(E) f ° r a ^ ^ 6 G-Mod
and .EeQ-Mod.

LEMMA 7.2. Both 3%: (2-Mod-> G-Mod and^V: G-Mod ^-O-Mod are exact and
preserve (continuous) injectives.

PROOF. That 32 is exact is trivial. Let

t IT

A p

be exact in G-Mod, then applying ~# we get
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and it has to be shown that A and p can be globalized. If {[/„} decomposes Q
through {aa: Ua->£lw} and {j^ is a partition of unity subordinate to {[/„} then

and

are CVB morphisms and clearly ^(TT)op" and Aou^(i) are identities. One also
sees that

= 2 A(*^) • W i f l , (p o 77 +1 o A) (

from which A o p = 0 follows. Hence ^ is exact.
Now let £ be a continuously injective ii-module, and let <p: A1-^EK be a

continuous (/-module morphism, and

a (7-monomorphism. By the above, ^(tfi) is an Q-monomorphism, so 6EoJK(<p)
has a lifting to a continuous Q-module morphism /*: ̂ (A^)->E and then iiw°eAt

lifts p showing that Ew is continuously injective.
Similarly & preserves injectives.

THEOREM 3. For any continuous Q-rnodule E, where Q. is a locally trivial, locally
compact topological groupoid on B, and weB, there are natural linear homeo-
morphisms

H "(Q, E) -> //"(Q£, Ew) for each

PROOF. Consider the Hn(Q%,-)o3$ as functors from Q-Mod to the category of
LCS's. Using the exactness of Si, one easily sees that they form a connected
sequence of functors, and since ^ preserves injectives, they vanish on the con-
tinuously injective fi-modules for n > 0 (4.4). In Section 4 we showed that the same
was true of the Hn(Q, -) and so the natural linear homeomorphism

#»(£},-)
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of (4.5) extends to unique linear homeomorphisms in all dimensions, by the
second uniqueness theorem of Lang (1966). This completes the proof.

COROLLARY 7.3. ir: LocROpext (£},£)-• ROpext (£1%,,EW) is onto.

PROOF. By Theorem 2, applied with B = {w}, an element of ROpext (£1%,EW)
defines an element of HH8%, Ew) and thus, by Theorem 3, an element of H\D., E).
Theorem 2 again now gives an element of ROpext (Q./OcLocROpext^. iT)
which is easily seen to restrict over w to the original extension.

In fact there is a commutative square

ROpext (Q, E) > ROpext (£2», Ew)

(Theorem 2) (Thereom 2)

> (Theorems!

in which the two vertical maps and the lower horizontal one are isomorphisms by
the theorems indicated, and so the top map, which is the restriction of "?*, is also
an isomorphism. We thus have

COROLLARY 7.4. A rigid operator extension of Cl by E is completely determined
by its restriction to any vertex.

Clearly the kernel of V consists of those locally rigid operator extensions which
are semi-direct on the vertex group level. But in fact the method of (6.7) adapts to
show that such extensions are globally semi-direct.

PROPOSITION 7.5. Let E be a continuous Q.-module, where O. is a locally trivial,

locally compact topological groupoid on B, and let E> ><!> »D, be a locally
rigid operator extension with a morphism of topological groups nw: OjJ-^-O^ such

I IT

that ironw = idng. Then E> >• O >•> Q is globally semi-direct.

PROOF. O is locally trivial by (6.6(ii)); let {ra: C/a->$w} be a family of
decomposing sections for O. Define na: i2^«->O^« by

and note that na(£.g) = na(g).nw(g) for ge€l^ and £eQ£«. Now define

fafi- aZ"->^ by *(/„/#) = nj&-1M& a n d n o t e
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follows. Taking a partition of unity {yj subordinate to {Ua}, define ra: Q]J«-+EW

by

Since the action is linear,

and therefore

. (nw(g). t(ra(i.g). nj^g-*)). nw(g)

so that na is a principal fibre bundle morphism Q^«->-O^«. Clearly «a and ŵ
agree on the intersection of their domains so they globalize to a principal fibre
bundle morphism «: QW->OW. It is easily checked that 7ron = idni<> and so n
induces a continuous groupoid morphism «: ii^-<I> with rro/j = idn.

(7.3) and (7.5) together yield

THEOREM 4. For a locally trivial, locally compact topological groupoid Q. on base B,
and a continuous Q.-module E, V is an isomorphism, and

LocROpext(Q,£) = ROpext (Q, £).

Thus all locally rigid operator extensions are in fact rigid, and therefore arise
from extensions of any given vertex group by a kind of mixing process. One can in
principle obtain an explicit description of this process on the cochain level, because
since <J( preserves injectives, it can be applied to the standard resolution for
A = Ew, namely

K d° dl

0 >AT=±C(G,A)T=tC(G*,A)T=*... {G = Q»)

to get another resolution for E, namely

0 -• £ s ̂ (A) ->J({C{G, A)) -
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and then use the basic construction (3.7) together with the identifications (5.2) to
get explicit isomorphisms

which induce on the cohomology level the isomorphism of Theorem 3. Even for
cocycles this is not, of course, a natural identification since the Sn involve the
partition of unity used to lift the An (as in (7.2)). It is therefore not likely to be
useful in practice and we omit the details.

Consider Theorems 3 and 4. Theorem 3 appears to suggest that the rigid
cohomology is too restrictive, despite the naturality of its construction. However,
Theorem 4 shows that it is in fact the natural cohomology arising from this category
of modules, since it classifies the natural class of operator extensions.

In a future paper we will enlarge the category of Q-modules considered, allowing
a wider class of resolutions and thereby obtaining a more satisfying geometric
theory. We postpone until then the study of various topics familiar from the
cohomology of groups—normalized cochains, the effect of inner automorphisms,
a dual homology theory, for example—which could be developed in the present
theory.

References
R. Bott (1975), "Some remarks on continuous cohomology", Proc. Internal. Conf. on Manifolds

and Related Topics (University of Tokyo Press).
R. Brown and J. P. L. Hardy (1976), "Topological groupoids I", Mathematische Nachrichten,

71, 273-286.
G. Choquet (1969), Lectures on Analysis, Vols. 1, 2 (Benjamin, New York).
C. Ehresmann (1959), "Categories topologiques et categories differentiables", Coll. Geom.

diff. Globules, pp. 137-150 (Bruxelles (1958)).
J. P. L. Hardy (1971), "Topological groupoids" (M.A. thesis, University of Wales).
P. J. Higgins (1971), Categories and Groupoids (van Nostrand, Princeton, N.J.).
G. Hochschild and G. D. Mostow (1962), "Cohomology of Lie groups", Illinois J. Math. 6,

367-401.
S. Lang (1966), Rapport sur la Cohomologie des groupes (Benjamin, New York).
S. Lang (1975), Differential Manifolds (Addison-Wesley, Reading, Mass.).
S. MacLane (1963), Homology (Springer-Verlag, New York).
C. C. Moore (1976), "Group extensions and cohomology for locally compact groups III, IV",

Trans. Amer. Math. Soc. Ill, 1-58.
J. Pradines (1968), "Troisieme theoreme de Lie pour les groupoides differentiables", Compt.

Rend. Acad. Sci. (Paris) 267, A21-A23.
A. K. Seda (1975), "An extension theorem for transformation groupoids", Proc. Royal Irish

Acad. 75(A), 255-262.
J. D. Stasheff (1978), Survey article in Bull. Amer. Math. Soc. (to appear).

Department of Mathematics
Monash University
Clayton, Victoria 3168
Australia

https://doi.org/10.1017/S1446788700011794 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011794

