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ORDINARY VARIETIES AND THE COMPARISON
BETWEEN MULTIPLIER IDEALS AND TEST IDEALS

MIRCEA MUSTAŢĂ and VASUDEVAN SRINIVAS

Abstract. We consider the following conjecture: if X is a smooth and irre-
ducible n-dimensional projective variety over a field k of characteristic zero,

then there is a dense set of reductions Xs to positive characteristic such that

the action of the Frobenius morphism on Hn(Xs, OXs) is bijective. There is

another conjecture relating certain invariants of singularities in characteristic

zero (the multiplier ideals) with invariants in positive characteristic (the test

ideals). We prove that the former conjecture implies the latter one in the case
of ambient nonsingular varieties.

§1. Introduction

It has been known for about thirty years that there are close connec-
tions between classes of singularities that appear in birational geometry
and such classes that appear in commutative algebra and, more precisely,
in tight closure theory. Recall that in birational geometry, singularities are
typically described in terms of a suitable resolution of singularities. On the
other hand, tight closure theory describes the singularities in positive char-
acteristic in terms of the action of the Frobenius morphism. The connection
between the two points of view is very rich but still remains somewhat
mysterious.

The best-known example of such a connection concerns rational singu-
larities: it says that a variety has rational singularities if and only if it has
F -rational type. (F -rationality is a notion defined in positive characteris-
tic via the tight closure of parameter ideals.) More precisely, suppose that
X is defined over a field k of characteristic zero, and consider a model of
X defined over an algebra A of finite type over Z. For every closed point
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Mustaţă was partially supported by National Science Foundation grant DMS-0758454

and by a Packard Fellowship. Srinivas was partially supported by a J.C. Bose Fellowship
of the Department of Science and Technology, India.

© 2011 by The Editorial Board of the Nagoya Mathematical Journal

https://doi.org/10.1215/00277630-1431849 Published online by Cambridge University Press

http://dx.doi.org/10.1215/00277630-1431849
http://www.ams.org/msc/
https://doi.org/10.1215/00277630-1431849


126 M. MUSTAŢĂ AND V. SRINIVAS

s ∈ SpecA, consider the corresponding reduction Xs to positive character-
istic. Then X has rational singularities if and only if there is an open subset
U of SpecA such that Xs has F -rational singularities for every closed point
s ∈ U . (The “if” part was proved in [Smi], while the “only if” part was
proved independently in [Ha] and [MS].)

Other classes of singularities behave in the same fashion (see [HW] for
the comparison between Kawamata log terminal and strongly F -regular
singularities). On the other hand, a more subtle phenomenon relates, for
example, log canonical and F -pure singularities. It is known that if there is
a (Zariski) dense set of closed points S ⊂ SpecA such that Xs has F -pure
singularities for all s ∈ S, then X has log canonical singularities (see [HW]).
The converse, however, is widely open, and in general the set of closed points
s ∈ SpecA for which Xs has F -pure singularities does not contain an open
subset, even when it is dense. Furthermore, examples have made it clear
that some subtle arithmetic phenomena are involved.

The main goal of our paper is to consider an arithmetic-geometric con-
jecture and to show that it implies a similar such connection, between mul-
tiplier ideals (invariants in characteristic zero) and test ideals (invariants in
characteristic p). We believe that this gives a new perspective to the cor-
respondence between the two sets of invariants, and we hope it points to
a possible way of proving this correspondence.

Conjecture 1.1. Let X be a smooth, connected n-dimensional projec-
tive variety over an algebraically closed field k of characteristic zero. Given
a model of X over a Z-algebra of finite type A, contained in k, there is
a dense set of closed points S ⊆ SpecA such that the action induced by
Frobenius on Hn(Xs, OXs) is bijective for every s ∈ S.

As we will show, in the above conjecture it is enough to consider the
case k = Q (see Proposition 5.3). We mention that it is expected that under
the assumptions in the conjecture, there is a dense set of closed points
S ⊆ SpecA such that for every s ∈ S, the smooth projective variety Xs over
k(s) is ordinary in the sense of [BK]. One can show that this condition
implies that the action induced by Frobenius on each cohomology group
H i(Xs, OXs) is bijective. On the other hand, we hope that the property in
Conjecture 1.1 will be easier to prove than the stronger property of being
ordinary.

Before stating the consequence of Conjecture 1.1 to the relation between
multiplier ideals and test ideals, let us recall the definitions of these ideals.
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Since our main result deals only with nonsingular ambient varieties, we
review these concepts in this special case. Let Y be a nonsingular, connected
variety defined over an algebraically closed field of characteristic zero, and
suppose that a is a nonzero ideal on Y . Recall that a log resolution of (Y,a)
is a projective birational morphism π : X → Y , with X nonsingular and
a · OX = OX(−G), with G a divisor, such that there is a simple normal
crossings divisor E on X , with both G and KX/Y supported on E. Here
KX/Y is the relative canonical divisor. Such resolutions exist by Hironaka’s
theorem, since Y lives in characteristic zero. The multiplier ideal of a of
exponent λ ≥ 0 is the ideal

J (Y,aλ) := π∗ OX(KX/Y − �λG�),

where for any R-divisor E, we denote by �E� its round-down. It is a gen-
eral fact that the definition is independent of the given resolution. These
ideals have recently found many striking applications in birational geometry,
mostly due to their connection with vanishing theorems (see [Laz]).

In positive characteristic, Hara and Yoshida [HY] introduced the notion
of the (generalized) test ideal, relying on a generalization of the theory of
tight closure. In this paper we use an equivalent definition due to Schwede
[Sch]. This definition is particularly transparent in the case of an ambient
nonsingular variety, when it is an immediate consequence of the description
in [BMS].

Suppose that Y is a nonsingular, connected variety over a perfect field
L of characteristic p > 0, and suppose that a is an ideal on Y . The Cartier
isomorphism induces a surjective OX -linear map tY : F∗ωY → ωY , where F

is the absolute Frobenius morphism. Iterating this e times gives teY : F e
∗ ωY →

ωY . For any ideal b on Y , and for every e ≥ 1, the ideal b[1/pe] is defined
by teY (F e

∗ (b · ωY )) = b[1/pe] · ωY . Given any λ ≥ 0, it is easy to see that
the sequence of ideals ((a�λpe�)[1/pe])e≥1 is nondecreasing, and therefore it
stabilizes by the Noetherian property. The limit is the test ideal τ(Y,aλ).
(For a discussion of various analogies between test ideals, and multiplier
ideals, see [HY].) The following is the main conjecture relating multiplier
ideals and test ideals.

Conjecture 1.2. Let Y be a nonsingular, connected variety over an
algebraically closed field k of characteristic zero, and let a be a nonzero
ideal on Y . Given a model for Y and a defined over a Z-algebra of finite
type A, contained in k, there is a dense set of closed points S ⊂ SpecA
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such that

(1) τ(Ys,a
λ
s ) = J (Y,aλ)s

for all s ∈ S and all λ ≥ 0. Furthermore, if we have finitely many pairs
as above (Y (i),a(i)), and corresponding models over SpecA, then there is
a dense open subset of closed points in SpecA such that (1) holds for each
of these pairs.

Two things are known. First, under the assumptions in the conjecture,
there is an open subset of closed points in SpecA for which the inclusion ⊆
in (1) holds for all λ. This was proved in [HY] and is quite elementary. (We
give a variant of the argument in Section 3, using the equivalent definition in
[Sch].) A second, deeper result, also proved in [HY], says that for a fixed λ,
there is an open subset of closed points s ∈ SpecA such that equality holds
in (1) for this λ. This relies on the same kind of arguments as in [Ha] and
[MS], using the action of Frobenius on the de Rham complex, following
[DI]. The key fact in the above conjecture is that we require the equality to
hold for all λ at the same time. We mention that these two known results
generalize the fact that (Y,aλ) is Kawamata log terminal if and only if for
an open (or just dense) set of closed points S ⊂ SpecA, the pair (Ys,a

λ
s ) is

strongly F -regular for all s ∈ S. The following is our main result.

Theorem 1.3. If Conjecture 1.1 holds, then Conjecture 1.2 holds as well.

It is easy to reduce the assertion in Conjecture 1.2 to the case when Y

is affine and a is a principal ideal (f). The usual approach for comparing
the multiplier ideals of a with the test ideals of a reduction mod p of a

is to start with a log resolution of a. Our key point is to start instead by
doing semistable reduction. This allows us to reduce at the end of the day
to understanding a certain reduced divisor with simple normal crossings on
a nonsingular variety.

One can formulate Conjecture 1.2 in a more general setting. For exam-
ple, one can only assume that Y is normal and Q-Gorenstein or, even more
generally, work with a pair (Y,D) such that KY + D is Q-Cartier. Fur-
thermore, one can start with several ideals a1, . . . ,ar and consider mixed
multiplier ideals and test ideals. However, our method based on semistable
reduction does not allow us at present to handle these more general versions
of Conjecture 1.2.
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The paper is organized as follows. In the next section we recall some gen-
eral facts about p-linear maps of vector spaces over perfect fields and review
the general setting for reducing from characteristic zero to positive charac-
teristic. In Section 3 we recall the definition and some useful properties of
multiplier ideals and test ideals. While in our main result we consider a non-
singular ambient variety, at an intermediate step we also need to work on a
singular variety. Therefore, our treatment of multiplier ideals and test ideals
in Section 3 is done in this general setting. In Section 4 we state and discuss
a more general version of Conjecture 1.2. Section 5 is devoted to a discussion
of Conjecture 1.1 and to several consequences that would be needed later.
In Section 6 we prove our main result, showing that Conjecture 1.1 implies
Conjecture 1.2.

§2. A review of basic facts

In this section we recall some well-known facts that will come up fre-
quently during the rest of the paper. In particular, we discuss the general
setting and set the notation for reduction mod p.

2.1. p-linear maps on vector spaces
Let k be a perfect field of characteristic p > 0, and let V be a finite-

dimensional vector space over k. Let ϕ : V → V be a p-linear map, that is,
a morphism of abelian groups such that ϕ(au) = apϕ(u) for all a ∈ k and
u ∈ V . The following properties of such a map are well known (for a proof,
see, e.g., [CL, lemme 3.3]).

The vector space V can be uniquely decomposed as a direct sum of sub-
spaces preserved by ϕ, V = Vss ⊕ Vnil, where

(1) ϕ is nilpotent on Vnil, that is, ϕN = 0 for some N ;
(2) ϕ is bijective on Vss.

One says that ϕ is semisimple if V = Vss. This is equivalent with ϕ being
injective or, equivalently, surjective.

Example 2.1. If k is a finite field with pe elements, then ϕe is a k-linear
map. In this case ϕ is semisimple if and only if ϕe is an isomorphism.

If ϕ is as above, and k′ is a perfect field extension of k, then we get
an induced p-linear map ϕ′ : V ′ → V ′, where V ′ = V ⊗k k′. This is given
by ϕ′(v ⊗ λ) = ϕ(v) ⊗ λp. We have V ′

ss = Vss ⊗k k′ and V ′
nil = Vnil ⊗k k′. In

particular, ϕ′ is semisimple if and only if ϕ is semisimple.
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These considerations apply, in particular, if we take k′ = k, an algebraic
closure of k. If ϕ : V → V is the induced p-linear map over k, then V

ϕ=1 :=
{u ∈ V | ϕ(u) = u} is an Fp-vector subspace of V such that

(2) V ss = V
ϕ=1 ⊗Fp k.

In particular, we have dimFp(V
ϕ=1) ≤ dimk(V ), with equality if and only if

ϕ is semisimple.
Note that the morphism of abelian groups 1 − ϕ is surjective on V ss by

(2), and it is clearly bijective on V nil. In particular, 1 − ϕ is surjective, and
its kernel is V

ϕ=1.

Example 2.2. Let X be a complete scheme of finite type over k. The
absolute Frobenius morphism F : X → X is the identity on the underlying
topological space, and the corresponding morphism of sheaves of rings OX →
OX is given by u → up. Since k is perfect, F is a finite morphism. It induces
a p-linear map F : H i(X, OX) → H i(X, OX) for every i ≥ 0. After extending
the scalars to an algebraic closure k, we obtain the corresponding p-linear
map F : H i(Xk, OXk

) → H i(Xk, OXk
), where Xk = X ×Speck Speck. (Note

that in this case we still write F instead of F .)
On the other hand, we have the Artin-Schreyer sequence in the étale

topology
0 → Fp → OXk

1−F→ OXk
→ 0.

This induces exact sequences

0 → H i
ét(Xk,Fp) → H i(Xk, OXk

) 1−F→ H i(Xk, OXk
) → 0

for every i ≥ 0. In particular, F is semisimple on H i(X, OX) if and only if
dimFp H i

ét(Xk,Fp) = hi(X, OX).

Remark 2.3. Let ϕ : V → V and ψ : W → W be p-linear maps as above.
Note that we have induced p-linear maps on V ⊕ W and V ⊗ W and that
(V ⊕ W )ss = Vss ⊕ Wss and (V ⊗ W )ss = Vss ⊗ Wss.

Lemma 2.4. Let ϕ : V → V be a p-linear map as above.
(i) If ϕ is semisimple, and if W is a linear subspace of V such that ϕ(W ) ⊆

W , then the induced p-linear maps on W and V/W are semisimple.
(ii) If we have an exact sequence V ′ → V → V ′ ′ and p-linear maps ϕ′ : V ′ →

V ′ and ϕ′ ′ : V ′ ′ → V ′ ′ that are compatible with ϕ in the obvious sense,
and if ϕ′ and ϕ′ ′ are semisimple, then so is ϕ.
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Proof. If ϕ is bijective, then clearly the induced map on W is injective,
and the induced map on V/W is surjective. This implies the assertion in (i).
In order to prove (ii), we use (i) to reduce to the case when we have a short
exact sequence

0 → V ′ → V → V ′ ′ → 0.

In this case ϕ′ and ϕ′ ′ being bijective implies that ϕ is bijective by the
5-lemma.

2.2. Reduction mod p

We review the formalism for passing from characteristic zero to positive
characteristic. Let k be a fixed field of characteristic zero. Given a scheme X

of finite type over k, there is a subring A ⊂ k of finite type over Z, a scheme
XA of finite type over A, and an isomorphism X � XA ×SpecA Speck. Note
that we may always replace A by Aa, for some nonzero a ∈ A, and XA by
the corresponding open subscheme. It follows from generic flatness (see [Eis,
Theorem 14.4]) that we may (and will) assume that XA is flat over A. We
will refer to XA as a model of X over A. If A and B are two such rings,
and if XA and XB are models of X over A and B, respectively, then there
is a subring C of k containing both A and B, finitely generated over Z, and
an isomorphism

XA ×SpecA SpecC � XB ×SpecB SpecC

compatible after base change to Speck with the defining isomorphisms for
XA and XB . Given a model XA for X as above, and a point s ∈ SpecA, we
denote by Xs the fiber of XA over s. This is a scheme of finite type over the
residue field k(s) of s. Note that if s is a closed point, then k(s) is a finite
field.

We will consider properties P of schemes of finite type over finite fields
such that, given a scheme W of finite type over the finite field k and a finite
field extension k′ of k, P (W ) holds if and only if P (W ×Speck Speck′) holds.
With XA as above, we say that P (Xs) holds for general closed points s ∈
SpecA if there is an open subset U of SpecA such that P (Xs) holds for all
closed points s ∈ U . In this case, after replacing A by a suitable localization
Aa, we may assume that P (Xs) holds for all closed points s. We will often
be interested in properties that are expected to hold only for a dense set of
closed points s ∈ SpecA.
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Remark 2.5. With P as above, note that both conditions

(i) P (Xs) holds for general closed points s ∈ SpecA,
(ii) P (Xs) holds for a dense set of closed points s ∈ SpecA

are independent of the choice of a model. Indeed, if α : SpecC → SpecA

is induced by the inclusion A ⊂ C of finitely generated Z-algebras, then α

takes closed points to closed points, and the image of α contains a (dense)
open subset. Furthermore, the image or inverse image of a dense subset has
the same property.

On the other hand, in order to show that (ii) above holds, it is enough to
show that for every model XA there is at least one closed point s ∈ SpecA

such that P (Xs) holds.

If XA is a model for X as above, and if F is a coherent sheaf on X ,
then after possibly replacing A by a larger ring we may assume that there
is a coherent sheaf FA on XA whose pullback to X is isomorphic to F . It
follows from generic flatness that after replacing A by some localization Aa,
we may (and will) assume that FA is flat over A. For a point s ∈ SpecA,
we denote by Fs the restriction of FA to the fiber over s.

If ϕ : F → G is a morphism of coherent sheaves, after possibly enlarging A

we may assume that f is induced by a morphism of sheaves ϕA : FA → GA. In
particular, for every point s ∈ SpecA, we get an induced morphism ϕs : Fs →
Gs. Since we may assume that Coker(ϕA) and Im(ϕA) are flat over A, it
follows that we may assume that Coker(ϕs) = Coker(ϕ)s, Im(ϕs) = Im(ϕ)s,
and Ker(ϕs) = Ker(ϕ)s for every point s ∈ SpecA. In particular, if ϕ is
injective or surjective, then so are all ϕs. It follows easily from this that if
F is an ideal, or if it is locally free, then so are all Fs (as well as FA).

Given a morphism f : X → Y of schemes of finite type over k, and mod-
els XA and YB of X and Y , respectively, after possibly enlarging both A

and B we may assume that A = B and that f is induced by a morphism
fA : XA → YA of schemes over A. If s ∈ SpecA is a point, then we get a cor-
responding morphism fs : Xs → Ys of schemes over k(s). If f is a closed
(open) immersion, finite or projective, then we may assume that the same
holds for fA. In particular, the same will hold for all fs.

Suppose now that f : X → Y is a proper morphism and that F is a coher-
ent sheaf on X . If fA : XA → YA and FA are as above, arguing as in [Hart,
Section III.12] one can show that FA satisfies generic base change. In other
words, after replacing A by Aa for some nonzero a ∈ A, we may assume that
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for all s ∈ SpecA, the canonical morphism(
Ri(fA)∗(FA)

)
s

→ Ri(fs)∗(Fs)

is an isomorphism.
Given a model XA of X , it is easy to deduce from Noether’s normalization

theorem that all fibers of XA → SpecA have dimension ≤ dim(X). It follows
from the Jacobian criterion for smoothness that if X is an irreducible regular
scheme, then we may assume that XA is smooth over SpecA of relative
dimension equal to dim(X). In particular, Xs is smooth over k(s) for every
point s ∈ SpecA. In general, Xs might not be connected; however, if we
assume that k is algebraically closed, then Xs will be connected, since the
generic fiber of XA over SpecA is geometrically connected.

For simplicity, from now on we assume that k is algebraically closed.
Suppose that Y is an arbitrary reduced scheme over k, and let us consider
a resolution of singularities of Y , that is, a projective birational morphism
f : X → Y , with X regular. We may choose a morphism of models fA : XA →
YA that is projective, birational, and with XA smooth over SpecA. We may
also assume that SpecA is smooth over SpecZ. Since OY ↪→ f∗(OX), we may
assume that OYA

↪→ (fA)∗(OXA
). In particular, YA is reduced. Furthermore,

by generic base change we may assume that OYs ↪→ (fs)∗(OXs) for every
s ∈ SpecA. In particular, Ys is reduced, and if Y is irreducible, then so are
all Ys. (Here we make use of the assumption that k is algebraically closed.)
We also see that dim(Ys) = dim(Y ) for all s, since we know this property
for X . Similarly, if Y is normal, then OY = f∗(OX), and arguing as above
we may assume that YA and all Ys are normal.

If D = a1D1 + · · · + arDr is a Weil divisor on Y , then we may assume
that we have prime divisors (Di)A on YA, and let DA :=

∑
i ai(Di)A. After

possibly replacing A by a localization Aa, we may assume that for every
s ∈ SpecA the fiber (Di)s is a prime divisor on Ys, and we get the divisor
Ds =

∑
i ai(Di)s.

In particular, if Y is irreducible and normal, we may consider KY , a Weil
divisor unique up to linear equivalence, whose restriction to the nonsingular
locus Ysm is a divisor corresponding to ωYsm . We write KYA

for (KY )A. If
U = Ysm, then we may assume that the corresponding open subset UA ⊂
YA is smooth over A and that KYA

is a divisor whose restriction to UA

corresponds to Ωn
UA/A, where n = dim(Y ). We may therefore assume that for

every s ∈ SpecA, the restriction of KYA
to Ys gives a canonical divisor KYs .
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§3. Test ideals and multiplier ideals

3.1. Multiplier ideals
We start by recalling the definition of multiplier ideals. (For details, basic

properties, and further results, see [Laz].) Let k be an algebraically closed
field of characteristic zero, and let Y be an irreducible normal scheme of
finite type over k. We consider a Weil divisor D on Y such that KY + D

is Cartier.∗ Given a nonzero ideal a on Y , we define the multiplier ideals
J (Y,D,aλ) for λ ∈ R≥0 as follows.

Recall first that given any birational morphism π : X → Y , with X nor-
mal, there is a unique divisor DX on X with the following two properties:
(i) KX + DX is linearly equivalent with π∗(KY + D) (hence, in particular,

it is Cartier);
(ii) for every nonexceptional prime divisor T on X , its coefficient in DX is

equal to its coefficient in the strict transform D̃ of D.
Note that DX is supported on D̃ +Exc(π), where Exc(π) is the exceptional
locus of π.

Suppose now that π : X → Y is a log resolution of the triple (Y,D,a).
This means that π is projective and birational, X is nonsingular, a · OX =
OX(−G) for a divisor G, Exc(π) is a divisor, and E := D̃ + Exc(π) + G has
simple normal crossings. With this notation, we have

(3) J (X,D,aλ) := π∗ OX(−DX − �λ · G�).

Recall that if T =
∑

i biTi is an R-divisor, then �T � :=
∑

i�bi�Ti, where �bi�
is the largest integer ≤ bi. When a = (f) is a principal ideal, then we simply
write J (X,D,fλ). Note that J (X,D,aλ) is in general only a fractional
ideal. However, if D is effective, then all components of DX with negative
coefficient are exceptional. Therefore, in this case J (X,D,aλ) is an ideal.

It is a basic fact that the above definition is independent of resolution.
It follows from (3) that J (Y,D,aλ) ⊆ J (Y,D,aμ) if λ > μ. Furthermore,
given any λ ≥ 0, there is ε > 0 such that J (Y,D,aλ) = J (Y,D,aμ) for all
μ with λ ≤ μ ≤ λ + ε. One says that λ > 0 is a jumping number of (Y,D,a)
if J (Y,D,aλ) = J (Y,D,aμ) for every μ < λ. Note that if we write G =∑N

i=1 biEi, then for every jumping number λ we must have

(4) λbi ∈ Z for some i ≤ N with bi = 0.

∗One can assume that D is just a Q-divisor such that some multiple of KY + D is
Cartier; however, we will not need this level of generality.
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(If λ satisfies this property, we call it a candidate jumping number.) In
particular, the set of jumping numbers of (X,D,a) is a discrete subset of
Q>0.

We now recall a few properties of multiplier ideals that will come up later.
The following result is [Laz, Theorem 9.2.33]. The proof uses the definition of
multiplier ideals and the independence of resolutions. (While the statement
therein requires the varieties to be nonsingular, the same proof works in the
general setting.)

Proposition 3.1. If π : X → Y is any projective, birational morphism,
with X normal, and if a′ = a · OX , then for every λ ∈ R≥0 we have

J (Y,D,aλ) = π∗ J
(
X,DX , (a′)λ

)
.

We now consider a finite surjective morphism μ : Y ′ → Y , with Y ′ normal
and irreducible, and we put a′ = a · OY ′ . In this case there is an open subset
U ⊆ Y such that codim(Y � U,Y ) ≥ 2, and both U and V = ϕ−1(U) are
nonsingular (e.g., one can take U = Ysm � μ(Y ′

� Y ′
sm). In this case, both

KV/U and μ∗(D|U ) are well-defined divisors on V . We denote by DY ′ the
unique Weil divisor on Y ′ whose restriction to V is μ∗(D|U ) − KV/U . Note
that KY ′ +DY ′ is linearly equivalent with μ∗(KY +D); hence, in particular,
it is Cartier. For an integral scheme W , we denote by K(W ) the function
field of W .

Proposition 3.2. With the above notation, for every λ ∈ R≥0 we have

J (Y,D,aλ) = μ∗ J
(
Y ′,DY ′ , (a′)λ

)
∩ K(Y ).

Proof. If both Y and Y ′ are nonsingular, then the result is [Laz, Theo-
rem 9.5.42]. Note that the result therein only requires μ to be generically
finite. The singular case is an easy consequence: if X → Y is a resolution
of singularities, and if X ′ → X ×Y Y ′ is a resolution of singularities of the
irreducible component dominating Y ′, we get a commutative diagram

(5) X ′
g

π′

X

π

Y ′
μ

Y

with π and π′ projective and birational, and g generically finite. Applying
[Laz, Theorem 9.5.42] to g, and Proposition 3.1 to π and π′, we deduce the
equality in the proposition.
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Remark 3.3. Note that if the divisor D in Proposition 3.2 is effective,
then the proposition implies that

J (Y,D,aλ) = μ∗ J
(
Y ′,DY ′ , (a′)λ

)
∩ OY .

The following statement follows directly from the definition of multiplier
ideals and the projection formula (see [Laz, Proposition 9.2.31]).

Proposition 3.4. Let (Y,D,a) be as above, and suppose that D′ is
a Cartier divisor on Y . For every λ ≥ 0 we have

J (Y,D + D′,aλ) = J (Y,D,aλ) · OY (−D′).

The following result is [Laz, Proposition 9.2.28]. It is a consequence of
Bertini’s theorem.

Proposition 3.5. Suppose that Y = SpecR is affine, a = (h1, . . . , hm),
and d is a positive integer. If g1, . . . , gd are general linear combinations of
the hi with coefficients in k, and if g =

∏d
i=1 gi, then

J (Y,D,aλ) = J (Y,D,gλ/d)

for every λ < d.

We end this section with a statement of Skoda’s theorem for multiplier
ideals on singular varieties (for a proof, see [LLS, Corollary 1.4]). Note,
however, that in this paper we will need only the case when X is nonsingular.
A proof in this case can be found in [Laz, Section 11.1.A].

Proposition 3.6. Let (Y,D,a) be as above. If a can be locally generated
by m sections, then

J (Y,D,aλ) = a · J (Y,D,aλ−1)

for every λ ≥ m.

3.2. Reduction mod p of multiplier ideals
Suppose now that Y , D, and a are as in Section 3.1, and let us consider

a model YA of Y over a finitely generated Z-subalgebra A of k. We follow
the notation introduced in Section 2.2. We may assume that we have a Weil
divisor DA on YA and a sheaf of ideals aA on YA that give models for D and
a. Let us fix now a log resolution π : X → Y of (Y,D,a). We may assume
that this is induced by a projective birational morphism XA → YA, with XA

smooth over A.
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Note that since KY + D is Cartier, we may assume that KYA
+ DA is

Cartier, and that all KYs +Ds are Cartier, for s ∈ SpecA. The divisor DXA

on XA that induces DX satisfies analogous properties to properties (i) and
(ii) stated in Section 3.1 for DX . Furthermore, for every s ∈ SpecA, the
restriction DXs of DXA

to Xs satisfies

(i) the Cartier divisors KXs + DXs and π∗
s(KYs + Ds) are linearly equiva-

lent;
(ii) for every nonexceptional prime divisor T on Xs, its coefficient in DXs

is equal to its coefficient in the proper transform D̃s of Ds.

We may assume that aA · OXA
= OXA

(−GA) for a divisor GA on XA,
and that Exc(πA) is a divisor. Furthermore, we may assume that we have
a divisor EA =

∑N
i=1(Ei)A on XA such that every intersection (Ei1)A ∩

· · · ∩ (Ei�)A is smooth over A, and such that GA, Exc(πA), and DXA
are

supported on Supp(EA). We deduce that for every s ∈ SpecA, the induced
morphism πs : Xs → Ys gives a log resolution of (Ys,Ds,as).

Suppose now that m is a positive integer such that a can be generated
locally by m sections. Recall that in this case we have by Proposition 3.6
J (Y,D,aλ) = a · J (Y,D,aλ−1) for every λ ≥ m. This allows us to focus on
exponents < m in defining J (Y,D,aλ)s and then to extend the definition
by putting J (Y,D,aλ)s = as · J (Y,D,aλ−1)s for λ ≥ m.

For λ < m, we have the ideal (πA)∗ OXA
(−(DX)A − �λGA�) on YA that

gives a model of J (Y,D,aλ). By generic base change, we may assume
that for every s ∈ SpecA, the induced ideal J (Y,D,aλ)s is the ideal
(πs)∗ OXs(−DXs − �λGs�). Indeed, note that we only have to consider finitely
many ideals, corresponding to the candidate jumping numbers as in (4) that
are < m. We mention that if we consider the above construction starting
with a different log resolution of (Y,D,a), then there is an open subset of
SpecA such that for every s in this subset, the two definitions of the ideals
J (Y,D,aλ)s coincide.

3.3. Test ideals
In this section we work over a perfect field L of positive characteristic p.

(In the case of interest for us, L will always be a finite field.) In this case,
the test ideals of Hara and Yoshida [HY] admit a simpler description, due
to Schwede [Sch], that completely avoids tight closure theory. Our main
reference here is [ST], though for some of the proofs the reader will need to
consult the references given therein.
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Before giving the definition of test ideals, we review a fundamental map in
positive characteristic. Suppose that Y is a smooth connected scheme over
L of dimension n. Let Ω•

Y/L be the de Rham complex on Y . If F denotes
the absolute Frobenius morphism on Y , then the Cartier isomorphism is
a graded OY -linear isomorphism CY :

⊕
i Hi(F∗(Ω•

Y/L)) →
⊕

i Ω
i
Y/L (see

[DI] for a description and proof). In particular, we get a surjection

F∗ωY = F∗Ωn
Y/L → Hn

(
F∗(Ω•

Y/L)
) CY→ ωY ,

which we denote by tY . Iterating this map e times gives teY : F e
∗ ωY → ωY .

If f and w are local sections of OY and ωY , respectively, then
tY ((1/f)w) = (1/f)tY (fp−1w). This shows that for every effective divisor
D on Y , we have an induced map

tY,D : F∗
(
ωY (D)

)
→ ωY (D),

compatible with the previous one via the inclusion ωY ↪→ ωY (D). The same
remark applies to the maps teY . If D is not necessarily effective, then tY,D

is still well defined, but its image lies in the sheaf ωY ⊗ K(Y ) of rational
n-forms on Y .

The map tY : F∗(ωY ) → ωY can be described around a closed point y ∈
Y , as follows. Let us choose a system of coordinates u1, . . . , un at y (i.e.,
a regular system of parameters of OY,y). We may assume that we have an
affine open neighborhood U of y such that ui ∈ OY (U) for all i, and that
du = du1 ∧ · · · ∧ dun gives a basis of ωY |U . Furthermore, the residue field
of OY,y is finite over the perfect field L; hence, it is perfect; and since the
ui give a regular system of parameters at y, we may assume that OY (U) is
free over OY (U)p, with a basis given by

{ui1
1 · · · uin

n | 0 ≤ ij ≤ p − 1 for 1 ≤ j ≤ n}.

In this case tY |U is characterized by the fact that tY (hpw) = h · tY (w) for
every h ∈ OY (U), and for every ij with 0 ≤ ij ≤ p − 1 we have

(6) tY (ui1
1 · · · uin

n du) =

{
du, if ij = p − 1 for all j,

0, otherwise.

The map tY is functorial in the following sense. Consider a morphism
π : X → Y of smooth schemes over L. For every i we have a commutative
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diagram involving the respective Cartier isomorphisms

π∗ Hi(F∗Ω•
Y/L)

π∗(CY )−−−−→ π∗Ωi
Y/L

βi

⏐⏐� ⏐⏐�αi

Hi(F∗Ω•
X/L) CX−−−−→ Ωi

X/L,

where αi is given by pulling back forms, while βi is obtained as the compo-
sition

π∗ Hi(F∗Ω•
Y/L) → Hi

(
π∗(F∗Ω•

Y/L)
)

→ Hi(F∗π∗Ω•
Y/L) → Hi(F∗Ω•

X/L).

If, in addition, π is a proper birational map, D is an effective divisor on Y ,
and DX is the divisor on X defined as in Section 3.1, we get an induced
commutative diagram relating the two trace maps

(7)

π∗(
F e

∗ (ωY (D))
) π∗(teY,D)

−−−−−→ π∗(
ωY (D)

)⏐⏐� ⏐⏐�
F e

∗
(
ωX(DX)

) teX,DX−−−−→ ωX(DX) ⊗ K(X),

where the right vertical map is obtained by composing the isomorphism
ψ : π∗(ωY (D)) → ωX(DX) with the inclusion ωX(DX) ↪→ ωX(DX) ⊗ K(X),
and the left vertical map is given by the composition

π∗(
F e

∗ (ωY (D))
)

−−−−→ F e
∗
(
π∗(ωY (D))

) F e
∗ (ψ)−−−−→ F e

∗
(
ωX(DX)

)
.

Note that while the bottom horizontal map in (7) does not necessarily land
in ωX(DX) (since in general DX is not effective), the composition of the
maps in (7) has this property.

Suppose now that Y is a normal, irreducible scheme over L, of dimen-
sion n. We fix an effective Weil divisor D on Y such that KY +D is Cartier.
(Note that in [ST] one works in a more general framework, which compli-
cates some of the definitions; for the sake of simplicity, we only give the
definitions in the setting that we will need.) We claim that to D and to
every e ≥ 1 we can naturally associate an OY -linear map

(8) ϕ
(e)
D : F e

∗ OY

(
(1 − pe)(KY + D)

)
→ OY .

Indeed, in order to define ϕ
(e)
D , it is enough to do it on the complement

of a closed subset of codimension ≥ 2. Therefore we may assume that Y is
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smooth over L. In this case ϕ
(e)
D is obtained by tensoring teY,D : F e

∗ (ωY (D)) →
ωY (D) by ω−1

Y (−D) and using the projection formula for F e. Note that if
D is not necessarily effective, then we may still define as above ϕ

(e)
D , but its

image will be a fractional ideal on Y , not necessarily contained in OY .
If π : X → Y is a proper, birational morphism of schemes, with X smooth,

then we have as in Section 3.1 a unique divisor DX on X such that KX +DX

is linearly equivalent to π∗(KY + D), and such that DX agrees along the
nonexceptional divisors of π with the proper transform of D. In this case,
we claim that the commutative diagram (7) induces a commutative diagram

(9)

π∗F e
∗ OY

(
(1 − pe)(KY + D)

) π∗(ϕ
(e)
D )−−−−−→ π∗ OY⏐⏐� ⏐⏐�

F e
∗ OX

(
(1 − pe)(KX + DX)

) ϕ
(e)
DX−−−−→ K(X),

where the right vertical map is given by π∗(OY ) � OX ↪→ K(X). This fol-
lows when Y is smooth, too, using the commutativity of (7). In the general
case, note that (9) corresponds by the adjointness of (π∗, π∗) to the diagram

(10)

F e
∗ OY

(
(1 − pe)(KY + D)

) ϕ
(e)
D−−−−→ OY

F e
∗ (ρ)

⏐⏐� ⏐⏐�
π∗F e

∗ OX

(
(1 − pe)(KX + DX)

) π∗(ϕ
(e)
DX

)
−−−−−→ K(Y ),

where ρ : OY ((1 − pe)(KY +D)) → π∗ OX((1 − pe)(KX +DX)) is the canon-
ical isomorphism given by pullback of sections. In order to check the com-
mutativity of (10) we may restrict to the complement of a codimension ≥ 2
closed subset, and therefore we may assume that both X and Y are smooth,
in which case, as we have mentioned, (9) hence also (10) is commutative.
Note also that since (10) is commutative and the left vertical map is an
isomorphism, the image of π∗(ϕ(e)

DX
) is contained in OY = π∗(OX).

Example 3.7. Suppose that Y is nonsingular and that D = a1E1 + · · · +
arEr is a not necessarily effective simple normal crossings divisor on Y . If
b = OY (−D′), where D′ =

∑r
i=1 biEi is effective, then

ϕ
(e)
D

(
F e

∗ (b · OY ((1 − pe)(KY + D)))
)
= OY (−D − F ),
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where F =
∑r

i=1 ciEi, with ci = �(bi − ai)/pe� for every i. This description
follows easily from the description in coordinates of the map teY,D.

We can now recall the definition of the test ideal τ(Y,D,aλ), where (Y,D)
is as above (with D effective), a is a nonzero ideal on Y , and λ is a non-
negative real number. One shows that there is a unique minimal nonzero
coherent ideal sheaf J on Y such that for every e we have

(11) ϕ
(e)
D

(
F e

∗ (a�λ(pe−1)�J · OY ((1 − pe)(KY + D)))
)

⊆ J.

This is the test ideal τ(Y,D,aλ). Here �u� denotes the smallest integer ≥ u.
When a = (f) is a principal ideal, we simply write τ(Y,D,fλ).

Proposition 3.8. If (Y,D) is as above, and d is a positive integer, then

τ
(
Y,D, (ad)λ

)
⊆ τ(Y,D,adλ) for every λ ∈ R≥0.

Proof. For every e we have d�λ(pe − 1)� ≥ �dλ(pe − 1)�. It follows that if
J satisfies (11) with a�λ(pe −1)� replaced by a�dλ(pe −1)�, then it also satisfies
(11) with a�λ(pe −1)� replaced by ad�λ(pe −1)�. The assertion in the proposition
now follows from the minimality in the definition of τ(Y,D, (ad)λ).

Remark 3.9. In fact, the inclusion in Proposition 3.8 is an equality. We
leave to the interested reader the task of checking the reverse inclusion, that
we will not need. See [BMS, Corollary 2.15] for a proof in the case when Y

is nonsingular.

In order to describe τ(Y,D,aλ), it is enough to do it when Y = SpecR

is affine. In this case one can show (see [ST, Lemma 6.4]) that there is
a nonzero c ∈ R such that for every nonzero g ∈ R, there is e ≥ 1 such that

(12) c ∈ ϕ
(e)
D

(
F e

∗ (a�λ(pe−1)�g · OY ((1 − pe)(KY + D)))
)
.

In this case, it is not hard to see that

(13) τ(Y,D,aλ) =
∑
e≥1

ϕ
(e)
D

(
F e

∗ (a�λ(pe −1)�c · OY ((1 − pe)(KY + D)))
)

(see [ST, Proposition 6.8]). For example, if u ∈ a � {0} is such that U =
SpecRu is regular, and D|U = 0, then one can take c to be a power of u (see
[ST, Remark 6.6]).

Note that if a ⊆ b and if c ∈ R satisfy (12) for a, then it also satisfies (12)
for b. An immediate consequence of the description (13) for the test ideal
is the following monotonicity property.
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Proposition 3.10. If (Y,D) is as above, and if a, b are nonzero ideals
on Y with a ⊆ b, then τ(Y,D,aλ) ⊆ τ(Y,D,bλ) for every λ ∈ R≥0.

The definition we gave for τ(Y,D,aλ) applies when D is an effective
divisor. On the other hand, if D′ is any effective Cartier divisor, then

(14) τ(Y,D + D′,aλ) = τ(Y,D,aλ) · OY (−D′)

(see [ST, Lemma 6.11]). If D is a not necessarily effective Weil divisor such
that KY + D is Cartier, then we define τ(Y,D,aλ) as follows. Working
locally, we can find a Cartier divisor D′ such that D + D′ is effective, and
in this case τ(Y,D,aλ) is the fractional ideal τ(Y,D + D′,aλ) · OY (D′). It
follows from (14) that the definition is independent of the choice of D′.

If Y is nonsingular, one can show that the above definition for the test
ideal τ(Y,D,aλ) coincides with the one in [BMS], which is the one we gave
in Section 1. We refer to [BSTZ, Proposition 3.10] for a proof.

While we will not need the results on the jumping numbers for the test
ideals, we mention them because of the analogy with the case of multiplier
ideals. For the proofs, see [BMS] for the case when Y is smooth and D = 0,
and see [BSTZ] for the general case. Given any (Y,D,a) as above, and
any λ ≥ 0, there is ε > 0 such that τ(Y,D,aλ) = τ(Y,D,aμ) for every μ

with λ ≤ μ ≤ λ + ε. A positive λ is an F -jumping number if τ(Y,D,aλ) =
τ(Y,D,aμ) for every μ < λ. One can show that the set of F -jumping numbers
is a discrete set of rational numbers. However, we emphasize that this result
is much more subtle than the corresponding one for multiplier ideals.

The following proposition gives the analogue of Skoda’s theorem for test
ideals (see [BSTZ, Lemma 3.26]). For the smooth case, which is the only
one that we will need in this paper, see [BMS, Proposition 2.25].

Proposition 3.11. Let (Y,D,a) be a triple as above, and let m be a pos-
itive integer such that a is locally generated by m sections. For every λ ≥ m

we have
τ(Y,D,aλ) = a · τ(Y,D,aλ−1).

We will make use in Section 6 of the following result of Schwede and
Tucker [ST, Corollary 6.28] concerning the behavior of test ideals under
finite morphisms. Let μ : Y ′ → Y be a finite surjective morphism of normal,
irreducible varieties. Given the Weil divisor D on Y such that KY + D is
Cartier, then as in Proposition 3.2 we have a divisor DY ′ on Y ′ such that
KY ′ +DY ′ and μ∗(KY +D) are linearly equivalent. We also put a′ = a · OY ′ .
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Theorem 3.12. With the above notation, if μ is a separable morphism
and if the trace map Tr: K(Y ′) → K(Y ) is surjective, then

τ(Y,D,aλ) = μ∗τ
(
Y ′,DY ′ , (a′)λ

)
∩ K(Y ).

Furthermore, if D is effective, then

τ(Y,D,aλ) = μ∗τ
(
Y ′,DY ′ , (a′)λ

)
∩ OY .

One can compare this result with the corresponding result about multi-
plier ideals in Proposition 3.2. Note that the hypothesis in Theorem 3.12 is
satisfied if p = char(L) does not divide [K(Y ′) : K(Y )].

§4. The conjectural connection between
multiplier ideals and test ideals

The following is the main conjecture relating multiplier ideals and test
ideals.

Conjecture 4.1. Let Y be a normal, irreducible scheme over an alge-
braically closed field k of characteristic zero. Suppose that D is a Weil divi-
sor on Y such that KY +D is Cartier, and suppose that a is a nonzero ideal
on Y . Given a model YA of Y over a ring A ⊂ k of finite type over Z, there
is a dense set of closed points S ⊂ SpecA such that

(15) τ(Ys,Ds,a
λ
s ) = J (Y,D,aλ)s for all λ ∈ R≥0 and all s ∈ S.

Furthermore, if we have finitely many triples as above (Y (i),D(i),a(i)), and
corresponding models over SpecA, then there is a dense open subset of closed
points in SpecA such that (15) holds for each of these triples.

One can formulate variants of the above conjecture in more general set-
tings. For example, D may be assumed to be a Q-divisor such that some
multiple of KY + D is Cartier, and one can replace the ideal a by finitely
many ideals a1, . . . ,ar. In the latter case one has to consider the correspond-
ing mixed multiplier and test ideals. On the other hand, in our main result
we will restrict ourselves to the case when X is nonsingular. In particular, in
this case D is Cartier, and therefore (15) holds if and only if it holds when
D = 0. Therefore, in this case Conjecture 4.1 reduces to Conjecture 1.2.
For examples related to the above conjecture in the case of an ambient
nonsingular variety, see [Mus, Section 3] and [MTW, Section 4].
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The inclusion ⊆ in (15) is due to Hara and Yoshida [HY]. In fact, this
inclusion holds for an open subset of closed points in SpecA. It is a conse-
quence of the more precise result below. We include a proof, since this is
particularly easy with the alternative definition of test ideals that we are
using.

Proposition 4.2. Let Y be a normal irreducible scheme over a perfect
field L of positive characteristic p. Suppose that D is a divisor on Y such
that KY + D is Cartier, and suppose that a is a nonzero ideal on Y . If
π : X → Y is a proper birational morphism, with X nonsingular, a · OX =
OX(−G) for a divisor G, and if Supp(G) ∪ Supp(DX) has simple normal
crossings, where the divisor DX on X is defined as in Section 3.1, then

(16) τ(Y,D,aλ) ⊆ π∗ OX(−DX − �λG�)

for every λ ∈ R≥0.

Proof. After replacing Y by each of the elements of a suitable open cover
of Y , we may assume that there is a Cartier divisor D′ on Y such that
D + D′ is effective. Since it is enough to prove (16) with D replaced by
D + D′, we may assume that D is effective.

Let J denote the right-hand side of (16). It follows from the minimality
in the definition of the test ideal that in order to prove the inclusion in (16),
it is enough to show that for every e ≥ 1 we have the inclusion in (11). Let
us fix such e. Since X is nonsingular and Supp(G) ∪ Supp(DX) has simple
normal crossings, if b = OX(−G), then J ′ := τ(X,DX ,bλ) = OX(−DX −
�λG�). Indeed, this is an easy consequence of (13) and of the formula in
Example 3.7. (Note that in this case the c in (13) can be taken to be a power
of the defining equation of Supp(DX) ∪ Supp(F ).)

By definition, we have

(17) ϕ
(e)
DX

(
F e

∗ (b	J ′ · π∗(L))
)

⊆ J ′,

where L = OY ((1 − pe)(KY + D)) and  = �λ(pe − 1)�. We now use the
commutativity of (10). With the notation therein, we have ρ(a	J · L) ⊆
π∗(b	J ′ · π∗(L)). Therefore,

ϕ
(e)
D

(
F e

∗ (a	J · L)
)

= π∗(ϕ(e)
DX

)
(
F e

∗ (ρ)(F e
∗ (a	J · L))

)
⊆ π∗(ϕ(e)

DX
)
(
F e

∗ (ρ(a	J · L))
)

https://doi.org/10.1215/00277630-1431849 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1431849


ORDINARY VARIETIES, MULTIPLIER IDEALS, AND TEST IDEALS 145

⊆ π∗
(
ϕ

(e)
DX

(F e
∗ (b	J ′ · π∗(L)))

)
⊆ π∗(J ′) = J,

where the last inclusion follows by applying π∗ to (17). Therefore we have the
inclusion in (11) for J , and this completes the proof of the proposition.

Note that in the setting of the conjecture, it is known that if we fix λ,
then we get the equality in (15) for all closed points in an open subset of
SpecA (depending on λ). This was proved by Hara and Yoshida in [HY],
relying on ideas that had been used also in [Ha] and [MS]∗.

We end this section with the following proposition, which allows us to
consider Conjecture 1.2 only in the case of principal ideals on nonsingular
affine varieties.

Proposition 4.3. In order to prove Conjecture 1.2, it is enough to con-
sider the case when Y is an affine nonsingular variety and a = (f) is a prin-
cipal ideal (but allowing several such pairs).

Proof. Since every Y admits a finite affine open cover Y =
⋃

i Ui, and since
proving the conjecture for (Y,a) is equivalent to proving it (simultaneously)
for all (Ui,a|Ui), it follows that it is enough to consider the case when for
all pairs we treat, the ambient scheme Y is affine and nonsingular.

For such a pair (Y,a), let h1, . . . , hm be generators of a. It follows from
Proposition 4.2 that we only need to guarantee the inclusion

(18) J (Y,aλ)s ⊆ τ(Ys,a
λ
s ).

Furthermore, in light of Propositions 3.6 and 3.11, it is enough to consider
only the case λ < m.

Let g1, . . . , gm be general linear combinations of the hi with coefficients
in k, and let g =

∏m
i=1 gi, so that by Proposition 3.5 we have J (Y,aλ) =

J (Y, gλ/m) for all λ < m. As we have seen in Section 3.2, in the case of mul-
tiplier ideals of bounded exponents we have only to consider finitely many
such exponents (the candidate jumping numbers); hence, we may assume
after taking a model over A that for every closed point s ∈ SpecA we have

(19) J (Y,aλ)s = J (Y, gλ/m)s

for all λ < m.

∗The result in [HY] treats only the case of a local ring, since one uses the tight closure
approach to test ideals. However, one can modify the proof therein to give the assertion
in our setting.
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Suppose now that we can find a dense set S of closed points in SpecA

such that

(20) J (Y, gλ/m)s ⊆ τ(Ys, g
λ/m
s )

for every s ∈ S and every λ < m. Since g ∈ am, we have by Propositions 3.8
and 3.10

(21) τ(Ys, g
λ/m
s ) ⊆ τ

(
Ys, (am

s )λ/m
)

⊆ τ(Ys,a
λ
s )

for every s ∈ S. Putting together (19), (20), and (21), we get (18), which
completes the proof of the proposition.

§5. A conjecture regarding the Frobenius action
on the cohomology of the structure sheaf

In this section we discuss our conjecture about Frobenius actions and
deduce some consequences. Let k be an algebraically closed field of char-
acteristic zero. We will freely use the notation and notions introduced in
Section 2.1 and Section 2.2. Recall Conjecture 1.1: Suppose that X is a
connected, nonsingular n-dimensional projective algebraic variety over k,
and that XA is a model of X over the finitely generated Z-subalgebra A of
k. Conjecture 1.1 asserts that there is a dense set of closed points S ⊂ SpecA

such that the Frobenius action F : Hn(Xs, OXs) → Hn(Xs, OXs) is semisim-
ple for every s ∈ S.

Remark 5.1. In fact, one expects that the analogous assertion would
be true for the Frobenius action on each of the cohomology vector spaces
H i(Xs, OXs). Moreover, it is expected that there is a dense set of closed
points s ∈ SpecA such that each Xs is ordinary in the sense of Bloch and
Kato [BK] (see also [CL, exposé III] for a nice introduction to ordinary
varieties). As follows from [BK, Proposition 7.3], if Xs is ordinary, then
the action of Frobenius on the Witt vector cohomology H i(Xs,W OXs) is
bijective. Note that we have an exact sequence of sheaves of abelian groups

0 → W OXs

V→ W OXs → OXs → 0

that is compatible with the action of Frobenius, where V is the Verschiebung
operator. From the long exact sequence

H i(Xs,W OXs) → H i(Xs,W OXs) → H i(Xs, OXs)
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→ H i+1(Xs,W OXs) → H i+1(Xs,W OXs)

that is compatible with the action of Frobenius, and the 5-lemma, it follows
that Frobenius acts bijectively on H i(Xs, OXs).

However, our hope is that proving that the Frobenius action on
Hn(Xs, OXs) is semisimple will be easier than showing that Xs is ordinary.

Remark 5.2. If Conjecture 1.1 holds, then given finitely many vari-
eties X(1), . . . ,X(r) as above, with dim(X(i)) = di, we may consider models
X

(1)
A , . . . ,X

(r)
A over A. In this case, there is a dense set of closed points S ⊂

SpecA such that the action of F on each cohomology group Hdi(X(i)
s , O

X
(i)
s

),
with s ∈ S, is semisimple. Indeed, it is enough to apply the conjecture for
X = X(1) × · · · × X(r), using Remark 2.3 and the fact that by Künneth’s
formula we have

Hd(Xs, OXs) =
r⊗

i=1

Hdi(X(i)
s , O

X
(i)
s

),

where d = dim(X) =
∑r

i=1 di.

Proposition 5.3. In order to prove Conjecture 1.1 for every algebraically
closed field k of characteristic zero, it is enough to prove it for the field of
algebraic numbers k = Q.

Proof. Suppose that X is defined over k, and let XA be a model over A,
where A ⊂ k is a Z-algebra of finite type. As pointed out in Remark 2.5,
it is enough to show that there is a closed point s ∈ SpecA such that the
Frobenius action on Hn(Xs, OXs) is semisimple.

The Q-algebra AQ := A ⊗Z Q is finitely generated; hence, if m is a prime
ideal of A such that mAQ is a maximal ideal of AQ, then K = AQ/mAQ is a
finite extension of Q. If OK is the ring of integers in K, then using the finite
generation of A over Z we see that there is a nonzero h ∈ OK such that the
surjective morphism AQ → K induces a morphism A → B = (OK)h.

Let XB = XA ×SpecA SpecB, and let XQ = XA ×SpecA SpecQ, where
the morphism A → Q is given by the composition A → K ↪→ Q. Since we
may assume that XA is smooth and projective over SpecA, with geomet-
rically connected generic fiber, it follows that XQ is connected, smooth,
and projective over Q, and clearly XB is a model of XQ over SpecB. If
we know Conjecture 1.1 over Q, then it follows that there is a closed point
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t ∈ SpecB such that the Frobenius action on Hn((XQ)t, O(XQ)t
) is semisim-

ple. If s ∈ SpecA is the image of t, then we have a finite field extension
k(s) ↪→ k(t), and (XQ)t = Xs ×Speck(s)Speck(t). Since Hn((XQ)t, O(XQ)t

) �
Hn(Xs, OXs)

⊗
k(s) k(t), we conclude that the Frobenius action on

Hn(Xs, OXs) is semisimple.

Example 5.4. If X is a g-dimensional abelian variety, then we may
assume that Xs is an abelian variety over k(s) for every closed point s ∈
SpecA. In this case h1(Xs, OXs) = g, and the action of Frobenius on
Hg(Xs, OXs) � ∧gH1(Xs, OXs) is semisimple if and only if the action of
Frobenius on H1(Xs, OXs) is semisimple. This is the case if and only if
Xs is ordinary in the usual sense, that is, if Xs ×Speck(s) Speck(s) has pg

p-torsion points, where p = char(k(s)).
By Proposition 5.3, in order to check Conjecture 1.1 in this case we may

assume that X is defined over Q. The conjecture is then known if g ≤ 2,
but it is open in general. The case of elliptic curves is classical, while the
case g = 2 is due to Ogus [Og, Proposition 2.7] (see also [CL, théorème 6.3]
for a proof of this result).

Example 5.5. If X is a smooth projective curve of genus g, then the
action of Frobenius on H1(Xs, OXs) is semisimple if and only if the Jacobian
of Xs is ordinary in the usual sense. As pointed out in the previous example,
Conjecture 1.1 is known in this case for g ≤ 2, but it is open even in this
case for g ≥ 3.

In what follows we will assume Conjecture 1.1 (for all smooth, connected
projective varieties) and then deduce several stronger versions, working in
the relative setting, and in the presence of a simple normal crossings divi-
sor. We start by considering a pair (X,E), where X is a connected, non-
singular n-dimensional projective variety over k, and E = E1 + · · · + Er is
a reduced simple normal crossings divisor on X . Let XA be a model of X

over SpecA. We may assume that XA is smooth over A and that we have
irreducible divisors (Ei)A on XA giving models for the Ei, such that every
intersection (Ei1)A ∩ · · · ∩ (Eim)A is smooth over A. In particular, if we put
EA =

∑r
i=1(Ei)A, then for every closed point s ∈ SpecA, the divisor Es on

Xs has simple normal crossings.

Lemma 5.6. With the above notation, if Conjecture 1.1 holds, then there
is a dense set of closed points S ⊂ SpecA such that the Frobenius action
F : Hn−1(Es, OEs) → Hn−1(Es, OEs) is semisimple for all s ∈ S.
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Proof. Let us fix a closed point s ∈ SpecA. For every subset J ⊆ {1, . . . , r}
we put (EJ)s =

⋂
i∈J(Ei)s. (Of course, these sets will be empty for some J .)

Note that we have an acyclic complex

C• : 0 → C0 d0

→ C1 d1

→ · · · dn−1

→ Cn → 0,

where C0 = (OE)s, and for all p > 0 we have Cp =
⊕

|J |=p O(EJ )s
. Further-

more, we have a morphism of complexes C• → F∗C•. If we put Zi = Ker(di)
for 1 ≤ i ≤ n − 1 and Zn = Cn, then we have exact sequences

(22) Hn−p−1(Xs,Z
p+1) → Hn−p(Xs,Z

p) → Hn−p(Xs,C
p)

compatible with the action of Frobenius. Applying Conjecture 1.1 to all
connected components of all the intersections Ei1 ∩ · · · ∩ Eim simultaneously
(see Remark 5.2), we see that we have a dense set of closed points S ⊂ SpecA

such that the Frobenius action on each Hn−p(Xs,C
p) is semisimple for

p ≥ 1 and s ∈ S. Using Lemma 2.4 and the exact sequences (22), we see by
descending induction on p ≤ n that for every s ∈ S, the Frobenius action on
each Hn−p(Xs,Z

p) is semisimple. By taking p = 1, we get the assertion in
the lemma.

Corollary 5.7. With the notation in the lemma, and still assuming
Conjecture 1.1, there is a dense set of closed points S ⊂ SpecA such that
the Frobenius action

F : Hn
(
Xs, O(−Es)

)
→ Hn

(
Xs, O(−Es)

)
is semisimple for every s ∈ S.

Proof. Consider the exact sequence

T • : 0 → OXs(−Es) → OXs → OEs → 0.

Note that we have a morphism of exact sequences T • → F∗T •. Applying
Lemma 2.4 to the exact sequence

Hn−1(Es, OEs) → Hn
(
Xs, OXs(−Es)

)
→ Hn(Xs, OXs),

as well as Conjecture 1.1 to Hn(Xs, OXs) and Lemma 5.6 to Hn−1(Es, OEs)
(note that we can apply these simultaneously by Remark 5.2), it follows that
the Frobenius action on Hn(Xs, O(−Es)) is semisimple for all s in a suitable
dense set of closed points S ⊂ SpecA.
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Still keeping the above notation, let s ∈ SpecA be a closed point. Recall
that we have a canonical surjective OXs -linear map ts := tXs,Es :
F∗(ωXs(Es)) → ωXs(Es) induced by the Cartier isomorphism. For every
e ≥ 1 we also consider the composition tes : F e

∗ (ωXs(Es)) → ωXs(Es).

Corollary 5.8. With the notation in Lemma 5.6, and assuming that
Conjecture 1.1 holds, there is a dense set of closed points S ⊂ SpecA such
that the map induced by tes

H0
(
Xs, F

e
∗ (ωXs(Es))

)
→ H0

(
Xs, ωXs(Es)

)
is surjective for all e ≥ 1 and all s ∈ S.

Proof. It is enough to show that every closed point s ∈ SpecA that sat-
isfies Corollary 5.7 also satisfies our conclusion. As abelian groups, we have
H0

(
Xs, F

e
∗ (ωXs(Es))

)
= H0(Xs, ωXs(Es)), and the map induced by tes is just

the eth iterate of the map induced by ts. Therefore, it is enough to prove the
assertion in the case e = 1. On the other hand, this case follows if we show
the surjectivity when e is such that the cardinality of the residue field k(s) is
pe. Note that in this case the map tes : H0(Xs, ωXs(Es)) → H0(Xs, ωXs(Es))
is k(s)-linear. Its Serre dual is the map

F e : Hn
(
Xs, OXs(−Es)

)
→ H0

(
Xs, OXs(−Es)

)
,

where F denotes the Frobenius action on Hn(Xs, OXs(−Es)). By assump-
tion, F is semisimple, hence bijective, which implies the assertion in the
lemma.

Remark 5.9. It follows from the proofs of Lemma 5.6 and of Corol-
laries 5.7 and 5.8 that in order to get the assertions in these two corol-
laries we need to apply Conjecture 1.1 to finitely many smooth projective
varieties. It follows from Remark 5.2 that if we have finitely many pairs
(X(1),E(1)), . . . , (X(m),E(m)) as in Corollaries 5.7 and 5.8, then we can find
a dense set of closed points s ∈ SpecA such that the conclusion in each of
these two corollaries holds for all these pairs. In particular, in Corollary 5.8
we do not need to assume that X is connected.

We now turn to the relative setting and state the main result of this
section.

Theorem 5.10. Suppose that Conjecture 1.1 holds. Let π : X → T be
a projective morphism of schemes over k, with X nonsingular, and let
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E = E1 + · · · + Er be a reduced simple normal crossings divisor on X. If
πA : XA → TA and EA are models over A for π and E, respectively, then
there is a dense set of closed points S ⊂ SpecA such that for every e ≥ 1
and every s ∈ S, the induced morphism

(23) (πs)∗
(
F e

∗ (ωXs(Es))
)

→ (πs)∗
(
ωXs(Es)

)
is surjective.

Proof. Suppose first that T is affine. Since π is projective, we have a closed
immersion X ↪→ PN × T , for some N ≥ 1. Let us fix an open immersion
T ↪→ T ′, where T ′ is projective. Let X be the closure of X in PN × T ′ (with
the reduced scheme structure), and let π : X → T ′ be the induced morphism.
Since X ∩ (PN × T ) = X , it follows that π−1(T ) = X .

By hypothesis, X is nonsingular and E has simple normal crossings;
hence, by the standard results on resolution of singularities in characteristic
zero, there is a projective morphism ϕ : X ′ → X that is an isomorphism over
X , with X ′ nonsingular, and a reduced simple normal crossings divisor E′

on X ′ such that E′ |ϕ−1(X) = ϕ−1(E). If π′ = π ◦ ϕ, then X is isomorphic to
(π′)−1(T ), and it is clear that if the assertion in Theorem 5.10 holds for π′

and E′, then it also holds for π and E. Therefore, we may assume that X

and T are projective.
We now choose a very ample line bundle L on T such that π∗(ωX(E)) ⊗ L

is globally generated. After possibly replacing A by some localization Aa, we
may assume that for every closed point s ∈ SpecA we have (ωX)s = ωXs and
π∗(ωX(E))s = (πs)∗(ωXs(Es)). In particular, (πs)∗(ωXs(Es)) ⊗ Ls is globally
generated.

Since L is very ample, the linear system |L| and its pullback to X are
globally generated. It follows from Bertini’s theorem (recall that char(k) =
0) that if D′ ∈ |L | is a general element, then E′ = π∗(D′) has the property
that E + E′ is a reduced simple normal crossings divisor. Of course, it is
enough to ensure that (23) is surjective after tensoring with Ls, and since
(πs)∗(ωXs(Es)) ⊗ Ls is globally generated, it is enough to show that the
map

(24) H0
(
Ts, (πs)∗(F e

∗ (ωXs(Es))) ⊗ Ls

)
→ H0

(
Ts, (πs)∗(ωXs(Es)) ⊗ Ls

)
is surjective. By the projection formula, (24) gets identified with the map

(25) H0
(
Xs, F

e
∗ (ωXs(Es + peE′

s))
)

→ H0
(
Xs, ωXs(Es + E′

s)
)
.
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Applying Corollary 5.8 to X and E + E′, we deduce that there is a dense
set of closed points S ⊆ SpecA such that the composition

H0
(
Xs, F

e
∗ (ωXs(Es + E′

s))
)

→ H0
(
Xs, F

e
∗ (ωXs(Es + peE′

s))
)

→ H0
(
Xs, ωXs(Es + E′

s)
)

is surjective for every s ∈ S. This clearly implies the surjectivity of (25) and
completes the proof in the case when T is affine.

Note that the proof in this special case relies on an application of Corol-
lary 5.8 for one pair. In general, we consider a finite affine cover T =

⋃
i Ui.

Combining what we proved so far with Remark 5.9, we see that there is
a dense set of closed points S ⊆ SpecA such that the assertion in the theo-
rem holds for all morphisms π−1(Ui) → Ui and for all s ∈ S. This implies the
surjectivity of the map in (23) for every s ∈ S, which completes the proof
of the theorem.

Remark 5.11. It follows from the proof of Theorem 5.10, using also
Remark 5.9, that given finitely many morphisms π(i) : X(i) → T (i) and divi-
sors E(i) on X(i) satisfying the hypothesis in the theorem, there is a dense
set of closed points of SpecA that satisfies the conclusion of the theorem
with respect to each of the morphisms π(i).

§6. The connection between the two conjectures

We can now prove our main result, stated in Section 1.

Proof of Theorem 1.3. Let us assume that Conjecture 1.1 holds. Actually,
we will use its consequence in Theorem 5.10. It follows from Proposition 4.3
that in order to show that Conjecture 1.2 holds, it is enough to consider the
following setup. Suppose that Y is a nonsingular, irreducible affine variety
over an algebraically closed field k of characteristic zero. Let a = (f) be
a nonzero principal ideal on Y . We need to show that given a model of
(Y,a) over A, where A is a subalgebra of k of finite type over Z, there is
a dense set of closed points S ⊂ SpecA such that

(26) τ(Ys, f
λ
s ) = J (Y, fλ)s

for all s ∈ S and all λ ∈ R≥0. Furthermore, given finitely many such pairs
(Y,a), we need to be able to do this simultaneously for all the pairs.

After covering Y by suitable affine open subsets, we may assume that
f : Y → A1 is smooth over A1

� {0}. Indeed, there is an open neighborhood
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U of V (f) such that f is smooth on U � V (f), while on Y � V (f) we may
replace f by 1.

Therefore, we can apply the semistable reduction theorem of [KKMS]
for f to get a positive integer d ≥ 1 with the following property. If β : A1 →
A1 is given by β(t) = td, and if we consider the Cartesian diagram

(27) W
α

g

Y

f

A1
β

A1,

then there is a projective morphism ψ : Z → W that satisfies
(i) ψ is an isomorphism over A1

� {0} (in particular, ψ is birational),
(ii) Z is nonsingular,
(iii) ψ∗(g) defines a reduced simple normal crossings divisor on Z.

Let W0 be an irreducible component of W that maps surjectively onto Y ,
and let X be the corresponding irreducible component of Z that surjects
onto W0. If Y ′ is the normalization of W0, then we have induced morphisms

X
π→ Y ′ ϕ→ Y.

We denote by h the pullback of g to Y ′. By construction, ϕ is finite and
surjective, étale over Y � V (f). In particular, the singular locus of Y ′ is
contained in V (h).

Let D′ = −KY ′/Y be the divisor defined as in Proposition 3.2. Note
that D′ is supported on V (h). It follows from Proposition 3.2 (see also
Remark 3.3) that for every λ ∈ R≥0 we have

(28) J (Y, fλ) = ϕ∗ J (Y ′,D′, hmλ) ∩ OY .

We define the divisor D′
X as in Section 3.1, such that, in particular, KX +

D′
X and π∗(KY ′ + D′) are linearly equivalent. Let E be the reduced simple

normal crossings divisor defined on X by π∗(h). Note that D′
X is supported

on E, which has simple normal crossings; hence, it follows from Proposi-
tion 3.1 and the definition of multiplier ideals that for every λ ∈ R≥0 we have

(29) J (Y ′,D′, hmλ) = π∗ OX(−D′
X − �mλE�).

We choose a model over a finitely generated Z-algebra A, contained in k,
for all the above varieties and morphisms. We may assume that the above
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properties extend to all fibers over k(s), for s ∈ SpecA a closed point. Fur-
thermore, after replacing A by some localization Aa, we may assume that
for every closed point s ∈ SpecA the characteristic of k(s) does not divide
[K(Y ′) : K(Y )]. In this case Theorem 3.12 applies to give

(30) τ(Ys, f
λ
s ) = (ϕs)∗τ(Y ′

s ,D′
s, h

mλ
s ) ∩ OYs

for every closed point s ∈ SpecA and every λ ∈ R≥0. On the other hand, we
may assume that (28) induces

(31) J (Y, fλ)s = (ϕs)∗ J (Y ′,D′, hmλ)s ∩ OYs

and that (29) induces

(32) J (Y ′,D′, hmλ)s = (πs)∗ OXs(−D′
Xs

− �mλEs�)

for every s ∈ SpecA and every λ ∈ R≥0. Therefore, in order to guarantee
τ(Ys, f

λ
s ) = J (Y, fλ)s for all λ, it is enough to ensure that

(33) τ(Y ′
s ,D

′
s, h

mλ
s ) = (πs)∗ OXs(−D′

Xs
− �mλEs�)

for all λ ∈ R≥0.
We now apply Theorem 5.10 to the morphism π : X → Y ′ and to the

reduced simple normal crossings divisor E. It follows that there is a dense
set of closed points S ⊂ SpecA such that

(πs)∗
(
F e

∗ (ωXs(Es))
)

→ (πs)∗
(
ωXs(Es)

)
is surjective for every s ∈ S and every e ≥ 1. The equality (33) now follows
applying Lemma 6.1 below to the morphism πs : Xs → Y ′

s , the divisor D′
s,

and hs ∈ Γ(Y ′
s , OY ′

s
).

Lemma 6.1. Let π : X → T be a birational morphism of schemes of finite
type over a perfect field of characteristic p > 0, with T normal and irre-
ducible and h ∈ Γ(T, OT ) nonzero. If D is a divisor on T supported on V (h)
such that KT + D is Cartier, and if the following hold:

(i) X is nonsingular;
(ii) E := π∗(div(h)) is a reduced divisor, with simple normal crossings;
(iii) π is proper, and an isomorphism over T � V (h);
(iv) the map π∗

(
F e

∗ (ωX(E))
)

→ π∗(ωX(E)) is surjective for every e ≥ 1,
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then τ(T,D,hλ) = π∗ OX(−DX − �λE�) for every λ ∈ R≥0, where DX is
defined as in Section 3.1.

Proof. Note that by (iii), the divisor DX is supported on E; hence, DX ,E

have simple normal crossings by (ii). Proposition 4.2 gives the inclusion ⊆
in the statement; hence, we just need to show that

(34) π∗ OX(−DX − �λE�) ⊆ τ(T,D,hλ)

for every λ ≥ 0.
After replacing D by D+m · div(h), with m � 0, we may assume that D is

effective. It follows from the projection formula and from Proposition 3.11
that it is enough to prove (34) for λ < 1. Let us fix such λ. Note that
in this case, the left-hand side of (34) is equal to π∗ OX(−DX). We write
DX =

∑N
i=1 aiEi.

After taking a finite affine open cover of T , we may assume that T is affine.
For the description of τ(T,D,hλ) we use (13). Note that by (i) and (iii), the
singular locus of T is contained in V (h). Since D is also supported on V (h),
we see that if  � 0, then we may take c = h	 in (13). We fix  with this
property such that, in addition,  ≥ ai for all i. It follows that it is enough
to show that if e � 0, then

(35) π∗ OX(−DX) ⊆ ϕ
(e)
D

(
F e

∗ (hde · OT ((1 − pe)(KT + D)))
)
,

where de = �λ(pe − 1)� + .
For the sake of a more compact notation, we denote L = OT ((1 − pe)(KT +

D)). We use the commutative diagram (10) to write the right-hand side of
(35) as

(36) π∗(ϕ(e)
DX

)
(
F e

∗ (ρ(hde · L))
)
,

for which we recall that ρ : L → π∗(π∗(L)) denotes the canonical isomor-
phism. It is clear that F e

∗ (ρ(hde · L)) = π∗
(
F e

∗ (hde · π∗(L))
)
. For e � 0, ϕ

(e)
DX

induces a surjection on X ,

(37) u : F e
∗
(
hde · π∗(L)

)
→ OX(−DX).

This follows from Example 3.7 and the fact that �(de − ai)/pe� = 0 for e � 0.

Claim. π∗(u) : π∗
(
F e

∗ (hde · π∗(L))
)

→ π∗ OX(−DX) is surjective.
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If this holds, then the expression in (36) is equal to π∗ OX(−DX), which
gives the inclusion in (35).

Therefore, the proof of the lemma is complete if we show the claim. Note
that the surjectivity of π∗(u) is equivalent to the surjectivity of π∗(u) ⊗
OT (KT + D). Using the projection formula, this becomes equivalent to the
surjectivity of

(38) π∗
(
F e

∗ (ωX(DX − deE))
)

→ π∗(ωX).

For e � 0, the divisor (DX − deE) + (pe − 1)E is effective; hence, the sur-
jectivity of the map in (38) follows from the surjectivity of

(39) w : π∗
(
F e

∗ (ωX(−(pe − 1)E))
)

→ π∗(ωX).

This in turn is surjective if and only if w ⊗ OT (H) is surjective, but the
latter map is identified via the projection formula with

π∗
(
F e

∗ (ωX(E))
)

→ π∗
(
ωX(E)

)
,

which is surjective by the assumption in (iv). This completes the proof of
the lemma.
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[MTW] M. Mustaţă, S. Takagi, and K. Watanabe, “F -thresholds and Bernstein-Sato
polynomials” in European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005,
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