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FINITE GROUPS WHICH ARE AUTOMORPHISM GROUPS OF 
INFINITE GROUPS ONLY 

BY 

JAY ZIMMERMAN 

ABSTRACT. The object of this paper is to exhibit an infinite set of finite 
semisimple groups H, each of which is the automorphism group of some 
infinite group, but of no finite group. We begin the construction by 
choosing a finite simple group S whose outer automorphism group and 
Schur multiplier possess certain specified properties. The group H is a 
certain subgroup of Aut S which contains S. For example, most of the 
PSL's over a non-prime finite field are candidates for S, and in this case, 
H is generated by all of the inner, diagonal and graph automorphisms of S. 

1. Introduction. Our main purpose is the construction of an infinite class of groups 
which are the automorphism groups of infinite groups, but not of any finite group. The 
simplest examples of such groups are the quaternion group Q8, the dicyclic group DC,2 

of order 12 and the binary tetrahedral group BT24 of order 24. Each of these groups 
occurs as the automorphism group of a suitable torsion-free abelian group, as is shown 
by Hallett and Hirsch (see Fuchs [1], p. 272) in their classification of finite groups 
which are automorphism groups of torsion-free groups. Straightforward arguments 
show that none of the groups Q8, DC,2, or BT24 is the automorphism group of a finite 
group. In the first case, this has been pointed out by de Vries and de Miranda [4]. 

The groups which we construct have a somewhat different structure. Our main result, 
Theorem A below, has as a consequence that if S = PSL(7,/?3) where p ^ 1 = p3 

(mod 7) and if H is the subgroup of Aut S generated by the inner, diagonal and graph 
automorphisms then (a) H is not the automorphism group of any finite group and (b) 
H is the automorphism group of continuously many non-isomorphic countable groups. 
Notice that H is isomorphic to the semidirect product PGL(7,/?3) X (T) where T is the 
transpose-inverse automorphism. 

It is well-known that if S = PSL(7,/?3) as above, then the outer automorphism group 
Out S has cyclic Sylow subgroups and the Schur multiplier M(S) is cyclic. Let S be any 
finite simple group with these properties and let H be a group such that S < H < 
Aut S where we identify S and Inn S. We will show first that H = Aut G for a finite 
group G if and only if H/S is self-normalizing in Out S. In addition, certain groups H 
where H/S is abelian are not automorphism groups of any group. Since Out S is 
metacyclic, the above facts limit the possibilities for groups H which are automorphism 
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groups of infinite groups only. We will prove 

THEOREM A. Let S be a non-abelian finite simple group such that Out S has cyclic 
Sylow subgroups andM(S) is cyclic. Then Out S — (a) X (b), the semidirectproduct. 
If the action of b on (a) is neither the identity nor inversion, then there is a subgroup 
H with Inn S < H < Aut S such that 

(a) H is not the automorphism group of any finite group, and 
(b) H is the automorphism group of continuously many non-isomorphic countable 

groups. 

Finally, we produce some slightly more complicated examples of automorphism 
groups of infinite groups only. These are 

THEOREM B. Let p be a prime such that p = 2q + 1 where q is an odd prime. Let 
S be a complete non-abelian finite simple group with M(S) = 0. Then there exists a 
subgroup H of the permutational wreath product S wr Sym(p) containing the base 
group which is the automorphism group of an infinite group but not of any finite group. 

2. General results. We will begin by classifying those groups G for which Aut G 
is finite and semisimple (i.e., it contains no non-trivial abelian normal subgroups). The 
theorems below are just minor modifications of the work of D. J. S. Robinson [3] and 
the proofs consist of splitting the theorems into separate cases and then showing that 
some of them cannot occur. 

We will begin by constructing the group G(Q, F, e) where Q is a finite group with 
trivial center, F is a torsion-free abelian group and e is an element of Ext (gab, F) with 
the property that CAutF(e) = 1. Clearly Ext (Qdh,F) = H2(Q,F) and so we may 
consider e to be an element of the second cohomology group. Now choose a central 
extension F >—> G —» Q with cohomology class e and define G(Q, F, e) to be G. 

Henceforth, we will denote the Aut F-orbit to which e belongs by eAutF and the 
stabilizer in Aut Q of that orbit by StAut(2(e

Aut/r). 

THEOREM 2.1. Let G be a group such that Aut G is finite and semisimple. Then there 
exists Q ^ Aut G such that 

(a) if G is infinite, then there exists F and e as above such that G = G(Q, F, e), or 
(b)ifG is finite, then there exists K < M{Q)q, where q — \Qab\ and an elementary 

abelian 2-group D whose order is not 4 such that G = (Q/K) X D where Q is the 
unique stem extension of M{Q)q> by Q. Furthermore, if D =£ 1, then q — |gab | and 
\M{Q\:K\ are odd. 

THEOREM 2.2. Let Q,F, e, K and D be as in Theorem 2.1. Then 
(i) Aut (G(Q,F,e)) = StAutG(eAutF) where eAutF is the Aut F-orbit to which e 

belongs. 
(it) Aut (Q/K x D) = NAu{Q(K) x Aut D. 

Moreover, these isomorphisms arise from the obvious induced mappings. 
Next, we look at the automorphism group of a semisimple group (i.e., one which has 
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no abelian normal subgroups). 

LEMMA 2.3. Let H be a finite semisimple group with completely reducible radical 
R. Then Aut H is a finite semisimple group with completely reducible radical iso
morphic to R.Ifwe identify H and Aut H with subgroups of Aut R in the natural way, 
then Aut H = NAulR(H). 

PROOE. Let H0 = Inn H and let R0 be the completely reducible radical of H0. If A 
is an abelian normal subgroup of Aut //, then A C\ H0 = 1 and hence A < 
CAu{H(H0) = 1 since Z(//()) = 1. It follows that Aut H is semisimple. 

Let S denote the completely reducible radical of Aut //. Clearly R0 < S. Since S is 
completely reducible as an Aut //-operator group and R0 is Aut H invariant, it follows 
that S = R0 x /?, for some Aut H invariant subgroup /?,. Hence [//0,/?,] < H0 D 
R] = 1 and R\ < CAu[H(H0) = 1. Therefore S = R0. We may identify H and Aut H with 
subgroups of Aut R and the result follows. • 

COROLLARY 2.4. Lef H be a finite semisimple group with completely reducible 
radical R. If H is self-normalizing as a subgroup of Aut R, then H is complete and hence 
it is the automorphism group of a finite group. 

Let H be a finite semisimple group such that H = Aut G for some group G. Let R 
be the completely reducible radical of//. By Theorem 2.1, G = G(Q, F, e) or G = 
Q/K x D. Assume that H has no direct factor of type PSL(r, 2) and so by 
Theorem 2.2, H < Aut Q. It follows that CH(Q) = 1. Clearly Q = Inn G and so with 
the natural identifications Q < // < Aut /?. Since /? is a completely reducible //-operator 
group and /? Pi 2 ls a normal admissible subgroup, R = (R C\ Q) x /?, for some 
//-invariant subgroup /?i. Therefore /?i < CH(Q) = 1 and hence R < Q. We deduce 
from this that Aut g = NAu{R(Q). With the natural identifications, this proves 

LEMMA 2.5. Assume that H is a finite semisimple group with no direct factor of type 
PSL(r, 2). Let R be the completely reducible radical of H. If H = Aut G, then 

R < Q = Inn G < H < Aut g < Aut /?. 

Lemma 2.5 implies that when we are checking if a group is an automorphism group 
we need only consider normal subgroups Q of H which contain the completely reduc
ible radical R in either G(Q, F,e) or Q/K x D. In order for H to be the automorphism 
group of an infinite group, there must exist non-trivial Q, F and e which satisfy the 
necessary conditions for G(Q, F, e) to exist. 

LEMMA 2.6. Let Q be a finite group with trivial center. Then there exists an infinite 
group G(Q, F, e) if and only if"gab is not an elementary abelian 2-group. In addition, 
if Cab is not an elementary abelian 2-group, then there are continuously many non-
isomorphic countably infinite groups G(Q,F,e) with |Aut F\ = 2. 

PROOF. If Qdb is an elementary abelian 2-group, then the inversion automorphism of 
F operates trivially on Ext (gab, F) and since CAu[F(e) = 1 this implies that F is trivial. 
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Conversely assume that Qdb has exponent m > 2. We will construct continuously many 
torsion-free abelian groups F^ as follows. 

Let 7T be an infinite set of primes none of which divide m. Define F^ to be the additive 
group of rationals of the form t/(p\ . . . pk) where the p, are distinct primes contained 
in 7T and t is an integer. The only automorphisms of F^ are given by multiplication by 
1 or - 1 . 

Writing Qab — Dr Ze. where e{ divides ei+] and ek = ra, we have 
/ = 1 k 

Ext(Ô a b ,FJs Dr (FjetFJ. 
/ = ! k 

Define e^ to be the element of Ext (Qab, Fv) which corresponds to (1 + exF^, . . . , 
1 + ekF^) in the above Aut F^-isomorphism. Then CAulFit(e^) = CAutFit(\ + mF^) = 
1 since m > 2 and Aut F^ is multiplication by either 1 or - 1 . Hence G(Q, F^^e^) is 
countably infinite for each IT. • 

3. Automorphism groups which are subgroups of Aut S for a simple group 5. 
Let S be a non-abelian finite simple group whose multiplier M(S) is cyclic and whose 
outer automorphism group Out S has cyclic Sylow subgroups. We are interested in 
those subgroups H satisfying S < H < Aut S. It is clear that there is a correspondence 
between such groups H and subgroups /7 of Out S by means of the canonical surjection 
Aut S —» Out S\ Therefore we will classify all subgroups of Out S. 

It is well-known that any finite group G with cyclic Sylow subgroups has 
presentation 

(*) (a,b\am = 1 - b'\ b~]ab = ar) 

where r" = 1 (mod m), mis odd, 1 < r < m and m and n(r — 1) are coprime (Robinson 
[2], p. 281). If G is non-cyclic, then all subgroups of G are conjugate to a subgroup 
of the form (ak, M) where k\m and t\n. A subgroup K of G is self-normalizing if and 
only if it is conjugate to a subgroup of the form (ak,b) where k\m or equivalently if 
and only if n divides \K\. 

If H = Aut G, then any conjugate of// in Aut 5 is also isomorphic to Aut G. Hence 
we need only consider when those subgroups H which correspond to subgroups H = 
(ak,be) of Out S = (a,b) are automorphism groups. 

Since H has cyclic Sylow subgroups, M(H) = 0. In conjunction with the following 
lemma this will imply that M{H) is cyclic for any group H satisfying S < H < Aut S. 

LEMMA 3.1. Let N be a normal subgroup of a group Q such that M(N) is cyclic, 
N is perfect and M(Q/N) = 0. Then M(Q) is cyclic. In addition, ifM(N) — 0, then 
M(Q) = 0. 

PROOF. If M(Q) = C < Q' fl Z(£) where Q/C - g , and JV/C - AT, then TV = 
N'C since N is perfect. Therefore, N/N' < Z(Q/N) n (Q/N'Y and since 
(Q/N')/(N/N') = Q/N mdM(Q/N) = 0, we have TV = N'. Then C < tf ' PI Z(N) 
and since N / C = N and M(A0 is cyclic (M(N) = 0), M(g) = C is cyclic (M(g) s 
C = 0) as required. • 
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Let H be a group satisfying S < H < Aut 5 where 5" is as above and is not of type 
PSL(r, 2). Assume that H = Aut G for some finite group G. By Theorems 2.1,2.2 and 
Lemma 2.5, H = NAulQ{K) where S < g < // and K < M(g). Since M(g) is cyclic 
by Lemma 3.1, Aut 2 normalizes every subgroupKofM(Q). HenceNAu[Q(K) = Aut 
2- Since Out S has cyclic Sylow subgroups, normality is transitive in Out S (Robinson 
[2], p. 392). Therefore the subgroup// = Aut Q is self-normalizing in Aut S. The above 
argument along with Corollary 2.4 proves 

LEMMA 3.2. A group H with the above properties is the automorphism group of a 
finite group if and only if it is self-normalizing in Aut S. 

Hence the group H of Lemma 3.2 is the automorphism group of a finite group if and 
only if// is conjugate to (ak,b) where k\m. 

We will now consider groups H where H is of the form (a() or (bk) for € ^ 1 and 
k =£ 1. If// is such a group, then it is not the automorphism group of any group. This 
follows from 

LEMMA 3.3. Let S be a non-abelian finite simple group which is not of type PSL(r, 2) 
and which has cyclic multiplier. Let H be a subgroup of Aut S containing S such that 
HIS is cyclic. If there exists a subgroup X of Aut S properly containing H such that 
[H,X] < S, then H is not an automorphism group. 

PROOF. Suppose that// = Aut G for some group G. If G is finite, then H = NAu{Q(K) 
where S < Q < H and K < M(Q) by Theorems 2.1 and 2.2. By Lemma 3.1, M(Q) 
is cyclic and hence H = NAu[Q(K) = Aut Q. Since X < Aut Q = // , we get a 
contradiction. 

If G is infinite, then H = StAutô(e
AutF) by Theorems 2.1 and 2.2. Since Q/S = Qdb 

and [//, X] < S, we deduce that X operates trivially on Q.db and hence on Ext (Q.db, F). 
This gives the contradiction that X < //. Hence // is not an automorphism 
group. • 

One consequence of this lemma is that any non-abelian finite simple group S not of 
type PSL(r, 2) with M (S) and Out S cyclic has no subgroups H satisfying S < H < Aut 
5 which are automorphism groups. 

In order to find automorphism groups of infinite groups only we must concentrate on 
groups S with Out S metacyclic, but not cyclic. Theorem A will provide us with a group 
H satisfying S < H < Aut S with H = (a, bk) for k =£ 1 which is the automorphism 
group of infinite groups only. 

PROOF OF THEOREM A. It is clear that Out 5 has presentation (*), and so it is a 
semidirect product. 

Let Q be the subgroup of Aut S such that Q is (a). Since Qdb = Q/S, we have that 
m = |ôab| is °dd. By Lemma 2.6, we have continuously many groups G^ = 
G(Q, Fa, £TT) with |Aut F j = 2. Therefore the Aut F^-orbit of ê  is {e,,, - e j and by 
Theorem 2.2, Aut (G^) = S u ^ d e ^ , — e^}). Since Q is normal in Aut S, it follows 
from Lemma 2.3 that Aut (Gw) = S t^asd^ ~ e^}). 
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Define H = StAutS({ev, - e j ) . It is clear that S < H < Aut S and that H = Aut ( G J 
for any such set IT. Hence // is a semisimple group which is isomorphic to the 
automorphism group of continuously many non-isomorphic countable groups. Finally, 
since b acts on Q.dh = (a) as multiplication by an integer r not equal to 1 or - 1 , it cannot 
stabilize {e,,, - e ^ } . Hence b ^ H and H = (a, be) where € ^ 1. It follows by lemma 
3.2 that H is not the automorphism group of any finite group. • 

We are now in a position to give some concrete examples. 

THEOREM 3.4. Suppose that p and m are primes and r is a positive integer such that 
gcd(r,p — 1) = 1, m is odd, and gcd(r,pm — 1) is a square-free integer greater than 
one. Then the subgroup H of kui (PSL(r, /?'")) generated by all of the inner, diagonal 
and graph automorphisms is the automorphism group of continuously many countable 
groups but no finite groups. Notice that H = PGL(r,/?'") XI (T) where T is the 
transpose-inverse automorphism. 

PROOF. Let S = PSL(r,/?'"). The multiplier M(S) is cyclic and |Out S| = 
2m(gcd(r,pm — 1)) is square-free. Define the group (a) to be the subgroup of all outer 
diagonal automorphisms and define (b) to be the subgroup of outer graph and field 
automorphisms. It is easy to show that any field automorphism acts in the proper way 
on (a). Hence Theorem A shows the existence of the group H and we may deduce its 
form from the formula H = StAuts({e, — e}). • 

In particular, the groups PSL(7,p3) for/7 ^ 1 (mod 7) and/?3 = 1 (mod 7) provide 
an infinite class of examples of automorphism groups of infinite groups only. 

4. More groups which are automorphism groups of infinite groups only. The 
techniques used to decide which subgroups of Aut S are automorphism groups can be 
used to construct more complicated groups which are automorphism groups of infinite 
groups only. 

PROOF OF THEOREM B. Let p be a prime such that p = 2q + 1 where q is an odd 
prime. Let P = (JC) be a Sylow /^-subgroup of the symmetric group Sym (p). Then 
Aut P = (a) where xa = xr for some r > 1. There exists an element y of Sym (p) of 
order (p - 1) = 2q such thaty~lxy - xr. Let T = (x,y). Clearly T = (x) xi (y). Define 
M = (x,yq) and note that \yq\ = 2. Since Sym (/?) has (p - 2)! Sylow /^-subgroups, 
\NSymiP)(P)\ = Pip ~ 1) and soWSym(p) (P) = T. Clearly NSym{p)(M) = T. 

Let S be a complete non-abelian finite simple group with M (S) = 0 and define H to 
be the permutational wreath product (S wr M). Then H is a semisimple group with 
completely reducible radical R equal to the base group. Let Q be any normal subgroup 
of H containing R. It follows that Q equals either R, R x\ (x), or H. In each of these 
cases, M(Q) = 0 by Lemma 3.1 and hence if H is the automorphism group of a finite 
group, then H = Aut Q by Theorems 2.1 and 2.2. Clearly H is properly contained in 
Aut Q for all possible Q, which shows that H is not the automorphism group of any 
finite group. Also Hdb = Mab has order 2 and so it follows from Lemma 2.6 that if// 
is to be an automorphism group then Q cannot equal R or H. 
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We shall choose Q to be R xi (JC). Lemma 2.6 gives us an infinite group G(Q, F, e) 
with |Aut F\ = 2 and so 

Aut(G(G,F,e)) = StAut(?({€,-€}). 

Since S is complete, Aut Q = S wr T. A quick calculation shows that H = Aut 
(G(Q,F, e)) and hence H is the automorphism group of an infinite group. • 

The primes less than 100 to which Theorem B applies are/7 = 7, 11, 23, 47, 59, and 
83. It is not known if there are infinitely many such primes. 

This paper is an excerpt from the author's doctoral dissertation at the University of 
Illinois (1983). 
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