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Flow, flow transition and runout distances of 
flowing avalanches 
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ABSTRACT. A simple quasi one-dimensional model of flowing avalanches is 
presented. It is a further development of that used in the Swiss Guidelines jor 
practitioners. It is shown that shearing in avalanche movement is concentrated near 
the ground and that, due to the geometrical roughness of the ground, a flow 
resistance proportional to the square of velocity must be taken into account in 
addition to dry friction. For the change of flow on changing slope angles it is 
demonstrated that under certain conditions for internal friction a "normal" flow on a 
flat lower part can no longer be attained; the avalanche behaves like a rigid body. 
The runout distance is in fair agreement with the Guidelines if a larger internal friction 
is used. The main differences lie in much smaller deposition depths and smaller 
velocities during runout. 

INTRODUCTION 

In Switzerland a simple model for flowing avalanches is 
widely used for practical purposes (Salm and others, 
1990). This model - designated as Guidelines - is based 
on theoretical considerations, field measurements of 
velocities, and examination of several hundred observed 
avalanches, especially runout distances. Further develop
ments will be presented and existing relations are 
specified more precisely. As the flow depth of an 
avalanche is much smaller than its length, a quasi one
dimensional flow is assumed. 

FLOW PROFILE 

The main question here is the distribution of shearing 
within the moving snow, i.e. internal shearing within the 
avalanching snow versus shearing near the ground 
(sliding). The only measurement in a natural avalanche 
by Gubler and others (1986) shows a shear concentration 
very close to the ground and nearly no internal shearing. 

Moving snow in natural avalanches seems to be not a 
homogeneous but a structured mass. Even in a more or 
less steady movement, field tests (e.g. Schaerer and others, 
1980) show not constant but oscillating impact pressures 
with pronounced peaks in rapid sequences. This can be 
interpreted as an effect oflumps of snow much larger than 
single snow grains. 

We consider, therefore, avalanching snow as consist
ing of clods of snow, idealized as spheres with a uniform 
diameter, t/J, of an order of magnitude of 0.1 m. Contact 
forces between spheres are assumed to be dry friction, 
characterized by the internal friction angle, cp, and 
impact forces with a coefficient of restitution e"" 0 (i.e. 
snow and not single ice grains). Dry friction acts in the 

contact plane and impact forces perpendicular to it. The 
driving force is gravity. 

Roughly seen, an internal movement parallel to the slope 
is only possible if cp is smaller than the slope angle, 'Ij;. 
Internal friction has never been measured directly, but 
from observations of avalanche deposits and measure
ments by Roch (1966), cp can be estimated at least to be 
about 25°, i.e. about the slope of avalanche tracks. 
Therefore an internal shearing movement of the over
burden seems improbable, especially in the runout zone 
where 'Ij;:S 15°. 

Sliding near ground seems to be the decisive process 
determining avalanche speed. To get a qualitative 
insight, a simple model analogous to that of Bagnold 
(1954, 1966) is used (Salm, unpublished a). To estimate 
the flow resistance due to impact of the moving snow, the 
roughness of the ground is represented by obstacles 
protruding from the ground with a mean distance of Llr 
in flow direction Xl (Figure 1). The heights of these 
obstacles are at least of the same order of magnitude as 
the clods of snow. Flow depth, d, and coordinate X2 are 
perpendicular to the slope. 
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Fig. 1. Model jor shearing near the ground. 
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If the speed over ground is Vg, then vg / Llr collisions in 
unit time occur. The change of momentum in Xl

direction per sphere with e = 0 is mVg cos2 a. The 
impact angle, a, is between Vg and the normal of the 
contact surface and m is the mass of a particle with 
density Ps of snow. The number of spheres per unit area 
parallel to ground is (alifJr2 

The total shear resistance due to impact is then 

(1) 

Introducing the mass of a sphere Ps7rifJ3/6 and the number 
of spheres per unit volume (aI 2a2ifJ3)-1 we get for the 
mean density of flowing snow 

and therefore 

T'" 
( )

-1 
gLlr 2 Pmg 2 

A.. 2 PmgVg = C Vg • 
a2'f'cos a <" 

(2) 

This is the well known "turbulent" friction, first stated by 
Voellmy (1955). He, however, introduced this term in 
analogy to turbulent open-channel flow in hydraulics 
(Chezyequation). 

The above relations are complicated by the fact that 
aI, a2 and a are functions of speed (personal com
munication from J. Dent), so that Pm and e become 
veloci ty-dependen t too. 

lt is to be expected that a (180° 2: a 2: 90°) decreases 
with higher velocities. Furthermore, the terrain roughness 
will be smoothed to a certain degree by deposited snow, 
depending on obstacle heights. 

If T of Equation (2) decreases to zero (for a = 90 0 or 
Llr = 00) only dry friction on ground remains as resistance. 
The coefficient of dry friction, p, of sliding is well known 
from observations in runout zones. Its value 0.155 ~ P ~ 
0.30 is much less than that of tan cp (Salm and others, 
1990). Adding this dry friction to the "turbulent" friction 
yields 

(3) 

Observations of real avalanches (Gubler and others, 
1986) are at least not in contradiction with the described 
concept. A careful inspection of these data shows that at 
least two resistances must occur. In a fracture zone with 
smooth terrain, dry friction dominates and leads to high 
accelerations. As soon as rugged terrain is reached the 
resistance increases, obviously due to an additional 
velocity-dependent force. 

It can be concluded that the velocity profile of a 
flowing avalanche can be idealized by a rectangular 
shape with Equation (3) as average velocity. (This holds 
as long as the slope is not too steep, say 'I/J < 35°.) The 
coefficient jJ, is mainly connected to snow properties, 
whereas e depends mainly on terrain geometry. If the 
roughness is not large, e increases with speed so that 
asymptotically only dry-friction resistance remalllS 
(personal communication from J. Dent). 
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FLOW TRANSITION 

We assume that over a limited time the discharge, Q 
(m3 s-1

), in a flowing avalanche is constant (Salm, 1972). 
With a homogeneous and constant density (Pm = p) and 
with a nearly one-dimensional movement (od/ox « 1) 
we have 

Q = Bdv = constant, 

where B is the width of the avalanche. 

(4) 

On a uniform slope angle 'l/Jo, the velocity with 
Equations (3) and (4) is 

vo3 = ~e(sin'lj!o - jJ, cos 'l/Jo) . (5) 

As soon as 'l/Jo changes to 'l/Ju in a point A, the velocity 
changes gradually from Vo to Vu, and with this the flow 
depth from do to duo 

We consider a volume element on the slope 'lj!u fixed in 
the space. Its length in flow direction Xl is d and we 
assume a quasi one-dimensional movement in the Xl - X2 

plane. 
We start from the global form of momentum theorem, 

with time, t, volume, V, surface, F, stress, O'jk , unit 
vector, Vj (with positive direction to the outer side of the 
volume), and with the body force, Kk. 

In the plane X2 - X3 perpendicular to the flow 
direction Xl we have the resultant pressure force of 
Apgd2/2 with 

(7) 

if 'lj!o > 'lj!u (passive snow pressure). This represents the 
upper limit of the force, corresponding to the Colomb
Mohr criterion. (In a flow on an infinite slope, A must be 
about unity.) 

If a steady movement is assumed, the following 
expressions are obtained (with Xl = X and VI = v): 

and from this the differential equation 

b+ cu3 

dx = a 2 5 du u -u 

with the dimensionless velocity u = v/vu and 

a= due/g 

b=!!.(~- A ) 
~ 2 sin 'l/Ju - jJ, cos 'l/Ju 

c = 1 + g/~. 
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Fig. 2. Flow transitionjor different values of >.. 

With the initial condition Uo = vo/vu for x = 0 the 
solution is 

~ =b(~ _~) + (b + c) [~ln (1 - uo)2 . 1 + u + u2 

a Uo u 6 1 + Uo + u02 (1 - ul 

1 ( -1 2uo + 1 -1 2u + 1)] + v'3 tan v'3 - tan v'3 . (8) 

The "normal" flow on 'l/Ju with u = 1 will theoretically be 
attained as x -+ 00. 

Figure 2 shows an example for the decrease of u for a 
flow from steeper to flatter terrain with different values of 
>.. This decrease is faster for larger>. because of the larger 
passive snow pressure on the flat part. There is however a 
restriction: if>. is too large "normal" flow on 'l/Ju cannot be 
attained. The limiting value for >. can be seen from 
Equation (8). If b + c = 0 then 

Acr. = G+~) (Sin'l/Ju -I1 COS 'l/Ju). (9) 

For larger values than Equation (9) the flow on 'l/Ju 
continues with Vo and do. The driving force 
pgdu(sin'l/Ju - 11 cos 'l/Ju) - too small to maintain a steady 
flow - is enlarged by the passive snow pressure at point 
A given by do . After a critical length, this pressure will be 
too small to maintain this "deficit" flow; do will be 
gradually enlarged to du so that "normal" flow is 
established on 'l/Ju' 

The assumed parameters for 11 and e in Figure 2 are 
empirical ones from observed avalanches as given in the 
Guidelines (Salm and others, 1990). From Equation (2) a 
value for e = 1000 m s-2 would be obtained for a2 = 0.8, 
t1rjrp = 10 and et = 110°. 

The steepest gradient ofu in Figure 2 occurs for x = 0 
and>' = 20 which gives 8dj8x = 10-2. The assumption 
of a quasi one-dimensional flow is therefore fullfilled . 

The dimensionless quantity in Equation (8), 

x 9 gBvu 
~ = edu x = eQ x, 

is used in practical calculations to decide whether or not 
"normal" flow is reached on a certain slope after a certain 
length x. In the Guidelines a value of 0.7 is given after 
which the velocity differs less than 10% from "normal" 
flow conditions. This value has been calculated earlier by 
Salm (unpublished b) with a simpler approach. 

Salm: Flow, transition and runout oj flowing avalanches 

The influence of >. has been neglected and gje was 
assumed to be very small, so that b = 0 and c = 1, which 
delivers the differential equation 

u 
dx= a---

3
du 

l-u 

with a solution similar to Equation (8). Figure 2 shows 
that 0.7 is the maximum for A ~ 10. It is however too 
small for A = 2.5, a value which is probably not realistic 
for a pressure zone (see section below). 

To avoid difficulties in estimating the transition zone 
with a simple rule, Equation (8) could be used directly to 
calculate the velocities on limited sections with constant 
slope, however wi th considerable effort. 

RUNOUT DISTANCE 

The situation is similar to that with flow transition: at a 
point P the slope angle changes from 'l/Jo to 'l/Ju, however 
for 'l/Ju the condition 

tan 1/Ju = tan 1/Js < 11 (10) 

must be fulfilled, i.e. not a driving but a retarding force 
must occur. This retarding force is originating from the 
velocity-independent dry friction, which is the only 
effective mechanism to slow down the movement to 
standstill on a slope inclined in direction of the speed. 
This is the runout situation observed for most avalanches. 
It may be remarked that Equation (10) allows a very 
simple measurement of the minimum acting friction 
coefficient of observed avalanches. 

Again the mean density Pm = p is considered constant, 
and the length of the runout is about two orders of 
magnitude larger than d, so that again a quasi one
dimensional movement can be assumed. 

The supply of avalanching snow at point P is given by 
Q, which is constant for the time between the entrance of 
the snow at P until the standstill. 

The velocity of the snow mass between the front and P 
is in every point constant but time-dependent. This can 
be justified with the often observed "train-like" behaviour 
in the runout: the movement seems similar to that of a 
rigid body. The reason for this lies in high internal friction 
angles plus (probably) a cohesion which may be created 
quickly in relatively slow-moving snow in flat terrain 
(Cubler, 1982). 

The depth, d, in the runout is larger than the flow 
depth of the entering snow, dp, at P. This difference, Lld, 
is due to the velocity difference of vp at P and v of the 
retarding snow mass, and can be calculated approxi
mately from the kinetic and pressure energy in analogy to 
hydraulics: 

Vp2 if 
-2 + Adp = - + A(dp + Lld) 

9 2g 

and yields 

Ad c" vp~ - ~ 
Ll - 2g>. . (11) 

For our calculation we will assume a constant mean 
depth, dm, over the final runout distance, Xs' A first 
assumption of dm will allow us to calculate v and then to 
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check this assumption and, if necessary, to correct it. 
Furthermore, it will be possible to check the total supply 
of mass at P during the time interval until standstill, and 
then this mass can be compared with that obtained from 
Equation (11). These problems will be discussed later; at 
present we assume all kinetic energy from the velocity 
difference at P is completely transferred into an increase 
of depth. 

In the avalanche front the depth cannot be increased 
immediately; it will remain constant, equal to dp over a 
certain time or length. This length, Ll, is attained as soon 
as the increasing snow pressure at P arrives at its 
maximum, >..pgdp2/2, and is in equilibrium with £low 
resistance and driving force; thus 

The theorem of momentum is formulated for unity width 
B. The distance of P to the avalanche front is x + Ll and 
the mass is 

M = pdm(x + Ll). 

8 8v 8x 
&t (Mv) = pdm(x + Ll) &t + vpdm &t = Resultant force. 

The term 8d/&t is neglected and 8v/8t = v8v/8x. 

dp
2 

Resultant force = ->..pgT - pg(x + Ll)dm 

(J.L cos ?/Js - sin?/Js) - PI (x + Ll)v~. 

This leads to the differential equation 

8v (1 9 ) [ >..gdi 
8x = - x+Ll + €dm v+ 2dm(x+ Ll) 

- g(J.L cos ?/J. - sin?/Ja)] . (13) 

With the initial condition v = Vp for x = 0 we get the 
solution 

with 

a' = 2g(J.L cos?/Js - sin ?/Js) 

b' = 2g/(~dm) 

d = >..gdi/dm 

and furthermore 

a' /b' = ~dm (J.L cos?/Js - sin ?/Js) = V2 . 

A solution exists only with a positive V 2, thus runout 
condition (10) is fulfilled. For x --+ 00 we get v2 /V2 = -1. 

The total runout distance is Xs = Xo + Ll, where Xo 
corresponds to ,,; = 0 in (14) and Ll is taken from (12). 

The calculation of the runout distance in the Guidelines 

(1990) is based on Salm (unpublished b). There only the 
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runout of the constant front mass, pdmLl, is considered 
and the influence of the snow pressure at P is neglected. 
For the velocity we arrived at 

(15) 

and for runout distance 

(16) 

with 

dmG = dp + vp2/4g>... (17) 

The subscript G denotes values according to the Guide
lines. The latter relation assumes a linear decrease of v2 

with x, based on the assumption that only dry friction is 
acting. The coefficient>.. is fixed at 2.5. With the above 
formulas, and mainly with observed run out distances, the 
coefficients J.L and € were calibrated. The agreement is 
satisfactory although the applied dm in (17) with>.. = 2.5 
seems to furnish too large values. 

To compare the calibrated rules (15)-(17) with (12) 
and (14), the following examples have been calculated: 

friction coefficients: J.L = 0.155 ~ = 1000 m s-2; 
discharge: Q/ B = 10/50/100/200 m2 s-l; 
slope angle before P: ?/Jp = 25°; 
slope angle in the runout zone: ?/Js = 0°/7.5°. 
The agreement of Xs from Equations (12) and (14) 

with XsG is surprisingly good, but only if the large value 
of >.. = 20 (cp = 65°) is introduced. The ratio xs/xsG is 
1.02 and 1.18 for ?/J = 0° and 7.5 0 respectively, which 
means that for slopes ?/Js close to the critical value of 
tan-1 J.L = 8.8° the runout distance becomes larger due to 
the snow pressure at P. 

For Xs the mean deposition depth dm is 2.5-2.8 times 
smaller than for XsG, according to observations a 
reasonable result. 

The mean value dm was checked with Equations (14) 
and (11). The mean square of the velocity from (14) is 

and 

dm = dp + Lld = dp + [Vp2 - (V2 )ml/(2g>..). (18) 

A good estimation for Lld is vp2/(3.94g>..) and 
Vp2 / (2.50g>") for ?/Js = 0° and 7.so respectively. For 
different values of?/Ja a linear interpolation will furnish 
sa tisfactory results. 

Considering the conservation of mass we assume a 
constant supply Q/ B = vpdp from the moment when the 
front passes P until it reaches xs, therefore 

Xsvm = LX. vdx + Llvp, 

and with this the average depth from supply 

dms = (vpdp)/vm. (19) 

In Figure 3 the different depths, dm, dms and dmG, are 
plotted as a function of Q / B and the two slope angles, ?/Js, 
of 00 and 7.5°. 

It is clear that the depth from supply must be equal to 
or larger than the dynamic depth of (17) or (18). As it can 
be seen from Figure 3, dms is always larger than dm . 
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Fig. 3. Mean deposition depth of the present calculation 
dm, the supply of mass dIIlB and of the Guidelines. 

Obviously not all of the supplied mass can be drained off 
below P. What happens with the extra mass given by 
dIIlB - dm? It must be taken into account that above P a 
back-pressure zone is gradually building up. (Before the 
front reaches P, ). of the avalanching must be of the order 
of one.) This will slow down the speed and increase d, and 
finally a part of the mass will remain above P. If the 

avalanche is longer than is assumed here, the extra mass 
could be considerably larger and will be deposited above 
the mass at rest. 

In Figure 3 it can furthermore be seen that the mean 
deposition depth, dmG, is indeed too large: the supplied 
mass cannot fill up the required deposition! 

Finally in Figure 4 an example is given of an observed 
avalanche (SamedanJAriefa on 2 January 1951). The 
plot of v2 versus x shows, with calculation according to 
(14), a surprisingly large gradient 8v2/8x after the mass 
of length ~ has passed. The deceleration is much stronger 
corn pared to that of (IS). This is an effect of the 
increasing mass which increases the flow resistance 
gradually, in contrast to (IS) which considers only a 
constant front mass. The sharp change of the gradient 
after passage of the distance ~ will cause a large increase 
of ~d in the front part and therefore a steep deposition 
front. This is in accordance with observations. Velocity 
measurements of Gubler and others (1986) also show 
steep gradients, 8v/8x, in the runout zone (e.g. Mader 
Grond avalanche on 17 January 1985), but it was 
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Fig. 4. Distribution of if over the runout zone. 
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impossible to determine the exact position of this 
deceleration. 

The distribution of the pressure p = pv2 on an obstacle 
in the runout zone is important for the elaboration of 
avalanche-danger maps, because this is, in addition to the 
return period, a criterion for the degree of danger. In the 
Guidelines (1990) a linear decrease of v2, and therefore also 
of p, is assumed. With this, one is in any case on the safe 
side. 

The observed runout distance of the SamedanJAriefa 
avalanche was 860 m. On the basis of climatological data 
and a guess of additional local wind influence, a mean 
fracture depth do = 1.00 m in the starting zone was 
assumed. Equation (16) delivers a runout distance of 
844 m, whereas Equation (14) gives a somewhat too large 
value of 1031 m. However, if a slightly less pessimistic 
wind influence is assumed, we can just assume do = 0.8 m. 
In this case equation (16) delivers XsG = 720 m and 
Equation (14) 807 m! This demonstrates that the runout 
distance is very sensitive to fracture depth, a quantity 
which is very difficult to determine locally. Unfortunately 
so far no accurate measurements on the whole fracture 
area (e.g. by photogrammetry) before and after an 

avalanche event have been made. 

CONCLUSIONS 

A rectangular velocity profile can be justified, because 
shearing is concentrated in the bottom layer. In addition 
to dry friction, a flow resistance proportional to the 
square of speed must be taken into account, because of the 
plastic behaviour of the snow clods and the uneven 
ground. 

The recommendation of the Guidelines for a transition 

zone of 0.7 g/(~du), when the slope changes from 'l/Jo to 
'l/Ju, can be maintained. If however a critical value, >., of 
the snow is exceeded, a "normal" flow on 'l/Ju cannot be 
attained. The flow on 'l/Ju will continue, over a limited 
distance, corresponding to a speed according to 'l/Jo. This 
will usually occur for values of'l/Ju close to the critical 
value of tan--1

j1 . 

The new model for runout - taking into account an 
increasing mass and snow pressure due to .>. - is in fairly 
good agreement with the calculation according to the 
Guidelines if a high value for.>. is taken. For values of'l/Js 
close to the critical angle tan 'l/Jcr. = /1-, the runout distance 
is about 20 % larger in the new model. The main 
differences from the Guidelines are a much lower mean 
deposition depth and a much faster decrease of velocity. 
The instructions given in the Guidelines by Equations (16) 
and (17) can be maintained, although if real depths are 
needed, the proposed lower values should be applied. The 
velocity distribution, used for the pressure distribution in 
avalanche-hazard maps, could be replaced by a faster 
decrease than linearly with the sq uare of speed. 
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