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Abstract. Magnetohydrodynamic equilibria for a plasma in a gravitational field are investigated
analytically. For equilibria with one ignorable spatial coordinate, the equations reduce to a
single nonlinear elliptic partial differential equation for the magnetic potential A, known as
the Grad-Shafranov equation. Specifying the arbitrary functions in the latter equation, one
gets a nonlinear elliptic partial differential equation (the sinh Poisson equation). Analytical
solutions of this equation are obtained for the case of an isothermal atmosphere in a uniform
gravitational field. The solutions are obtained by using the tanh method, and are adequate for
describing parallel filaments of diffuse, magnetized plasma suspended horizontally in equilibrium
in a uniform gravitational field.
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1. Introduction
The equations of magnetohydrostatic (MHS) equilibria have been used extensively to

model solar magnetic structures, see Khater et al. (1998, 2002a) for details and review.
The force balance in these models consists of a balance between the pressure gradient
force, the j ∧ B force (j, electric current density, B magnetic induction), and the gravi-
tational force. The temperature distribution in the atmosphere is in general determined
from the energy transport equation. However, in many models, the temperature distri-
bution is specified a priori, and direct reference to the energy equation is eliminated. The
remaining equations for the system are an equation of state for the gas (e.g., the de-
pendence of the gas pressure on density and temperature) and the steady state Maxwell
equations. In solar physics the MHS equations have been used to model diverse phenom-
ena, such as the slow evolution stage of solar flares, or the MHS support of prominences
(Low et al., 1983; Khater et al., 1997; 1998).

In this paper, we present a class of periodic solutions for the sinh Poisson equation
modeling an isothermal MHS atmosphere by applying the tanh method (Khater et al.
2002b), for the two-dimensional boundary value problem in the solar surface x � 0
but only for a bounded domain (Heyvaerts et al., 1982; Low et al., 1983; Amari and
Aly, 1989). We consider an isothermal atmosphere with one ignorable coordinate x of a
rectangular Cartesian coordinate system Oxyz in which the gravitational force is directed
in the negative z direction. We study the solutions with jx = −(λA0/4h) sinh Ãe−z/h. For
this current the components of the force balance equation perpendicular to both B and
ex(ex is the unit vector along the x-axis) reduces to a sinh Poisson equation. Through
exact solutions obtained in this way, interesting physical properties can be deduced in
qualitative form.
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The paper is organized as follows: In section 2, the basic equations and the formulation
of the nonlinear problem, which reduces to the sinh Poisson equation, are illustrated and
reviewed. In section 3, the tanh solution method for the partial differential equations
is briefly discussed together with exact analytical periodic solutions for plasma models.
Finally, the analytical results, together with graphical representations are given and
discussed in section 4.

2. Basic equations
The equations used to describe a MHS atmosphere consists of the force balance equa-

tion
j ∧ B −∇P − ρ∇Φ = 0, (2.1)

coupled with Maxwell’s equations

j = ∇∧ B, ∇ · B = 0, (2.2a, b)

where P, ρ and Φ are the gas pressure, the mass density and the gravitational potential,
respectively. We assume the temperature is uniform in space and the plasma is an ideal
gas with equation of state

P = ρR0T0, (2.3)
where R0 is the gas constant and T0 is the temperature.
Consider a system of Cartesian coordinates Oxyz, in which x is an ignorable coordinate
and z measures the height above a reference surface taken as the xy-plane, then the
magnetic induction B may be written as

B = ∇A ∧ ex + Bxex(Bx,
∂A

∂z
,
∂A

∂y
), (2.4)

where A(y, z) and Bx(y, z) are the magnetic flux function and x-component of B, re-
spectively. Note that the form (2.4) for B ensures that ∇ · B = 0. Since B · ∇A = 0,
A(y, z) is constant along the magnetic lines of force. We restrict our attention to isother-
mal atmospheres in a uniform gravitational field (Φ = gz), in which Bx = 0 and using
the ideal gas law (2.3) to relate the pressure and density to the uniform temperature T0

of the atmosphere. Equation (2.1) then requires that the pressure and density have the
form (Webb, 1988)

P (y, z) = P (A)e−z/h, ρ(y, z) =
1
gh

P (A)e−z/h, (2.5a, b)

where h = R0T0/g is the (constant) scale height, and P (A) is an arbitrary function of
one variable to describe the variation of pressure across the magnetic lines of force at
some constant height. Substituting (2.2a), (2.4)-(2.5b) into (2.1), one gets (Low et al.,
1983; Khater et al., 1998)

∇2A + f(A)e−z/h = 0, f(A) =
dP

dA
. (2.6a, b)

Subject to suitable boundary conditions on A, equation (2.6b) may be solved for A in a
given domain if the functional form P (A) is prescribed in some suitable manner (Dungey,
1953).
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The term f(A) is, in general, nonlinear in A raising nontrivial questions of existence,
uniqueness, and regularity of solutions to boundary value problems based on (2.6a).
Rigorous and general mathematical results on these questions for equation (2.6a) in the
nonlinear regime have been obtained and discussed by Amari and Aly (1988; 1989) and
Heyvaerts et al. (1982). The absence of a regular solution may be interpreted to imply
that electric current sheets may be unavoidable
Equation (2.6b) gives

P (A) = P0 +
∫

f(A)dA. (2.7)

Substituting equation (2.7) into equations (2.5a) and (2.5b), we get

P (y, z) = (P0 +
∫

f(A)dA)e−z/h, ρ(x, z) =
1
gh

(P0 +
∫

f(A)dA)e−z/h, (2.8a, b)

where P0 is constant. Take the conformal transformation

x1 + ix2 = e−z/leiy/l, (2.9)

(e.g. Lerche and Low, 1982), equation (2.6a) reduces to

∂2A

∂x2
1

+
∂2A

∂x2
2

+ l2f(A)e( 2
l − 1

h )z = 0. (2.10)

Let us identify the period l by:

2/l = 2/L + 1/h, (2.11)

Note that using the transformation (13), and taking l > 0, we have transformed the
region 0 � y � 2πl, 0 � z � ∞ into the entire x1 − x2 plane with origin x1 = x2 = 0
corresponding to z → ∞ and the region x2

1 + x2
2 → 1 corresponding to z → 0. Note that

in the limit of an infinite period l as l → ∞, equation (2.11) implies 2/L = −1/h.
Let us assume that f(A) has the form (Khater et al., 1988; 1997; 2002a):

f(A) = −λ2

4
(
A0

h
) sinh(Ã), Ã = A/(hA0), (2.12)

is a dimensionless form of A,whereλ is a dimensionless constant.
Equations (2.5a), (2.7) and (2.11) give

P (y, z) = (P0 −
λ2A2

0

4µ
cosh Ã)e−z/h. (2.13)

The corresponding form of equation (2.10) is given by using equations (2.10) and (2.11)
as

∂2Ã

∂x2
1

+
∂2Ã

∂x2
2

= λ2 sinh(Ã), (2.14)

where l = 2h.
Equation (2.13) is the well known sinh-Poisson equation. To solve (2.14), we are looking
for the solution where A is periodic in y with period 2πl (Low et al., 1983; Khater et al.,
1998)

A(y + 2πl, z) = A(y, z), (2.15)

which corresponds to an array of plasma condensations or current filaments that are
arranged periodically in the y-direction. These condensations have to be of finite extent
vertically. Hence in the far region z → ±∞, the field is required to be horizontal and
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uniform. The following boundary conditions apply

lim
z→±∞

B± = A0(
1
l
− 1

2h
)ŷ = B±ŷ, (2.16)

where B+ is the constant field strength. Equation (2.14) is a nonlinear elliptic partial
differential equation (Courant and Hilbert, 1963; Birn et al., 1978; Low, 1982); one can
not take for granted that boundary conditions (2.15) and (2.16) admit a solution and,
where a solution exists, that it is unique. Let us set

A/A0 = z/L + u(y, z), (2.17)

where L is a constant.
To solve equations (2.14) analytically, we use the tanh method which we discuss in the

following section.

3. Solution method and exact analytical solution for plasma
condensations models

Various forms of the tanh method have been introduced. First a power series in tanh
was used as ansatz to obtain analytical solutions of traveling wave type of certain non-
linear evolution equations. In the next stage, Malfliet (1991) made a first improvement
of the method through the change of the independent variable ζ = c(x − νt), typical for
traveling waves, and the use of the hyperbolic function, tanh(ζ); itself as a new variable.
As a result, the involved algebra was considerably reduced compared to that in the first
stage. Later on, this technique was refined by incorporating the boundary conditions in
the series expansion and by determining the velocity through asymptotics (Malfliet 1992;
1993). The method was extended to higher dimensions (Khater et al. 2002b). Now, we
explore the method to solve equation (2.14), then we use it for the plasma condensation
model. Consider the traveling wave solution

Ã(x1, x2) = U(ζ), ζ = c(x1 − νx2), (3.1)

then equation (2.14) is reduced to the ordinary differential equation

d2U

dζ2
=

λ2 sinh(U)
c2(1 + ν2)

, U(ζ) → 0,
dU

dζ
and

d2U

dζ2
→ 0 as ζ → ∞. (3.2)

Multiplying both sides of equation (3.2) by dU
dζ and integrating it, we get

c
√

1 + ν2
dH

dζ
− λ

2
(H2 − 1) = 0, H(ζ) → 1,

dH

dζ
→ 0 asζ → ∞, (3.3)

where the integration constant is taken to be zero and

H = eU/2. (3.4)

Put

Z = tanh(ζ), H(ζ) = S(Z) =
M∑

n=0

bnZn. (3.5)

Equations (3.3) and (3.4) yield

c
√

1 + ν2(1 − Z2)
dS

dZ
− (λ/2)(S2 − 1) = 0. (3.6)
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The balance between the linear term and the nonlinear one in the equation (3.6) gives
M=1, and the solution of it is written as:

S(Z) = b0 + b1Z. (3.7)

Substituting (3.7) into (3.6), and comparing the coefficients of each power of Z in both
sides we can get

b0 = 0, b1 = 1 and c = − λ

2
√

1 + ν2
. (3.8)

Thus the solution of equation (2.14) can be written as

A/A0 = −4h coth−1[exp(
−λ√

(1 + ν2)
e−z/2h(cos y/2h − ν sin y/2h))], (3.9)

where equations (2.9), (2.15) have been used and l = 2h.
The associated magnetic induction and pressure are given by using equations (2.4), (2.15),
(2.16) and (3.8)

B/A0 = {0,− λ√
(1 + ν2)

e−z/2h(cos(y/2h) − ν sin(y/2h))cosech[
λ√

(1 + ν2)
e−z/2h

(cos(y/2h) − ν sin(y/2h))],
λ√

(1 + ν2)
e−z/2h(sin(y/2h) + ν cos(y/2h))

cosech[
λ√

(1 + ν2)
e−z/2h(cos(y/2h) − ν sin(y/2h))]}. (3.10)

P = P0e
−z/l +

λ2A2
0

4µ
e−z/h[1 − 2coth2(

λ√
(1 + ν2)

e−z/2h(cos y/2h − ν sin y/2h))] (3.11)

The magnetic and plasma pressures are given by

P =
λ2A2

0

2µ
e−z/hcosech2[

λ√
(1 + ν2)

e−z/2h(cos y/2h − ν sin y/2h)], (3.12)

P =
λ2A2

0

4µ
e−z/h{1 − 2 coth2[

λ√
(1 + ν2)

e−z/2h(cos y/2h − ν sin y/2h)]}, (3.13)

The magnetic and plasma pressures are displayed in figures [1(a, b) − 2(a, b)] in the sur-
face and plane graphics (in the plane graphic y =constant= π/3 and z =constant= ln 2),
where A2

0 = 2µ, λ = 1.4, h = 1, and ν = 1. In Figure 3(a, b), density enhancement is dis-
played relative to the associated magnetic field distributions, where β = ln[coth(−A/A0

4h )]
and γ = 2µ

λ2A2
0

√
P − P0e−z/h.

For the magnetic surfaces (contours of A in which A is constant along any field line) and
density enhancement (in which P − P0e

−z/h is a constant) we use equations (3.9) and
(3.13) to obtain

cos Y − ν sin Y = −
√

1 + ν2

λ
βeZ (3.14)

cos Y − ν sin Y =
√

1 + ν2

λ
eZ coth−1

√
1 − γe2Z

2
, (3.15)
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Figure 1. Fig. 1(a): The magnetic pressure corresponding to the solution (3.11) of the sinh
Poisson equation (2.14) for 0 � z � 1 and 0 � y � π. Fig. 1(b): The plasma pressure (pres-
sure enhancement) corresponding to the solution (3.12) of the sinh Poisson equation (2.14) for
0 � z � 1 and 0 � y � π.

-3 -2 -1 1 2 3 z

8

10

12

�a�
p

-3 -2 -1 1 2 3 z

-18

-16

-14

�b�
p

Figure 2. Fig. 2(a): The magnetic pressure corresponding to the solution (3.11) of the sinh
Poisson equation (2.14) for (y < π/3). Fig. 2(b): The plasma pressure (pressure enhancement)
corresponding to the solution (3.12) of the sinh Poisson equation (2.14) for (y < π/3).
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Figure 3. Fig. 3(a): The magnetic field lines (contours of A) corre-
sponding to the solution (3.11) of the sinh Poisson equation (2.14) for
β = γ3 = ±0.1,±0.2,±0.3,±0.4,±0.5,±0.6,±0.7,±0.8,±0.9 and −2π � Y � 2π. Fig.
3(b): The associated density enhancement corresponding to the solution (3.12) of the sinh
Poisson equation (2.14) for γ = ±0.1,±0.2,±0.3,±0.4,±0.5,±0.6,±0.7,±0.8,±0.9 and
−2π � Y � 2π.
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where

β = ln

[
coth

(
−A/A0

4h

)]
, γ =

2µ

λ2A2
0

√
P − P0e−z/h, Y = y/2h and Z = z/2h.

(3.16)
In Figures 1-3(a,b) density enhancement is displayed relative to the associated magnetic
field distributions, where A2

0 = 2µ, h = 1, ν = 1 and λ = 1, 4.

4. Summary and discussion
In this paper we have investigated isothermal magnetostatic atmospheric models with

one ignorable coordinate x of a Cartesian coordinate system xyz in which the distributed
current is jx ∼ −λ sinh(A/hA0)e−z/h , where h is the gravitational scale height in a
constant gravity field, A0 is a characteristic value of the magnetic induction, α and λ
determine the magnitude of the distributed current. The underlying elliptic equation
governing the force balance perpendicular to both B and ex reduced to the sinh Poisson
equation. The main interest of this paper is to obtain classes of nonlinear magnetostatic
solutions that are obtained analytically by exploring the tanh method, namely, the solu-
tions corresponding to the particular choice of the pressure profile, given in terms of the
magnetic flux function A by equation (2.10).

Our results represent the solutions of the sinh Poisson equation. Figures (1−3) display
the run of the magnetic pressure and pressure enhancement (plasma pressure). It repre-
sents the subcase in which y = constant = π/3 and we notice that the magnetic pressure
gradient is steeper below the enhancement center z = 0 than above. This is due to the
magnetic pressure which at z < 0 has to support the local weight as well as to counter
the expansive pressure of enhancement. Whereas, in z > 0, the enhancement pressure
acts upward to assist the magnetic pressure in supporting the local weight.

The figures represent the magnetic field lines. In all subcases the density enhancement
is a clump that rests on locally depressed field lines, its weight being supported by an
upward Lorentz force. The density enhancement is maximum where the magnetic field
lines are most densely packed and depressed. The figures also illustrate the relationship
between the configuration of the supporting magnetic field in the neighborhood of the
density enhancement and the field configuration in the far region z → ±∞.
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