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THE SOLUTION OF LENGTH THREE
EQUATIONS OVER GROUPS

by JAMES HOWIE*

(Received 22nd September 1981)

Let G be a group, and let r = r{t) be an element of the free product G * <£> of G with
the infinite cyclic group generated by t. We say that the equation r(i) = 1 has a solution
in G if the identity map on G extends to a homomorphism from G * <£> to G with r in
its kernel. We say that r(t) = 1 has a solution over G if G can be embedded in a group H
such that r(t) = 1 has a solution in H. This property is equivalent to the canonical map
from G to <G, t | r> (the quotient of G * <t> by the normal closure of r) being injective.

In general it is not possible to find a solution to an arbitrary equation r(t) = 1 over an
arbitrary group G. It is necessary to place some sort of restriction on the group, on the
equation, or possibly on both. One possible restriction on the equation is that the
exponent sum of t in r be non-zero. Under this hypothesis, but with no restriction on
the group G, it is an open problem whether a solution over G always exists.

It is known that a solution exists if G is either locally residually finite [6] or locally
indicable [1, 3, 9], and other known results give solutions under restrictions on r. Levin
[4] showed that a solution exists if t occurs in r only with positive exponent. Thus the
simplest remaining case (up to conjugacy and inversion) is when r(t) has the form
atbtct'1 (a,b,ceG). Lyndon [5, Corollary 5.3] has solved this case under certain
restrictions on the "coefficients" a, b, c. These restrictions are based on small cancellation
theory, and concern the relations which can hold in G between a, b and c.

It is the purpose of this note to remove the restrictions from Lyndon's result, and
show that any equation of the form

over any group G has a solution over G. Combined with Levin's theorem, this solves
the problem whenever t occurs at most 3 times in r(t).

Note that the above equation can be transformed to one of the form

by applying the automorphism g>->g feeG), tr-ttb'1 of G*(ty, so we are reduced to the
case b=\. Also, if the equation has a solution over the subgroup Go of G generated by
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the coefficients a, b and c (say in a group H=>G0), then it has a solution over G (in the
group G*GQH). Hence we may assume G = G0, and so in particular G is a 2-generator
group.

The method of proof is a variant of Lyndon's Dehn diagrams [5, 8] essentially the
dual of that developed by Short [9] (see also Rourke [7]). The strategy is to infer from
some diagram sufficiently many relations between the 2 generators of G to deduce that
G belongs to a class of groups for which the solution to the problem is known.
Specifically, we deduce that G is at worst residually finite, and then the result follows
from a well-known theorem of Gerstenhaber and Rothaus [2, 6].

I am grateful to the referee for a number of useful comments.

1. Relative diagrams

Let

r(i)=gl-?
w-g2-t*

2K..-gn-f^eG*(ty (gieG, e(i)= + l).

The elements gi,---,gn are called the coefficients of r, the e(i) are the exponents and their
sum e(l) + • • • + s(n) the exponent-sum. The integer n is the t-length of r.

A relative diagram for the equation r(t)=l over G is a triple (D, v0, <p), where D is a
cellular subdivision of the 2-sphere S2, with oriented 1-skeleton D(1); v0 is a vertex (0-
cell) of D; and (j> is a "labelling function" which associates to each edge (1-cell) of D the
element t, and to each corner of each face (2-cell) of D an element of G; such that the
following conditions are satisfied.

(i) Reading the labels around any face in the clockwise direction from a suitable
starting point gives either r or r~l in cyclically reduced form. (Here an edge is to
be read as t or t"1 depending on its orientation).

(ii) The product of the labels, read anti-clockwise around any vertex v J= v0 of D (the
vertex-label of v), is equal to 1 in G.

Remarks. (1) It follows from (i) that the label of each corner is one of the coefficients
or its inverse. Hence by (ii) the vertex-labels of vertices other than v0 yield relations
between the coefficients which hold in G.

(2) The vertex-label of v0 is also defined (up to conjugacy) and is1 an element of the
intersection of G with the normal closure in G * <f> of r. It is therefore a necessary
condition for the existence of a solution over G to the equation r(t) = l, that in any
relative diagram for r(t)= 1, the vertex label of v0 is equal to 1 in G. That this condition
is also sufficient is the crux of our method, and we state it in the form of a Lemma. This
can be proved using standard Dehn diagram methods [5, 8]. Alternatively, the Lemma
can be regarded as the dual of [9, Proposition 2.17], and can be proved using
transversality. We give an outline of the latter argument.

Lemma 1. If the equation r(t)=l has no solution over G, then there exists a relative
diagram (D,v0,<p)for r(t)=l such that the vertex label ofv0 is nontrivial.

Proof. Let (L,K) be a geometric realisation of the relative presentation <G, t|r> [3].
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That is K is a connected CW-complex with n1(K) = G, and L = K u e ' u , e 2 . Then the
inclusion-induced map n^IQ^n^L) is not injective, so there exists a map
f:(D2, S1)-^/,, K) whose restriction to S1 is essential in K.

Let F <= L be a tamely embedded graph with 2 vertices, one in the interior of each cell
of L\K, and an edge joining the two for each occurrence of t in r. Then T has a regular
neighbourhood in L\K, so / is homotopic relS1 to a m a p / 0 which is transverse to F.
Then A = / o l(F) is a graph in Int D2, fo(D

2\A) a L\T, which is homotopy equivalent to
K, and the restriction of/0 to S1 is essential in L\T.

An elementary argument enables us to find a connected component Ax of A, and a
map/i.'D2—*L with/1~1(r) = A1, a n d / t restricted to S1 essential in L\F. Then A1 is the
1-skeleton of a cellular subdivision of S2= D2/S1, and the dual subdivision D gives rise
to a relative diagram (D, v0, </>) in the obvious way. Here v0 is the vertex of D
corresponding to the unique non-simply connected component of D2\AU and has vertex
label in the conjugacy class [/ t |SX],

2. The result

Theorem 2. Let G be any group, and let reG*(ty be an element of t-length 3. Then
the equation r(t) = 1 has a solution over G.

Proof. As remarked in the introduction, we may assume r(t) has the form atbtct'1,
that b = 1 in G, and that G is generated by a and c. We will indeed make these
assumptions, but will retain the symbol b for convenience as a label.

Suppose that the equation has no solution over G. Then by Lemma 1 there is a
relative diagram (D, v0, <f>) for r(t) = 1 such that the vertex-label of v0 is non-trivial. Let us
assume that D is chosen with the smallest possible number of faces. In particular, the
vertex labels are all cyclically reduced words in the symbols a, b, c—otherwise two faces
may be "cancelled" in the diagram (see e.g. fig. 1).

Note that a corner labelled a*1 separates two edges oriented away from that corner;
while one labelled c T 1 separates edges oriented towards it; and one labelled bT1

separates an edge oriented towards and an edge oriented away. It follows that all vertex
labels have the form am, cm, or am(l)b'ic"ll)b...amik)b~lc"{k)b (up to conjugacy). In
particular, the number of occurrences of b is an even integer, no larger than half the
index of the vertex.

By Euler's formula, at least one vertex other than y0 has index 5 or less. If b appears
in the label of such a vertex, that label has the form amb~1cnb with |m| + | n | ^3 . It
follows that G is cyclic, and the equation r=\ has a solution in G, which is a
contradiction. Hence we may assume that any vertex (except possibly v0) of index m^5
is either a source (label a'"1) or a sink (label c*m).

If some vertex has index 1, then again G is cyclic, so we may assume no vertex (other
than i;0) has index 1. Similarly, we may assume that the vertex labels am, a" (\m\, |n|^5)
cannot both occur unless m = n or {m,n} = {2,4}. We may also assume that no two
vertices of index 5 or less are adjacent (unless one of them is v0), for then b appears in
at least one of the vertex labels.

Form a new subdivision D of S2 from D as follows. Remove any vertex (other than
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u0) of index m ^ 5 , together with all incident edges and faces, and replace the m
triangular faces removed in this way by a single m-gon. Call a face of D a new face if it
arises from the removal of a vertex of D, and say it is of type a or c depending on the
vertex label of the vertex which was removed being aTm or cTm. The corners of the new
faces inherit labels from the labelling on D — {cb) + l for a new face of type a, and (ba)*1

for a new face of type c. The faces of D which are not new are called old faces. All old
faces are triangular.

Note that no two new faces of the same type can be adjacent in D, for otherwise
cancellation occurs in D. Also, if two edges of an old face meet new faces of the same
type (say a) then the corresponding portion of the label of their common vertex reads
(cb)a* l{cb)~l. In particular, if the sequence of faces around a vertex includes the
sequence new, old, new, old, new, then these 3 new faces cannot all be of the same type.
Finally, if the vertex label of some vertex includes the sequence b-a"-b~1 (resp. b~lcnb),
where n is a multiple of the order of a (resp. c) in G, then D may be altered to give a
relative diagram with fewer faces (fig. 2). By the assumption of minimality therefore, the

becomes

• 6
Figure 1

\ :-
becomes

"2 i

Figure 2

The symbols w,- represent words in {a, b, c} which are (parts of) vertex labels.
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vertex labels are cyclically reduced words in the free product <a> * (b~lcb} of the cyclic
subgroups of G generated by a and b~lcb.

Now associate to each corner of each m-gon of D the angle (m — 2)n/m. The sum of all
these angles is 2n(V — 2) where V is the number of vertices in D. It follows that for some
vertex v other than v0, the sum of the angles around v is strictly less than 2n. The
argument proceeds by examining the various possible combinations of faces around v.

(1) 2-gons of type a and of type c both occur. Then a2 = c2 = l in G, so G is either
infinite dihedral or finite.

From now on, assume that at most one type of 2-gon can occur. In particular, no two
are adjacent, and the index of v in D is at most 10.

(2) 2-gons (of type a, say) occur, and possibly also 4-gons of the same type, but no
other new faces. Then at most 5 old faces occur, and at most 3 new faces. The index of v
in D is at most 8, and in D at most 11, so b occurs at most 4 times in the vertex label of
v. Hence G satisfies the relation a2 = 1 together with one of:

ac"=l (|n|^8) or acmac"=l (|m| +

It follows that G is finite, except possibly in one of the cases

a2 = l=acac:fl or a2 = l=ac 2 ac T 2 .

(3) 2-gons (of type a, say) and new 3-gons (of type c) occur. The index of v in D is at
most 10, and in D at most 20. Then G satisfies a2 = c3 = l, together with a relation of the
form

(acYac^^l ( 0 ^ n < 3 ) or (ac)2(ac"1)2 = l

or (acac~1)2=l or (ac)5 = l

(The last relation is the only possibility arising from a vertex of index 20). In all cases, G
is finite.

(4) 2-gons (of type a) and 5-gons (of type c) occur. There are at most 3 2-gons, at
most 3 5-gons, and at most (6—2k) old faces, where k is the number of 5-gons. The index
of v in D is at most 12, so G satisfies a2 = c5 = 1, together with one of the following:

acm = \ (5/m) or acmac"=l (\m\ + \n\ S 6; m, n ± 0)

or (ac)2acT1 = l.

In all cases, G is finite.

(5) Only 3-gons occur, of which there are at most 5, and at most 4 are new. If both
types a and c occur, then a3 = c3 = 1, and one of

ac T 1 = l or ac* la:flc:fl = l in G, so G is finite.
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Otherwise, at most 2 new faces occur (say of type a), and G satisfies either

amcn = l (|m| + |n|^3) or a3 = l and a V = l (|m| + |n|^5).

Again G is finite.

(6) 5-gons (of type a) occur, and no 2-gons. There are either 2 5-gons and at most 2
3-gons; or 1 5-gon, 1 4-gon and at most 2 old faces; or 1 5-gon and at most 4 3-gons, at
most 2 of which can be new. In all cases, v has index at most 8 in D. If the index is less
than 8, then G satisfies

so is finite cyclic. If the index is 8, there are 2 new 3-gons, so G satisfies a5 = c3 = 1 along
with one of

Again G is finite.

(7) 4-gons (of type a), but no 2-gons or 5-gons occur. There are either 2 4-gons and at
most 2 3-gons, or 1 4-gon and at most 4 3-gons, of which at most 2 can be new. The
index of v in D is at most 8. If the index is 8, then there are 2 new 3-gons, so G satisfies
a* = c3 = l, along with one of acT1aT1cT1 = l. In all cases, G is finite. If the index is 7,
then there is 1 new 3-gon, so G satisfies a4 = c3 = l along with one of amc"=\ (|m| + |n|
= 5). "Hence G is finite cyclic. If the index is less than 7, then G satisfies a4 = 1 and
amc" = 1 with |m| + |n |^4 (m, n^O). Again, G is finite, except possibly in the cases

most 2 3-gons, or 1 4-gon ((4 = 1 = f l

(8) 4-gons (of type a) and 2-gons (of type c) occur. There are at most 3 4-gons, at
most 3 2-gons, and at most 4, 2 or 1 old faces, depending on whether there are 1, 2, or 3
4-gons. In any case, the index of v in D is at most 13. Hence G satisfies a4 = c2 = 1, along
with one of

a"c=\ (4J(n) or aca"c=\ {4J(n) or (ac)2a"c=l (4J(n)

or aca~1ca2c=l or (a2c)2 = l.

In all cases, except possibly the last, G is finite.

A further 7 cases occur when a and c are interchanged in cases (2)-{8) above, but the
symmetry between a and c.allows us to treat these additional cases in a similar manner.
We have thus covered all possible combinations of faces around v, and discovered that
G is finite except in a few exceptional cases, when it is a homomorphic image of one of
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the following groups:

<a,c|a2 = c2 = 1> (easel)

<a,c|a2 = (ac)2 = l> (case 2)

<a,c|a2 = (ac2)2 = l> (case 2)

<a, c | a2 = [a, c] = 1 > (case 2)

<a,c|a2 = [a,c2] = l> (case 2)

<a, c | a4 = a2c2 = 1 > (case 7)

<a, c | a4 = c2 = (a2cf = 1 > (case 8)

Now each of the groups listed above (and so also any homomorphic image of one of
these groups) has a free abelian subgroup of finite index, and so in particular is
residually finite.

We have deduced that G is residually finite, so we may apply the theorem of
Gerstenhaber and Rothaus [2, 6] to show that any equation with non-zero exponent
sum has a solution over G, contradicting the hypothesis that r(t)=\ has no solution.
This completes the proof of Theorem 2.

3. Remarks

The proof of Theorem 2 is somewhat unsatisfactory, as it involves much tedious
checking of cases. It also hinges very strongly on the fact that G is in this case
essentially a 2-generator group, so a few easily obtainable relations suffice to show G is
residually finite. There is some hope that a similar approach would work for other
equations of small £-length, but it seems unlikely that this type of argument would lead
to a general solution of the problem.
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