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ON FINITE LOOPS WHOSE INNER MAPPING GROUPS
ARE ABELIAN II

MARKKU NIEMENMAA

If the inner mapping group of a loop is a finite Abelian group, then the loop is
centrally nilpotent. We first investigate the structure of those finite Abelian groups
which are not isomorphic to inner mapping groups of loops and after this we show
that if the inner mapping group of a loop is isomorphic to the direct product of
two cyclic groups of the same odd prime power order pn, then our loop is centrally
nilpotent of class at most n + 1.

1. INTRODUCTION

In this paper, which is a continuation of [9], we are interested in the following two
questions:

1. Which Abelian groups axe/are not isomorphic to inner mapping groups
of loops?

2. If Q is a finite loop with an Abelian inner mapping group I(Q), then
Q is centrally nilpotent. How does the structure of I(Q) influence the
nilpotency class of Q?

The purpose of this paper is to show that the following result holds:
Let k > I ^ 0 be integers and let p be an odd prime number. If Q is a finite

loop, then the inner mapping group I(Q) is never isomorphic to the direct product
Cpk xCpi.

By using this result we are able to show that if I(Q) is isomorphic to Cpn x Cpn,
then Q is a centrally nilpotent loop of class at most n + 1. The reader interested in
the relation between loop theory and group theory is advised to look at articles [8,
9, 11]. Some of the main links between the two theories are explained in Sections 2 and
4 of this paper. Section 5 contains some remarks and a brief discussion on similarities
between capable groups and inner mapping groups of loops.
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2. BASIC DEFINITIONS AND RESULTS

If Q is a loop, then the two mappings La(x) = ax and Ra(x) = xa are permuta-
tions on Q for every a 6 Q. The permutation group M(Q) = (La, Ra : a € Q) is called
the multiplication group of Q• The stabiliser of the neutral element of Q is denoted
by I(Q) and I(Q) is called the inner mapping group of Q (if Q is a group, then I(Q)
is just the group of inner automorphisms of Q). If we write A = {La : a £ Q} and
B = {Ra : a G Q}, then the commutator subgroup [A, B] < I{Q) and A and £ are
left transversals to I(Q) in M(Q). If 1 < K ^ / (Q), then if is not a normal subgroup
of M(Q).

If we replace M(Q) by G and /(Q) by H, then in group theory we are dealing with
the following situation: H is a subgroup of G and A and i? are two left transversals
to H in G. We assume that [A, B] ^ if and we say that A and B are if-connected
transversals. By HQ we denote the core of H in G, that is, the largest normal subgroup
of G contained in if. If if a = 1, we say that H is core-free in G. The relation between
multiplication groups of loops and connected transversals is given by the following result
that was proved by Kepka and Niemenmaa [11] in 1990.

THEOREM 2 . 1 . A group G is isomorphic to the multiplication group of a loop if
and only if there exist a subgroup if satisfying ifc = 1 and H-connected transversals
A and B such that G = {A, B).

In Lemmas 2.2 and 2.3 (for the proofs, see [11, Lemma 2.5] and [7, Lemma 1.4])
we assume that A and B are if-connected transversals in G.

LEMMA 2 . 2 . IfHG = l, then NG{H) = H x Z(G).

LEMMA 2 . 3 . If HG = 1, then Z(G) c A n B.

In the following lemmas we assume that G = {A, B). As usual, p denotes a prime
number and Cn denotes a cyclic group of order n.

LEMMA 2 . 4 . If H =* Cp x Cp, then G' ^ NG{H).

LEMMA 2 . 5 . If H is a cyclic subgroup of G, then G' ^ if .

LEMMA 2 . 6 . If G is a finite group and H is Abelian, then H is subnormal in

G.

For the proofs, see [12, Lemma 4.2], [7, Theorem 2.2], [8, Lemma 2.1].

LEMMA 2 . 7 . Let H be Abelian and HG = \. Then the core of HZ{G) in G
contains Z(G) as a proper subgroup.

PROOF: By Lemmas 2.2 and 2.6, NG(H) = H x Z{G) and Z(G) > 1. Then
assume that the core of HZ(G) in G equals Z(G). By Lemma 2.2,

NG/Z{G)(HZ(G)/Z(G)) =HZ(G)/Z(G) x Z{G/Z(G)).
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If we write M/Z{G) = Z(G/Z(G)), then ATG(iJ(Z(G))) = HM, where M is normal

in G, Z(G) is a proper subgroup of M and f /DM = 1. Now HM — CH = DH, where

CCAand DCB. By Lemma 2.3, Z(G/Z(G)) C AZ(G)/Z(G)nBZ(G)/Z(G). Thus

it is clear that M C CZ(G) f~l DZ(G). If m € M , then m = c ^ = dz2 > where c G A ,

d 6 B and zx and z2 are from Z(G). If x G A U £ , then [ i , m ] e M n f f = l . Thus

CG{™) ^ ( A B) = G. But then M = Z(G) , a contradiction. The proof is complete. 0

Finally, we need the following well known result on commutator calculus ([6,

pp. 253-254]).

LEMMA 2 . 8 . If [a, b] commutes with a and b, then (ab)n = anbn[b, o](S).

3. MAIN THEOREMS

Throughout this section we assume that G is a finite group, H is an Abelian

subgroup of G and there exist H-connected transversals A and B such that

G=(A,B).

THEOREM 3 . 1 . Let H = Cpk x Cpi and assume that p is an odd prime number

and k > I ^ 0. Then HQ is not trivial.

PROOF: Our proof is by induction on k. If k = 1, then the claim follows from

Lemma 2.5. Then assume that k ^ 2 and G is a minimal counter example. As we now

assume that HG = 1, it follows from Lemmas 2.2 and 2.6 that NG(H) = H x Z(G)

and Z(G) is not trivial. Then let z € Z(G) and assume that | z |= r, where r is a

prime number and consider the groups G/(z) and H(z)/(z). If K denotes the core of

H(z) in G, then (z) < K ^ H(z). If r ^ p, then the Sylow p-subgroup P of X is

normal in G. But then HQ > 1, which is not possible.

Thus we may assume that r = p. Since the Frattini subgroup $(K) ^ H is normal

in G, it follows that K is elementary Abelian. If | K |= p3 , then the core of HK/K

in G/K is not trivial (as G is a minimal counter example) and the core of HK in G

is larger than K. Thus it follows that K = (x) x (z), where x £ H and | x |= p. We

may also conclude that k = I + 1.

Since CG(K) is normal in NQ(K) — G, it follows that CG(X) = CG(K) is normal
in G. By Lemma 2.2,

NG/K(HK/K) = NG/K(H(z)/K) = H(z)/K x Z(G/K).

If we write Z{G/K) = M/K, then NG(H(z)) = HM and H n M = ( i) . Clearly,

M is normal in G. By Lemma 2.7, W is equal to the core of HM in G con-

tains M as a proper subgroup. As K < M, we conclude that W = H\M, where

(x)<Hl^H. Now # / # ! = i / / # n W a if W/iy. As H Si C^ xCp*-i and the core
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of
HW/W = HM/W in G/W is trivial, it follows that Hi 3* Cpt x Cpt-i and k ^ t > 2.

Now r = W n CGOE) = ffiM n CG(x) = HX(M n CG(x)) is normal in G. It is
easy to see that T < W ^ (#Af)' < # and thus 7" ̂  Z(T). Now p is odd and thus
by Lemma 2.8, it follows that E = (g G T | gp = 1) = {g G T | g" = 1}. Obviously, £
is normal in G. If Y denotes the core of HE in G, then Y = H2E, where H2 ^ Hi.
It is clear that Hi contains p-elements whose order is at least p2. If x G Y, then
x = yw, where y € H2 and w € E. Now xp = (j/tw)p = ypu;p[u;,y]\2/ = yp (since p
is odd). Thus Yp is a nontrivial normal subgroup of G and as Yp ^ .ff, we have a
contradiction with i/o = 1. U

Now we write Ni(H) = NG(H) and Ni+i(H) = NG(Ni(H)) for each i }z 1. By
Lemma 2.6, the chain of subgroups Ni(H) reaches G in a finite number of steps in the
case that H is Abelian. The following theorem shows how many steps (at most) are
needed in a special case.

THEOREM 3 . 2 . Let p be an odd prime number. If H ^ Cpt x Cpt, then

PROOF: If t = 1, then the claim is true by Lemma 2.4. Assume then that the
claim is true for each k < t and let H = Cpt x Cpt. If HG > 1, then from Theorem
3.1 it follows that H/HG a Cpi x Cpi, where l<t. Thus (G/HG)' ^ Ni(H/HG) and

we conclude that G' ^ Nt(H) ^ Nt(H).

Thus we may assume that HG = 1. Then NG(H) = H x Z(G) and Z{G) > 1.
Then consider the groups G/Z(G) and HZ(G)/Z(G). By Lemma 2.7, the core of
HZ(G) contains Z(G) as a proper subgroup. Thus we have a normal subgroup L
of G such that Z(G) < L ^ HZ(G). Now consider the groups G/L and HL/L.
By Theorem 3.1, we conclude that L = (Cpr x Cpr) x Z(G), where 1 ^ r ^ t.
Thus it follows that {G/L)' ^ Nt-r{HL/L), hence G' < Nt.r{HL) = Nt.r(HZ(G))
= Nt-r+i(H) ^ Nt(H). This completes the proof. D

4. LOOP THEORY

We combine the result of Theorem 3.1 with Theorem 2.1 and we have the following
result which generalises the result in[9, Corollary 4.1].

COROLLARY 4 . 1 . Let Q be a Unite loop. Then the inner mapping group I(Q)
can not be isomorphic to Cpk x Cpi, where p, k and I are as in Theorem 3.1.

Theorem 3.2 also has an interpretation in loop theory but in order to present this
interpretation we first must introduce the reader the notion of central nilpotency in loop
theory. If Q is a loop, then the centre Z(Q) consists of all elements a G Q which satisfy
the equations ax.y = a.xy, xa.y = x.ay, xy.a = x.ya and xa = ax for all x, y G Q. It
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is not difficult to see that Z(Q) is an Abelian subgroup of Q and Z(Q) = Z(M(Q)).

If we put Zo — I, Z\ = Z(Q) and Zi/Z^i = Z(Q/Zi-i), then we obtain a series

of normal subloops of Q. If Zn-\ is a proper subloop of Q but Zn = Q, then Q is

centrally nilpotent of class n.

Now we write IQ = I(Q) and U — NM(Q){Ii-\) for each i ^ 1. Bruck ([4,

pp. 278-281]) proved the following criterion for central nilpotency of Q.

THEOREM 4 . 2 . A necessary and sufficient condition that Q be centrally nilpo-

tent of class c, is that Ic = M(Q) but J c_i ^ M(Q).

If Q is centrally nilpotent of class < 2, then NM{Q)(l(Q)) = I(Q) x Z(M(Q)) is
normal in M(Q). As the core of I(Q) in M(Q) is trivial, we conclude that I(Q) is an
Abelian group. Kepka and Niemenmaa managed to show in [12] that if Q is a finite
loop such that I(Q) is Abelian, then Q is centrally nilpotent. Very little is known
about how the structure of the Abelian inner mapping group influences the nilpotency
class of the loop. By combining Theorem 3.2 with Theorem 4.2 we have the following.

COROLLARY 4 . 3 . If Q is a finite loop and I(Q) = Cpn x Cpn (here p is an odd
prime), then Q is centrally nilpotent of class ^ n + 1.

5. REMARKS

Recall that if Q is a group then I(Q) is the group of inner automorphisms of
Q. Groups, which are isomorphic to inner automorphism groups of groups, are called
centre factor groups or capable groups. The question which Abelian groups can occur
as capable groups was completely solved by Baer [3]. In the finite case his result is as
follows:

Let G = C\ x • • • x Cn be a finite Abelian group written as a product of cyclic
groups such that | Ci+i \ divides | d |. Then G is a capable group if and only if n ^ 2
and | C\ | = | C2 |.

Our conjecture is that the situation in loop theory is similar and we thus claim
the following: If Q is a finite loop and I(Q) = C\ x • • • x Cn is a finite Abelian group
(written as in the result by Baer), then n ^ 2 and | C\ | = | C2 \-

In a recent paper of Ali and Cossey [1], the authors show how to construct 4 - tuples
(G, H, A, B) which satisfy the conditions of our Theorem 2.1. In the construction H is
Abelian, A = B and F{G) = H x Z(G) (here F{G) denotes the Fitting subgroup of
G). Thus the corresponding loop has an Abelian inner mapping group and is centrally
nilpotent of class two.

Finally, what do we know about the nonabelian case? There are some recent results
(see [2, 5]) on nonabelian capable groups (mainly groups which are nilpotent of class
two). In loop theory, Niemenmaa [10] has shown that if C is a nontrivial finite cyclic
group of odd order and D is a dihedral 2 - group, then I(Q) = D x C is not possible.
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