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Connections Between Metric
Characterizations of Superreflexivity and
the Radon–Nikodým Property for Dual
Banach Spaces

Mikhail I. Ostrovskii

Abstract. Johnson and Schechtman (2009) characterized superreflexivity in terms of finite diamond
graphs. The present author characterized the Radon–Nikodým property (RNP) for dual spaces in
terms of the infinite diamond. This paper is devoted to further study of relations between metric
characterizations of superreflexivity and the RNP for dual spaces. The main result is that finite subsets
of any set M whose embeddability characterizes the RNP for dual spaces, characterize superreflexivity.
It is also observed that the converse statement does not hold and that M = `2 is a counterexample.

1 Introduction

Results of [16, 24] indicate the existence of some parallels between metric charac-
terizations of superreflexivity and metric characterizations of dual spaces with the
Radon–Nikodým property (RNP).

To state the corresponding results we recall the definition of the infinite diamond.
The diamond graph of level 0 is denoted D0. It has two vertices joined by an edge of
length 1. Dn is obtained from Dn−1 as follows. Each edge of Dn−1 is of length 2−(n−1).
Given an edge uv ∈ E(Dn−1), it is replaced by a quadrilateral u, a, v, b with edge
lengths 2−n. We endow Dn with its shortest path metric. We consider the vertex set of
Dn as a subset of the vertex set of Dn+1; it is easy to check that this defines an isometric
embedding. We introduce Dω as the union of the vertex sets of {Dn}∞n=0. For u, v ∈
Dω we introduce dDω (u, v) as dDn (u, v), where n ∈ N is any integer for which u, v ∈
V (Dn). Since the natural embeddings Dn → Dn+1 are isometric, dDn (u, v) does not
depend on the choice of n for which u, v ∈ V (Dn). To the best of my knowledge the
first paper in which diamond graphs {Dn}∞n=0 were used in metric geometry is [13]
(a conference version was published in 1999).

Theorem 1.1 ([16]) A Banach space X is nonsuperreflexive if and only if it admits
bilipschitz embeddings with uniformly bounded distortions of diamonds {Dn}∞n=1 of all
sizes.
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Figure 1: Diamond D2.

Theorem 1.2 ([24]) A dual Banach space does not have the RNP if and only if it
admits a bilipschitz embedding of Dω .

Remark 1.3 It is known ([22]) that for Banach spaces that are not dual spaces, lack
of the RNP does not imply embeddability of Dω . (See [24] for more results of this
type.)

Theorems 1.1 and 1.2 make it natural to try to understand whether similar results
hold for other than Dω separable metric spaces and their finite subsets. In this note we
prove that in one of the directions this is true. Recall (see [30] and references therein)
that a dual of a separable Banach space has the RNP if and only if it is separable. We
prove the following theorem.

Theorem 1.4 If a metric space M admits a bilipschitz embedding into any nonsep-
arable dual of a separable Banach space, then each of its finite subsets embeds into an
arbitrary non-superreflexive Banach space with uniformly bounded distortions.

The implication in the other direction does not hold in general. We have the
following result, which is proved in Section 3.

Proposition 1.5 There exist a separable metric space M and a separable Banach
space X with nonseparable dual X∗ such that finite subsets of M admit embeddings into
an arbitrary non-superreflexive Banach space with uniformly bounded distortions, but
M does not admit a bilipschitz embedding into X∗.

The Hilbert space `2 is an example of an M satisfying the conditions of Proposi-
tion 1.5.
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Remark 1.6 It is worth mentioning that the Hilbert space `2 is, up to an isomor-
phism, the only Banach space the finite subsets of which admit embeddings into an
arbitrary non-superreflexive Banach space with uniformly bounded distortions. In
fact, by results of James [15] and Pisier–Xu [28] there exist nonsuperreflexive spaces
of type 2. It is well known that there exist nonsuperreflexive spaces of cotype 2 (for
example, `1). On the other hand, Bourgain’s discretization theorem [5, 12] implies
that uniform bilipschitz embeddability of finite subsets implies the existence of uni-
formly isomorphic embeddings of finite-dimensional subspaces. Therefore, each Ba-
nach space satisfying the conditions of Proposition 1.5 has type 2 and has cotype 2;
hence, by the Kwapień theorem [17], it is isomorphic to a Hilbert space.

Definition 1.7 Let X and Y be two Banach spaces. The space X is said to be finitely
representable in Y if for any ε > 0 and any finite-dimensional subspace F ⊂ X there
exists a finite-dimensional subspace G ⊂ Y such that d(F,G) < 1 + ε, where d(F,G)
is the Banach–Mazur distance.

The space X is said to be crudely finitely representable in Y if there exists 1 ≤
C < ∞ such that for any finite-dimensional subspace F ⊂ X there exists a finite-
dimensional subspace G ⊂ Y such that d(F,G) ≤ C .

Theorem 1.4 is an immediate consequence of the following result, which is proved
in the next section.

Theorem 1.8 For each non-superreflexive Banach space X there exists a non-
separable dual Z∗ of a separable Banach space Z, such that Z∗ is crudely finitely repre-
sentable in X.

We refer to [3, 20, 21, 23, 27] for background material and presentations of some
of the results used below.

2 Proof of Theorem 1.8

First we consider the case where X has no nontrivial type. In such a case, `1 is finitely
representable in X (by the result of [26]), and therefore Z = C(0, 1) satisfies the
conditions of Theorem 1.8. In fact, it is clear that (C(0, 1))∗ is nonseparable. It is
also known (see e.g., [20, Section 5.b]) that (C(0, 1))∗ is finitely representable in `1.

Now we consider the case where X has nontrivial type. Replacing X, if necessary,
by a nonreflexive space finitely represented in it, we can assume that X is nonreflexive.
The following notion, introduced by Brunel and Sucheston, turned out to be very
useful in the study of nonreflexive spaces with nontrivial type.

Definition 2.1 ([7, p. 84]) A sequence {en} in a semi-normed space is called equal
signs additive (ESA) if for any finitely non-zero sequence {ai} of real numbers such
that sign ak = sign ak+1, the equality∥∥∥ k−1∑

i=1
aiei + (ak + ak+1)ek +

∞∑
i=k+2

aiei

∥∥∥ =
∥∥∥ ∞∑

i=1
aiei

∥∥∥
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holds.

Theorem 2.2 ([7]) For each nonreflexive space X there is a Banach space E with an
ESA basis that is finitely representable in X.

Since this theorem is not explicitly stated in [7], we describe how to get it from the
argument presented there. By [29], there is a sequence {xi}∞i=1 in BX (the unit ball of
X) satisfying the condition

fn(xk) =

{
θ if n ≤ k,

0 if n > k,

for some 0 < θ < 1 and some { fi}∞i=1 ⊂ BX∗ . Following [6, Proposition 1] we build
the spreading model X̃ on the sequence {xi} (the term spreading model was not used
in [6], but was introduced later; see [2, p. 359]). The natural basis {ei}∞i=1 in X̃ is
invariant under spreading (IS) in the sense that∥∥∥∑

i
αieki

∥∥∥ =
∥∥∥∑

i
αiei

∥∥∥
for each strictly increasing sequence {ki} of positive integers. The space X̃ is finitely
representable in X; see [7, p. 83]. Now we use the procedure described in [7, p. 84], to
get a Banach space E that is finitely representable in X̃ and has an ESA basis. (Actually,
the fact that we get a basis was not verified in [7]; this was done in [8, Proposition 1]).

Since the space E has nontrivial type, it follows from results of [8, Lemma 3,
p. 290] that this basis is boundedly complete, and hence E is isomorphic to a dual
space (see [21, Proposition 1.b.4]).

Remark 2.3 It would be interesting to show that E is isometric to a dual space.
Then we would be able to omit the word “crudely” from the statement of Theo-
rem 1.8.

Let R be a Banach space such that R∗ is isomorphic to E. We construct the desired
space Z as a transfinite dual of R. Transfinite duals were introduced in [9]. Let us
recall the definition. We denote the n-th dual (n ∈ N) of a Banach R by R(n). We say
that an ordinal α is even if it is either a limit ordinal or an ordinal of the form β + 2n
where β is a limit ordinal and n ∈ N. We define R(α) by transfinite induction:

• R(α+1) = (R(α))∗.
• If α is a limit ordinal, we let R(α) be the completion of the union⋃

β<α
β is even

R(β).

(Observe that the union is well defined as a normed linear space, since R(β) admits
a canonical isometric embedding into R(γ) if β < γ and both β and γ are even.)

To complete the proof of Theorem 1.8 we prove the following two statements:

(a) The space R(ω2+1) is crudely finitely representable in E (and thus in X).
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(b) The space R(ω2) is separable and the space R(ω2+1) is nonseparable.

Statement (a) is an immediate consequence of the following lemma.

Lemma 2.4 Let R be a Banach space and let R∗(= R(1)) be its dual. Then R(γ) is
finitely representable in R∗ for every odd ordinal γ.

Proof For finite ordinals, this result is an immediate consequence of the local re-
flexivity principle [18]. The same principle implies that if the statement is true for
an infinite odd ordinal γ, then it is true for all ordinals of the form γ + 2n. So using
the transfinite induction, it remains to show that the statement holds for ordinals of
the form γ = α + 1, where α is a limit ordinal, provided it holds for all smaller odd
ordinals.

We have

R(α) = cl
( ⋃

β<α
β is even

R(β)
)
.

Let F be a finite-dimensional subspace of R(α+1), ε > 0, and let { fi}k
i=1 be a finite

ε
2 -net in SF (the unit sphere of F). For each fi we can find an even ordinal βi < α and
a vector xi ∈ R(βi ) such that ‖xi‖ = 1 and fi(xi) ≥ 1− ε

2 . Let τ = max1≤i≤k βi . Then
the natural restriction of F to the space R(τ ) is an ε-isometry, hence F is ε-isometric
to a subspace in R(τ+1), and the induction hypothesis implies that R(α+1) is finitely
representable in R∗.

To show that R(ω2) is separable, it suffices to show that R(ωn) is separable for each
n. This can be shown by a straightforward induction based on the following results.

Theorem 2.5 ([25, Theorem 16]) If X is quasireflexive, then X(ω) = X⊕ [xi], where
{xi} is an ESA basis.

Theorem 2.6 ([8, Theorem 3]) If a Banach space with an ESA basis has nontrivial
type, then it is quasireflexive.

The fact that R(ω2+1) is nonseparable was proved by Bellenot [4]. Since the details
of the argument of Bellenot are difficult to follow, we note that this result can be
derived using the argument of Davis and Lindenstrauss [10, Theorem 4]. Let us
mention the modification of the argument of [10] needed to achieve this goal. To
understand the discussion below the reader should be familiar with the very elegant
proof in [10, pp. 194–196].1

We build the collections x(σ,n) and f(σ,n) in the way described in [10, pp. 194–195].
Then, for each σ in the Cantor set ∆, we pick a sequence {σ j}∞j=1 of end points in
∆ so that σ j → σ and let Fσ ∈ R(ω2+1) be any weak∗ limit point of the sequence

{ f(σ j ,1)}∞j=1 in R(ω2+1). We claim that ‖Fσ − Fτ‖ ≥ 1
2 for each σ, τ ∈ ∆, σ < τ ,

because we can find a λ that is an end point of ∆ and satisfies σ < λ < τ . But then,

1We would like to mention that there are two misprints in [10] on page 195, line 15: f(σ,n) should be
f(0,n) and f(0,n) should be f(1,n).
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as is easy to check, for any n ∈ N we have Fσ(x(λ,n)) = 1 and Fτ (x(λ,n)) = 0. Since
‖x(λ,n)‖ ≤ 2, the conclusion follows.

3 Proof of Proposition 1.5

The fact that finite subsets of `2 admit embeddings into arbitrary non-superreflexive
Banach spaces with uniformly bounded distortions is an immediate consequence of
the Dvoretzky theorem [11].

As an example of a suitable space X, we use the James tree space (see [14, 19]),
but built on `p with p ∈ (2,∞). More precisely, we follow the construction of
[19, Section 2]. So we consider an infinite binary tree T∞ whose vertices can be
labelled with finite sequences of zeros and ones (including the empty sequence) with
the norm

‖x‖ = sup

(
k∑

j=1

( ∑
v∈J j

x(v)
) p
) 1

p

<∞,

where the supremum is taken over all choices of k and of pairwise disjoint finite
descending paths J1, . . . , Jk in the tree T∞. Denote by B the closed linear span in
( JTp)∗ of the biorthogonal functionals {e∗v } of the unit vector basis {ev} of JTp.

In the same way as in [19, Section 2] one can establish the following results:

(a) JTp is naturally isomorphic to B∗.
(b) The quotient of ( JTp)∗ with the kernel B is isometric to `q(Γ), where Γ is a set

of cardinality continuum and 1
q + 1

p = 1.
(c) The space ( JTp)∗ is a nonseparable dual of a separable Banach space.

It remains to prove that ( JTp)∗ does not admit a bilipschitz embedding of `2. In
fact, otherwise, by [3, Corollary 7.10], it would contain a linear isomorphic image
of `2. Let us show that this implies that B contains a sequence {bi}∞i=1 equivalent to
the unit vector basis of `2. Recall that `q(Γ) with q ∈ (1, 2) is totally incomparable
with `2 (see [21, p. 75] for the definition and proof). Therefore the restriction of the
quotient map ϕ : ( JTp)∗ → `q(Γ) with kerϕ = B to a subspace H isomorphic to
`2 is strictly singular. Hence (see [21, Proposition 2.c.4]), H contains a normalized
sequence {ai}∞i=1 satisfying

∀{αi}∞i=1 ⊂ R c
(∑

i
α2

i

) 1
2 ≤

∥∥∥∑
i
αiai

∥∥∥ ≤ C
(∑

i
α2

i

) 1
2

for some 0 < c < C <∞, and such that ‖ai−bi‖ ≤ c
C2i+1 for some sequence {bi}∞i=1

in B. It is easy to check that the sequence {bi}∞i=1 is equivalent to the unit vector basis
of `2 (see [21, Proposition 1.a.9]).

We show that the existence of such a sequence {bi}∞i=1 in B leads to a contradiction.
Clearly we can assume that {bi}∞i=1 is disjointly supported with respect to the basis
{e∗v }. Let {b∗i }∞i=1 ⊂ JTp be a bounded sequence satisfying b∗i (bi) = 1. The sequence
{b∗i } can also be assumed to be disjointly supported. By [19, Corollary 3] (see also
[19, Proposition on p. 91]), we can assume that {b∗i } is weakly Cauchy. Then the
sequence {b∗2k − b∗2k−1}∞k=1 is weakly null. Using a straightforward generalization of
[1, Theorem, p. 420] we get that {b∗2k − b∗2k−1}∞k=1 contains a subsequence equivalent
to the unit vector basis of `p. We assume that {b∗2k − b∗2k−1}∞k=1 is equivalent to the
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unit vector basis of `p. Then, as is easy to see, we get that for some constant c > 0
and any finitely non-zero sequence {αk} we have∥∥∥∑

k
αkb2k

∥∥∥ ≥ c
(∑

k
α

q
k

) 1
q
.

Since q ∈ (1, 2), this contradicts to the assumption that {bn} is equivalent to the unit
vector basis of `2.

Acknowledgments The author would like to thank William B. Johnson and Beata
Randrianantoanina for useful discussions related to the subject of this paper.
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