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Abstract

In this paper, we establish bounds on the norm of multiplication operators on the Bloch space of the
unit disk via weighted composition operators. In doing so, we characterize the isometric multiplication
operators to be precisely those induced by constant functions of modulus 1. We then describe the spectrum
of the multiplication operators in terms of the range of the symbol. Lastly, we identify the isometries and
spectra of a particular class of weighted composition operators on the Bloch space.
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1. Introduction

Let D denote the open unit disk in the complex plane. An analytic function f on D is
said to be Bloch if

β f = sup
z∈D
(1− |z|2)| f ′(z)|<∞.

The mapping f 7→ β f is a semi-norm on the space B of Bloch functions, called the
Bloch space. Under the norm

‖ f ‖B = | f (0)| + β f ,

the Bloch space is a Banach space. The little Bloch space B0 is the closed subspace of
B consisting of functions f ∈ B satisfying

lim
|z|→1

(1− |z|2)| f ′(z)| = 0.

For further treatment of Bloch functions and the Bloch space see [1, 3, 17].
Suppose ψ is a fixed analytic function on D. The multiplication operator on the

Bloch space is defined as
Mψ ( f )= ψ f.
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In [2], Brown and Shields proved that Mψ is a bounded operator on the Bloch space if
and only if ψ ∈ H∞(D) and

|ψ ′(z)| = O

(
1

(1− |z|) log(1/(1− |z|))

)
.

This implies that

(1− |z|2)|ψ ′(z)| = O

(
1

log(1/(1− |z|))

)
→ 0

as |z| → 1. Thus ψ ∈ B0.
Suppose further that ϕ is a fixed analytic self-map of D. The weighted composition

operator on the Bloch space is defined as

Wψ,ϕ( f )= ψ( f ◦ ϕ).

There is a reason for introducing the weighted composition operator at this point. The
multiplication operator is a ‘degenerate’ weighted composition operator; if ϕ is the
identity map, then Wψ,ϕ = Mψ . Likewise, the composition operator on the Bloch
space, defined as

Cϕ( f )= f ◦ ϕ,

is a ‘degenerate’ weighted composition operator when ψ is taken to be the constant
function 1.

In [16], Ohno and Zhao proved that Wψ,ϕ is a bounded operator on the Bloch space
if and only if the following two properties are satisfied:

sup
z∈D
(1− |z|2)|ψ ′(z)| log

2

1− |ϕ(z)|2
<∞, (1.1)

sup
z∈D

1− |z|2

1− |ϕ(z)|2
|ψ(z)||ϕ′(z)|<∞. (1.2)

It can easily be proved that if Wψ,ϕ is bounded on the Bloch space, then ψ is a Bloch
function.

The characterization of the isometries is an open problem for most Banach spaces of
analytic functions; the set of isometries, in most cases, is too large to study all at once.
Even so, there are spaces for which the isometries are known. In [11], Forelli proved
the isometries on the Hardy space H p, for p 6= 2, are certain weighted composition
operators. Also in [10], El-Gebeily and Wolfe completely characterized the isometries
on the disk algebra A0 = H∞(D) ∩ C(∂D). For most other spaces, a complete picture
of the isometries is not known. The surjective isometries for the Bergman space Ap

(see [18]) and the weighted Bergman space Ap
ω (see [14]) are known.

The first attempt to study the isometries on the Bloch space was made by Cima and
Wogen in [4]. They studied the isometries on the subspace of the Bloch space whose
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elements fix the origin. On this space, they showed that the surjective isometries are
normalized compressions of composition operators induced by disk automorphisms.
However, on the entire set of Bloch functions, a description of all isometries is still
unknown. The current trend in the literature is to attack this problem one operator
at a time.

To date, the only complete characterization of isometries on the Bloch space is those
among the composition operators. Independently, two different descriptions have been
developed. In [6], the second author identified the isometric composition operators
in terms of the canonical factorization of the symbol. Martı́n and Vukotić [15]
identified the isometric composition operators in terms of the hyperbolic derivative
and cluster set of the symbol. The purpose of this paper is to further develop the
understanding of the isometries on the Bloch space by characterizing the isometric
multiplication operators. The authors are unaware of any such description of the
isometric multiplication operators on the Bloch space in the literature.

1.1. Organization of the paper In Section 2, we determine estimates on the norm
of the weighted composition operator Wψ,ϕ on the Bloch space. As a corollary,
we deduce estimates on the norm of the multiplication operator Mψ . In the case
where ψ ≡ 1, the norm estimates agree with those derived by Xiong in [19] for the
composition operator Cϕ .

In Section 3, we prove that the symbols of isometric multiplication operators are
precisely the constant functions of modulus 1.

In Section 4, we show that the spectrum of the multiplication operator is the
closure of the range of the symbol. From this, we deduce the spectra of the isometric
multiplication operators to be single-element subsets of the unit circle.

In Section 5, we discuss the weighted composition operators whose symbols induce
isometries individually and describe their spectrum.

2. Norm estimates on weighted composition operators

In this section we establish estimates on ‖Wψ,ϕ‖. In order to write these estimates
in a succinct way, we introduce the following notation. Let ψ ∈ B and ϕ :D→D be
analytic functions satisfying conditions (1.1) and (1.2). Let

τ∞ψ,ϕ
def
= sup

z∈D

1− |z|2

1− |ϕ(z)|2
|ψ(z)||ϕ′(z)|,

σ∞ψ,ϕ
def
= sup

z∈D

1
2
(1− |z|2)|ψ ′(z)| log

1+ |ϕ(z)|
1− |ϕ(z)|

,

which are both finite. In [19], Xiong defined

τ∞ϕ = sup
z∈D

1− |z|2

1− |ϕ(z)|2
|ϕ′(z)|
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to obtain an upper estimate on the norm of a composition operator on B. Note that if
ψ ≡ 1, then τ∞ψ,ϕ = τ

∞
ϕ . Also, if ϕ is the identity map, then

σ∞ψ,ϕ = σ
∞
ψ

def
= sup

z∈D

1
2
(1− |z|2)|ψ ′(z)| log

1+ |z|
1− |z|

.

To determine an upper bound on ‖Wψ,ϕ‖ we use the following lemma, a proof of
which can be found in [5] or [19].

LEMMA 2.1. If f ∈ B, then

| f (z)| ≤ | f (0)| +
1
2
β f log

1+ |z|
1− |z|

,

for all z ∈D.

With this lemma and the notation defined above, we are now able to establish an upper
bound on ‖Wψ,ϕ‖.

THEOREM 2.2. Suppose that ψ is an analytic function on D and ϕ is an analytic
self-map of D inducing a bounded weighted composition operator Wψ,ϕ on B. Then

‖Wψ,ϕ‖ ≤max
{
‖ψ‖B,

1
2
|ψ(0)| log

1+ |ϕ(0)|
1− |ϕ(0)|

+ τ∞ψ,ϕ + σ
∞
ψ,ϕ

}
.

PROOF. Let f ∈ B such that ‖ f ‖B = 1. Then

‖Wψ,ϕ f ‖B ≤ |ψ(0)|| f (ϕ(0))| + sup
z∈D
(1− |z|2)|ψ(z)|| f ′(ϕ(z))||ϕ′(z)|

+ sup
z∈D
(1− |z|2)|ψ ′(z)|| f (ϕ(z))|

= |ψ(0)|| f (ϕ(0))| + sup
z∈D

1− |z|2

1− |ϕ(z)|2
|ψ(z)||ϕ′(z)|(1− |ϕ(z)|2)| f ′(ϕ(z))|

+ sup
z∈D
(1− |z|2)|ψ ′(z)|| f (ϕ(z))|

≤ |ψ(0)|| f (ϕ(0))| + τ∞ψ,ϕβ f + sup
z∈D
(1− |z|2)|ψ ′(z)|| f (ϕ(z))|.

By Lemma 2.1,

| f (ϕ(z))| ≤ | f (0)| +
1
2
β f log

1+ |ϕ(z)|
1− |ϕ(z)|

.

Thus
‖Wψ,ϕ f ‖B ≤ |ψ(0)|| f (ϕ(0))| + τ∞ψ,ϕβ f + βψ | f (0)| + σ∞ψ,ϕβ f .

Since

| f (ϕ(0))| ≤ | f (0)| +
1
2
β f log

1+ |ϕ(0)|
1− |ϕ(0)|

,
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and recalling that | f (0)| = 1− β f , we deduce that

‖Wψ,ϕ f ‖B ≤ ‖ψ‖B| f (0)| +
(

1
2
|ψ(0)| log

1+ |ϕ(0)|
1− |ϕ(0)|

+ τ∞ψ,ϕ + σ
∞
ψ,ϕ

)
β f

= ‖ψ‖B +

(
1
2
|ψ(0)| log

1+ |ϕ(0)|
1− |ϕ(0)|

+ τ∞ψ,ϕ + σ
∞
ψ,ϕ − ‖ψ‖B

)
β f .

If
1
2
|ψ(0)| log

1+ |ϕ(0)|
1− |ϕ(0)|

+ τ∞ψ,ϕ + σ
∞
ψ,ϕ ≤ ‖ψ‖B,

then
‖Wψ,ϕ f ‖B ≤ ‖ψ‖B.

If
1
2
|ψ(0)| log

1+ |ϕ(0)|
1− |ϕ(0)|

+ τ∞ψ,ϕ + σ
∞
ψ,ϕ ≥ ‖ψ‖B,

then

‖Wψ,ϕ f ‖B ≤ ‖ψ‖B +
1
2
|ψ(0)| log

1+ |ϕ(0)|
1− |ϕ(0)|

+ τ∞ψ,ϕ + σ
∞
ψ,ϕ − ‖ψ‖B

=
1
2
|ψ(0)| log

1+ |ϕ(0)|
1− |ϕ(0)|

+ τ∞ψ,ϕ + σ
∞
ψ,ϕ .

Therefore,

‖Wψ,ϕ‖ ≤max
{
‖ψ‖B,

1
2
|ψ(0)| log

1+ |ϕ(0)|
1− |ϕ(0)|

+ τ∞ψ,ϕ + σ
∞
ψ,ϕ

}
,

as desired. 2

To determine a lower bound on ‖Wψ,ϕ‖, we apply the appropriate test functions.

THEOREM 2.3. Suppose that ψ is an analytic function on D and ϕ is an analytic
self-map of D inducing a bounded weighted composition operator Wψ,ϕ on B. Then

‖Wψ,ϕ‖ ≥max
{
‖ψ‖B,

1
2
|ψ(0)| log

1+ |ϕ(0)|
1− |ϕ(0)|

}
. (2.1)

PROOF. If we take the test function f (z)= 1, then

‖Wψ,ϕ‖ ≥ ‖Wψ,ϕ f ‖B = ‖ψ‖B.

If ϕ(0)= 0, then (2.1) holds trivially. If ϕ(0) 6= 0, then write ϕ(0)= |ϕ(0)|eiθ , for
some θ ∈ [0, 2π). Let

f (z)=
1
2

Log
1+ e−iθ z

1− e−iθ z
,
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where Log denotes the principal branch of the logarithm. Then f is a Bloch function
with Bloch norm 1. Thus

‖Wψ,ϕ‖ ≥ ‖Wψ,ϕ f ‖B ≥ |ψ(0) f (ϕ(0))| =
1
2
|ψ(0)| log

1+ |ϕ(0)|
1− |ϕ(0)|

.

Therefore,

‖Wψ,ϕ‖ ≥max
{
‖ψ‖B,

1
2
|ψ(0)| log

1+ |ϕ(0)|
1− |ϕ(0)|

}
,

as desired. 2

REMARK 1. By taking ψ ≡ 1, we deduce the estimates on the norm of Cϕ established
in [19]:

max
{

1,
1
2

log
1+ |ϕ(0)|
1− |ϕ(0)|

}
≤ ‖Cϕ‖ ≤max

{
1,

1
2

log
1+ |ϕ(0)|
1− |ϕ(0)|

+ τ∞ϕ

}
.

We now deduce estimates on the norm of the multiplication operator Mψ on B.

COROLLARY 2.4. Suppose ψ is an analytic function on D inducing a bounded
multiplication operator Mψ on B. Then

max{‖ψ‖B, ‖ψ‖∞} ≤ ‖Mψ‖ ≤max{‖ψ‖B, ‖ψ‖∞ + σ
∞
ψ }.

In particular, if ψ(0)= 0, then

‖ψ‖∞ ≤ ‖Mψ‖ ≤ ‖ψ‖∞ + σ
∞
ψ .

PROOF. By taking ϕ to be the identity map, τ∞ψ,ϕ = ‖ψ‖∞ and σ∞ψ,ϕ = σ
∞
ψ . Thus,

‖ψ‖B ≤ ‖Mψ‖ ≤max{‖ψ‖B, ‖ψ‖∞ + σ
∞
ψ }.

Furthermore, we have ‖ψ‖∞ ≤ ‖Mψ‖. Indeed, this is true for a bounded
multiplication operator on any functional Banach space (see [9, Lemma 11]).
Therefore,

max{‖ψ‖B, ‖ψ‖∞} ≤ ‖Mψ‖ ≤max{‖ψ‖B, ‖ψ‖∞ + σ
∞
ψ },

as desired. The conclusion for the case ψ(0)= 0 follows from the fact that by the
Schwarz–Pick lemma, for a bounded function ψ on D,

(1− |z|2)
|ψ ′(z)|

‖ψ‖∞
≤ 1−

|ψ(z)|2

‖ψ‖2∞

for all z in D, so that ‖ψ‖B = βψ ≤ ‖ψ‖∞. 2
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OPEN QUESTION. If Mψ is bounded on B, does the inequality ‖ψ‖B ≤ ‖ψ‖∞ + σ
∞
ψ

hold? As mentioned above, it does hold if ψ fixes the origin. It also holds in the case
of ψ being an automorphism of D. Indeed, suppose that ψ ∈ Aut(D) with ψ(0) 6= 0.
Then

ψ(z)= η
a − z

1− az
,

where 0 6= a ∈D and |η| = 1. Thus, ‖ψ‖∞ = 1 and βψ = (1− |a|2)|ψ ′(a)| = 1, so
‖ψ‖B = |a| + 1. Furthermore,

σ∞ψ = sup
z∈D
(1− |z|2)|ψ ′(z)|

1
2

log
1+ |z|
1− |z|

≥ (1− |a|2)|ψ ′(a)|
1
2

log
1+ |a|
1− |a|

=
1
2

log
1+ |a|
1− |a|

> |a|

since, for |a|< 1,
1
2

log
1+ |a|
1− |a|

=

∞∑
n=0

|a|2n+1

2n + 1
.

Therefore ‖ψ‖B ≤ ‖ψ‖∞ + σ
∞
ψ .

3. Characterization of isometric multiplication operators

This section is devoted to the identification of the symbols of the isometric
multiplication operators on the Bloch space. We first establish necessary conditions
for ψ to induce an isometric multiplication operator on B.

LEMMA 3.1. Let ψ be the symbol of an isometric multiplication operator on B. Then
‖ψ‖∞ ≤ 1 and ‖ψn

‖B = 1 for all n ∈N.

PROOF. By the lower estimate in Corollary 2.4, we obtain ‖ψ‖∞ ≤ ‖Mψ‖ = 1.
Choosing the test function g ≡ 1 gives

1= ‖g‖B = ‖Mψg‖B = ‖ψ‖B.

Thus
‖ψ2
‖B = ‖Mψ (ψ)‖B = ‖ψ‖B = 1.

The conclusion follows by induction. 2

The next result is more general, and with it we can prove the main theorem.

LEMMA 3.2. If ψ ∈ H∞(D) such that ‖ψ‖∞ ≤ 1 and ψ(0)= 0, then ‖ψn
‖B < 1 for

all n ≥ 2.
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PROOF. By the Schwarz–Pick lemma, for all n ∈N, n ≥ 2,

βψn = sup
z∈D
(1− |z|2)n|ψ(z)|n−1

|ψ ′(z)|

≤ sup
z∈D

n(1− |ψ(z)|2)|ψ(z)|n−1

≤ n max
x∈[0,1]

(xn−1
− xn+1)

=
2n

n + 1

(
n − 1
n + 1

)(n−1)/2

=
2n

n − 1

(
n − 1
n + 1

)(n+1)/2

.

For x and a positive real numbers and m a real number greater than 1, we have
(x + a)m > xm

+ amxm−1. Thus, for n ≥ 2,

(n + 1)(n+1)/2 > (n − 1)(n+1)/2
+ 2

(
n + 1

2

)
(n − 1)(n−1)/2

= 2n(n − 1)(n−1)/2.

So
2n

n + 1

(
n − 1
n + 1

)(n−1)/2

=
2n(n − 1)(n−1)/2

(n + 1)(n+1)/2
< 1.

Hence ‖ψn
‖B = βψn < 1 for n ≥ 2. 2

COROLLARY 3.3. If ψ is the symbol of an isometric multiplication operator on B,
then ψ does not fix the origin.

PROOF. Arguing by contradiction, assume that ψ(0)= 0. By Lemma 3.1, ‖ψ‖∞ ≤ 1
and ‖ψ2

‖B = 1. However, ‖ψ2
‖B < 1 by Lemma 3.2. 2

LEMMA 3.4. Suppose that ψ ∈ H∞(D) such that ‖ψ‖∞ ≤ 1 and the map
g(z)= zψ(z) has Bloch norm 1. Then either ψ is a constant of modulus 1, or ψ
has infinitely many zeros {an} in D such that

βψ = lim sup
n→∞

(1− |an|
2)|ψ ′(an)| = 1.

In the latter case, if ‖ψ‖B = 1, then ψ(0)= 0.

PROOF. Assume that ψ is not a constant of modulus 1. Note that the function g maps
D into itself, fixes the origin, and has Bloch norm 1. Then by [6, Theorem 3], there
exists an infinite sequence {an} in D such that ψ(an)= 0 and

lim sup
n→∞

(1− |an|
2)|g′(an)| = 1.

Since g′(an)= ψ(an)+ anψ
′(an)= anψ

′(an), we deduce that

lim sup
n→∞

(1− |an|
2)|an||ψ

′(an)| = 1.
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By assumption ψ is not a constant function, and so |an| → 1 as n→∞. Thus

βψ = lim sup
n→∞

(1− |an|
2)|ψ ′(an)| = 1.

The conclusion for the case ‖ψ‖B = 1 follows at once. 2

We now prove the main theorem of this section.

THEOREM 3.5. The multiplication operator Mψ is an isometry on B if and only if ψ
is a constant function of modulus 1.

PROOF. Clearly, if ψ is a constant function of modulus 1 then Mψ is an isometry
on B. Conversely, suppose that Mψ is an isometry on B and assume that ψ is not a
constant function of modulus 1. Then by Lemma 3.1, ‖ψ‖∞ ≤ 1 and ‖ψ‖B = 1. Also,
for g(z)= zψ(z), ‖g‖B = ‖Mψ (id)‖B = ‖id‖B = 1, where id is the identity map on
D. Then by Lemma 3.4, ψ(0)= 0, contradicting Corollary 3.3. Therefore, if Mψ is
an isometry on B, then ψ must be a constant function of modulus 1. 2

4. Characterization of the spectra of multiplication operators

We now turn our attention to the spectrum of a multiplication operator. Recall that
the resolvent of a bounded linear operator T on a complex Banach space E is defined
as

ρ(T )= {λ ∈C | T − λI is invertible},

where I is the identity operator. The spectrum of T is defined as σ(T )=C \ ρ(T ).
The approximate point spectrum, a subset of the spectrum, is defined as

σap(T )= {λ ∈C | T − λI is not bounded below},

that is, for every M > 0, there exists x ∈ E such that ‖T x‖< M‖x‖.
The spectrum is a nonempty compact subset of the closed disk centered at the

origin of radius ‖T ‖. In particular, the spectrum of an isometry is contained
in D. Furthermore, the boundary ∂σ(T ) of σ(T ) is a subset of σap(T )
(see [7, Proposition 6.7]).

THEOREM 4.1. Let ψ be the symbol of a bounded multiplication operator Mψ on B.
Then σ(Mψ )= ψ(D).

PROOF. For λ ∈C, the operator Mψ − λI can be rewritten as Mψ−λ. Thus
λ ∈ σ(Mψ ) if and only if Mψ−λ is not invertible. Clearly, if M−1

ψ−λ exists, it is the
multiplication operator M(ψ−λ)−1 .

Let λ ∈ ψ(D). Then there exists z0 ∈D such that ψ(z0)= λ. So (ψ − λ)−1 has a
pole at z0, which means that M(ψ−λ)−1 is not a well-defined operator. Thus Mψ−λ is

not invertible. This implies that ψ(D)⊆ σ(Mψ ).
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Suppose that λ 6∈ ψ(D). Then |ψ − λ| is bounded away from 0 by some positive
constant c. Thus the modulus of the function g(z)= 1/(ψ(z)− λ) is in H∞(D). In
addition,

|g′(z)| =
|ψ ′(z)|

|ψ(z)− λ|2
≤

1

c2 |ψ
′(z)| = O

(
1

(1− |z|) log(1/1− |z|)

)
.

So Mg = M(ψ−λ)−1 is a bounded operator on B. Thus λ 6∈ σ(Mψ ). Therefore

σ(Mψ )= ψ(D). 2

This result is not surprising since it also holds for the space of continuous, real-
valued functions on a closed interval. A similar result holds for L2(µ), µ a probability
measure. Specifically, for ψ ∈ L∞(µ), the spectrum of Mψ on L2(µ) is the essential
range of ψ , that is, the set of λ ∈C such that the preimage under ψ of every
neighborhood of λ has positive measure [8]. As an immediate consequence of
Theorems 3.5 and 4.1, we obtain the following result.

COROLLARY 4.2. Let Mψ be an isometric multiplication operator on the Bloch
space. Then σ(Mψ )= {η}, where η is the unimodular constant value of ψ .

5. A further glimpse at weighted composition operators

Our focus returns to weighted composition operators, and isometries amongst them.
Let IW be the set of weighted composition operators Wψ,ϕ such that ψ induces an
isometric multiplication operator and ϕ induces an isometric composition operator.
Clearly the set of isometric weighted composition operators contains IW .

OBSERVATION 5.1. In [6, Theorem 2], it was shown that ϕ induces an isometric
composition operator on B if and only if ϕ(0)= 0 and βϕ = 1. In particular,
[6, Corollary 2] proved that either ϕ is a rotation or the zero set of ϕ forms an infinite
sequence {an} in D such that

lim sup
n→∞

(1− |an|
2)|ϕ′(an)| = 1.

Notice that the class I of such functions ϕ is very large. Indeed, ϕ ∈ I if and only
if ϕ = gB where g is a nonvanishing analytic function of D into D, and B is a
Blaschke product whose zeros form an infinite sequence {an} containing 0 and an
infinite subsequence {an j } such that |g(an j )| → 1 and

lim
j→∞

∏
k 6=n j

∣∣∣∣ an j − ak

1− an j ak

∣∣∣∣= 1. (5.1)

The Blaschke products whose zeros satisfy (5.1) include the thin Blaschke products.
For more on this topic, see [12, 13].

OPEN QUESTION. Are there any isometric weighted composition operators
whose symbols do not induce isometric multiplication and composition operators
individually?
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If the answer to the above question is negative, then IW is exactly the set of
isometric weighted composition operators on the Bloch space and we have a complete
characterization of their symbols.

At this time, we describe the spectrum of isometric composition operators, which
with Corollary 4.2 will be used to describe the spectrum of the elements of IW . To do
so, we need an important result about the spectrum of an isometry on a general Banach
space. The following proposition is found (in a slightly different form) as an exercise
in [7], and we provide a proof for completeness.

PROPOSITION 5.2. Let E be a complex Banach space and suppose that T : E→ E is
an isometry. If T is invertible, then σ(T )⊆ ∂D. If T is not invertible, then σ(T )=D.

PROOF. Suppose that T is an invertible isometry on E . Then 0 6∈ σ(T ), and so the
function z 7→ z−1 is analytic in some neighborhood of σ(T ). By the spectral mapping
theorem (see [7, p. 204]), σ( f ◦ T )= f (σ (T )), and so

σ(T−1)= σ(T )−1
= {λ−1

| λ ∈ σ(T )}.

Since T−1 exists and is an isometry, σ(T−1)⊆D. Therefore, σ(T )⊆ ∂D.
Next, suppose that T is not invertible. In order to prove that σ(T )=D, it suffices

to show that D⊆ σ(T ). For λ ∈D, T − λI is bounded below by 1− |λ|. Thus,
λ 6∈ σap(T ). We deduce that ∂σ(T )⊆ σap(T )⊆ ∂D.

Assume that λ ∈D ∩ ρ(T ). Note that λ 6∈ ∂σ(T ) since ∂σ(T )= σ(T ) ∩ ρ(T ).
Consider 0 = {tλ | t ∈ [0,∞)}, the radial line through λ. Since σ(T ) is closed and
0 ∈ σ(T ), there exists t ∈ [0, 1) such that tλ ∈ ∂σ(T ). This contradicts the fact that
∂σ(T )⊆ ∂D. Consequently, D⊆ σ(T ). 2

For a complex number ζ of modulus 1, define the order of ζ , denoted by ord(ζ ), to
be the smallest n ∈N such that ζ n

= 1. If no such n exists, we say that ζ has infinite
order, and write ord(ζ )=∞.

THEOREM 5.3. Suppose that ϕ induces an isometric composition operator on B. If ϕ
is not a rotation, then σ(Cϕ)=D. If ϕ(z)= ζ z with |ζ | = 1, then

σ(Cϕ)=

{
∂D if ord(ζ )=∞,

〈ζ 〉 if ord(ζ ) <∞,

where 〈ζ 〉 is the cyclic group generated by ζ .

PROOF. Assume that ϕ is not a rotation. Then by Proposition 5.2 it suffices to show
that Cϕ is not invertible. Since Cϕ is an isometry it is necessarily injective. Thus,
we shall show that Cϕ is not surjective. Arguing by contradiction, assume that Cϕ is
surjective. Since ϕ is not a rotation, by Observation 5.1 ϕ has infinitely many zeros.
Let a and a′ be distinct zeros of ϕ.

Define h(z)= z − a, and note that h is a nonzero Bloch function. Since Cϕ
is assumed to be surjective, there exists a Bloch function f such that h = f ◦ ϕ.
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On the one hand, f (0)= f (ϕ(a′))= h(a′) 6= 0. On the other hand, f (0)= f (ϕ(a))
= h(a)= 0, a contradiction. Thus, Cϕ is not surjective. Therefore σ(Cϕ)=D.

Now suppose that ϕ(z)= ζ z with |ζ | = 1. Then ϕ−1(z)= 1/ζ z and C−1
ϕ = Cϕ−1 .

So by Proposition 5.2, σ(Cϕ)⊆ ∂D.
Let G = 〈ζ 〉 = {ζ k

| k ∈N ∪ {0}}. Note that G ⊆ ∂D. Consider the Bloch function
f (z)= zk for k ∈N ∪ {0}. Then

(Cϕ f )(z)= ζ k zk
= ζ k f (z).

Thus ζ k is an eigenvalue of Cϕ with corresponding eigenfunction f . So G ⊆ σ(Cϕ).
If the order of ζ is infinite, then G is dense in ∂D. Since the spectrum is closed, we

have ∂D= G ⊆ σ(Cϕ). Thus σ(Cϕ)= ∂D.
Now suppose that ord(ζ )= n <∞. Then G = {ζ k

| k = 1, . . . , n}. We wish to
show that σ(Cϕ)⊆ G. Let µ ∈ ∂D \ G. We shall show that Cϕ − µI is invertible by
proving that for every g ∈ B, there exists a unique f ∈ B such that f ◦ ϕ − µ f = g.
Since ord(ζ )= n, then

ϕ(n)(z)
def
= (ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸

n times

)(z)= ζ nz = z.

By repeated application of ϕ, we can form the following system of equations:

f (ϕ(z)) − µ f (z) = g(z)
f (ϕ(2)(z)) − µ f (ϕ(z)) = g(ϕ(z))

...
...

f (z) − µ f (ϕ(n−1)(z)) = g(ϕ(n−1)(z)).

(5.2)

Equivalently, (5.2) can be posed as the matrix equation Ax = b where

A =



−µ 1 0 0 · · · 0
0 −µ 1 0 · · · 0
... 0

. . .
. . .

...
...

. . .
. . .

. . .
...

0
. . .

. . . 1
1 0 · · · · · · 0 −µ


, x =



f (z)
f (ϕ(z))
...
...

f (ϕ(n−2)(z))
f (ϕ(n−1)(z))


,

b =



g(z)
g(ϕ(z))
...
...

g(ϕ(n−2)(z))
g(ϕ(n−1)(z))


.
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Direct calculation shows that det(A)= (−1)n(µn
− 1) 6= 0, since µ /∈ G. Thus,

Cϕ − µI is invertible. For µ /∈ G, the unique solution f of (5.2) is a (finite) linear
combination of the functions g ◦ ϕ( j−1), for j = 1, . . . , n, each of which is Bloch.
Thus f is Bloch. Therefore σ(Cϕ)= G. 2

THEOREM 5.4. Let ψ induce an isometric multiplication operator (so that ψ is a
constant η of modulus 1) and ϕ induce an isometric composition operator. If ϕ is not
a rotation, then σ(Wψ,ϕ)=D. If ϕ = ζ z for |ζ | = 1, then

σ(Wψ,ϕ)=

{
∂D if ord(ζ )=∞,

η〈ζ 〉 if ord(ζ ) <∞,

where η〈ζ 〉 = {ηζ k
| k = 1, . . . , n}.

PROOF. Observe that Wψ,ϕ = ηCϕ and, for λ ∈C, Wψ,ϕ − λI = η(Cϕ − ληI ). Thus,
Wψ,ϕ − λI is not invertible if and only if Cϕ − ληI is not invertible. Thus
λ ∈ σ(Wψ,ϕ) if and only if λη ∈ σ(Cϕ). The result follows immediately from
Theorem 5.3. 2
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