
BULLETIN 13 (2), 1970 

MAXIMAL AREAS OF REULEAUX POLYGONSC) 
BY 

G. T. SALLEEC2) 

1. In this paper we provide new proofs of some interesting results of Firey [2] 
on isoperimetric ratios of Reuleaux polygons. Recall that a Reuleaux polygon is a 
plane convex set of constant width whose boundary consists of a finite (odd) 
number of circular arcs. Equivalently, it is the intersection of a finite number of 
suitably chosen congruent discs. For more details, see [1, p. 128]. 

If a Reuleaux polygon has n sides (arcs) of positive length (where n is odd and 
> 3), we will refer to it as a Reuleaux w-gon, or sometimes just as an «-gon. If all 
of the sides are equal, it is termed a regular w-gon. 

Firey [2] proved the following theorems. 

THEOREM 1. The isoperimetric ratio {ratio of area to squared perimeter) of regular 
Reuleaux polygons strictly increases with the number of sides. 

THEOREM 2. Among all Reuleaux polygons having the same number of sides, the 
regular Reuleaux polygons {and only these) attain the greatest isoperimetric ratio. 

THEOREM 3. For any odd integer n>3 and any e > 0, there is an n-sided Reuleaux 
polygon whose isoperimetric ratio exceeds that of the Reuleaux triangle by an amount 
less than e. 

In the next section of the paper we will describe a construction for modifying 
Reuleaux polygons and prove a key lemma. In the concluding sections we will 
apply the construction to prove the theorems. 

2. Since, by Barbier's Theorem [4], all sets of the same constant width in the 
plane have the same perimeter, it suffices to compare areas of the figures under 
consideration. Moreover, without loss of generality, we may assume that all figures 
have width /. 

Let P be a Reuleaux polygon, let q be a point near P but exterior to it, and let r, 
s be the points on the boundary of P which are at a distance / from q. Denoting the 
vertices of P which are no more than distance / from q by vl9..., vt9 let Q be the 
intersection of the discs of radius / centered at q, r, s, vl9..., vt. It is easily verified 
that if the arc between r and s furthest from q contains no opposite points (that is, 
points which are distance / apart), then g is a Reuleaux polygon. We will call Q 
the (r, s)-variant of P. (See also [3].) 
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LEMMA l. Let P be a Reuleaux n-gon which is not regular. Then there exists a 
variant ofP of greater area which is also a Reuleaux n-gon. 

Proof. Let the vertices of P in order be vQ,..., v2n and assume that 
<*= £vn+1,v0,vn<p= Z.v2n>vn,v0. Since P is not regular such unequal angles exist. 
Let Q be the (wn,i>n+^-variant of P, where wn is a point on the boundary arc of P 
between t>n-i and vn. Note that if wn is sufficiently near vn, then Q is not only a 
(2n + l)-gon, but has exactly the same vertices as P except for wn and w0, a vertex 
near v0 which lies on an extension of the arc (^o^i)-

Denote the area of S by A(S). We wish to show that the area A(X) of the (curvi
linear) triangle X, with vertices (v0,w0,v2n)> is greater than A(Y), the area of the 
triangle Y, with vertices (vn, wn, vn+1), for wn sufficiently near vn. This, of course, 
will prove the lemma. See Figure 1 for an illustration in the case of the Reuleaux 
pentagon. 

We break up X into two pieces by a line through vn parallel to [w0, v0]. Call xn 

the intersection of this line with (vvn, vn + 1)9 let X1 be the part of X containing vn + 1 

and let X2 be the other part. Note that ^(Z1) = 0(e) while A(X2) = 0(e2) (where 
€= /_vM v2n9 wn) and so X2 will be the dominant section of X as c-> 0. By similar 
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reasoning, we break up Y into subsets Yx and Y2 by a line segment [x0, w0] parallel 
to [vn, wn]. Y± denotes the section containing v2n- Observe that ^(7 1 ) = 0(8) 
while A(Y2) = 0(&2), where S = /.w0, vn+l9v0. Thus it suffices to compute 
lim^o A{X^)jA{Y^)9 since 8-> 0 as €-> 0. 

Except near vn + l9 Xx intersects every line parallel to [w0, v0] in a segment of 
length |w0 — v0\. Thus 

(1) A{XX) = |wo-^o| • Iproj [u, (vn9 vn+1)]\ + 0(83) 

where u= [v0, w0] and |proj [u, S] | denotes the length of the projection of S in 
direction u. Replacing u by u0, the vector perpendicular to [v09 vn+1], changes only 
a tiny triangle with [xn9 vn] as one edge, so we may also write 

(2) A(XX) = \w0-v0\ • |proj [u0, (vn9 vn+1)] | + 0(S2). 

Clearly 

(3) |proj [u0, (vn9 vn+1)] | = 1 - cos a. 

It remains to evaluate \w0 — v0\. 
To do this, we introduce cartesian coordinates so that vn = (09 0), v0 = (l9 0) and 

w0 lies in the upper half-plane. It is easily computed that 

v2n = (cos ]8, sin fi) 

^n + l = (1 —COS a9 Sin a) 

^ ' wn = (cos £ - cos (£+e), sin 0 - s in (fi+e)) 

w0 = (1 — cos a -f cos (a — 8), sin a—sin (a — 8)). 

When € and 8 are small, we may simplify the expressions for wn and wQ by using 
first-order approximations. 

wn = (€sin^+0(€2),-ecoS iS+0(€2)) ^ 

w0 = (1 + 8 sin a + O (82), 8 cos a+O (82)). 

We now apply (4') to compute 

|w0-^o|2 = 82 + 0(83). 
So 

k o - ^ o | = 8 + 0(S2). 
Thus 

(5) A(XX) = 8(1 - cos a) + 0(82). 

Reasoning in precisely the same manner, we find 

(6) ^(7 1 ) = €(l-cos i8) + (9(e2). 

Thus, to compare A(X1) and A( Y±)9 it is only necessary to determine a relation 
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between S and e. We may do this by using wn to compute another set of coordinates 

for w0, namely: 

(7) WQ = (cosj8-cos(j8+€) + cos(j8 + € - 0 , sin j8—sin (j8+€) + sin C8+€ —Ç)) 

If we set a)=j8-£ and observe that w->0 as e->0, we may approximate the 
x-coordinate of w0 as given in (7) by 

(8) l+€sinjS + O(€2H0(a>2). 

Setting this equal to the x-coordinate of w0 from (4'), we may infer that 8, e, and 
OJ are of the same order and that 

(9) lim S/e = sin ft/sin a. 

From (5), (6), and (9), we then find 

lim A{XX)IA{ YJ = lim [8(1 - cos a)/e(l - cos 0)] 
e-»0 E-*0 

(10) 
- tan (a/2)/tan (0/2). 

This limit is positive and less than 1 because a<f}<7T, and tan (x/2) is positive 
and increasing in x over [0,77]. 
Thus 

A(Q) > A(P) for wn sufficiently near vn. 

3. Proofs of Theorems 1 and 2. By the Blaschke Selection Theorem a set S of 
constant width / and maximal area exists which can be approximated arbitrarily 
closely by Reuleaux r-gons. Since each of the approximating figures has r vertices, 
S has at most r vertices [1, p. 128]. Suppose then that S is an m-gon. From Lemma 1 
we infer that S must be a regular m-gon. It only remains to show that m = r. 

Let Rp denote the regular Reuleaux p-gon. Note that we may consider Rp as a 
degenerate (p+2)-gon#where two (opposite) pairs of vertices coincide. Thus, we 
may construct a (/? + 2)-gon of greater area than Rp by letting Q be the (wn+1, wn)-
variant of Rp where wn + 1 lies on the arc (vn, vn + 1) and wn on (vn_l9 vn). The same 
estimates as before are valid as we only used the fact that vn + 1 was a vertex in order 
to preserve the number of sides. 

Thus, the set S^ Rm for m < r. Since Lemma 1 implies S is regular, S=Rr. More
over, the arguments above show that A(RV)<A{RP + ?). This concludes the proofs 
of Theorems 1 and 2. 

4. Proof of Theorem 3. We will prove a stronger statement which will yield 
Theorem 3 as an immediate corollary. Recall that the symmetric difference of 
Xand Y, X A Y=(X~ Y)u(Y~X). 

LEMMA 2. Let T be any Reuleaux n-gon and let e > 0 be given. Then for any (odd) 
p>n9 there exists a Reuleaux p-gon, U, of the same width as Tsuch that A(T A U)<€. 
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Proof. First, suppose p=n+2. Number the vertices of T in order, vl9...9 vn. 
Let wt denote a point on the arc (^- i , vt). Then if Wj and wj+1 are sufficiently near 
Vj and vj+l9 respectively, and U denotes the (wj9 wy+1)-variant of T9 we have 
A(T A [ / )<c 

Now if p=n+2k9 construct Ul9...9 Uk inductively so that \A(Ui A C/i_i)| 
<*\2% for / = l , . . . , f c , where U0-T and Uk=U. By the triangle inequality 
|^4(r A U)\<€. This proves the lemma. 

The proof of Theorem 3 is immediate. 

5. REMARKS. The notion of a set of constant width can be extended to any 
Minkowski space Jl with unit ball B. In such a space Kis of relative constant width 
a) if and only if K—K=2wB. A relative Reuleaux polygon in Jt is a set of relative 
constant width which is the intersection of a finite number of translates of B. 

It is possible to duplicate the analysis given above to give necessary conditions 
on the angles of a relative Reuleaux w-gon to guarantee that it has maximum area 
among all such «-gons. The relations are messier, of course. 

It might even be possible to use this technique to find the three-dimensional set 
of constant width having minimal volume. The estimates here, however, look very 
difficult. 
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