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Abstract

In this paper, we review some techniques for studying traffic processes in telecom-
munications networks. The first of these allows one to identify Poisson traffic via
the notion of "deterministic past-conditional arrival rate". Our approach leads to
a method by which one can assess the degree of deviation of traffic processes from
Poisson processes. We explain how this can be used to delimit circumstances under
which traffic is approximately Poissonian.

1. Introduction

In the modelling of teletraffic systems, there are many instances where an
assumption is made that the offered traffic is a Poisson process. This as-
sumption arises largely in order that the models can be analysed simply, but
it is certainly appropriate when it can be argued that the numbers of arrivals
in a given time interval is independent of past arrivals, and has a Poisson
distribution. As an immediate consequence of the Poisson assumption, the
arrival rate is deterministic (non-random), conditional on the past of the pro-
cess. This seemingly unremarkable property provides the key to the modern
theory of traffic processes, for it actually characterises Poisson processes, in
that any traffic process with the property must be a Poisson process. That de-
terministic past-conditional arrival rate implies Poisson traffic is a celebrated
theorem of Watanabe, and in Section 2 we shall give a very elementary proof
of this result.
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[2] Poisson approximations for telecommunications networks 349

On many occasions, and this is particularly true of internal flow processes
in message and packet-switching networks, the Poisson assumption is, at best,
only a good approximation to reality. In Section 3 we shall present a simple
method which allows one to assess the accuracy of this approximation. The
method, introduced by the authors in the context of Markovian queueing
networks (Brown and Pollett [4], Pollett [9]), involves establishing bounds
on the degree of deviation from Poisson traffic. These bounds enable one to
make precise predictions as to the circumstances in which the approximation
to Poisson traffic is good. Further, they allow one to establish an approximate
version of the loop criterion of Melamed [8] for identifying which traffic flows
in Markovian networks are Poisson. We shall leave the technical details to
Section 4, where some indication of the method of deriving the bounds is
given and more recent work is sketched. There are surprising implications
of the latter, even for the folklore of when the Poisson distribution is a good
approximation to the Binomial distribution.

Some of the mathematics used may not be familiar to readers. An attempt
has been made to keep the description informal, but, where this might lead
to ambiguities, formal clarifications have been enclosed in square brackets.

2. Watanabe's theorem

Throughout, {N(t), t > 0} will denote a traffic process, so that N(t) is
the (cumulative) number of arrivals in [0, t]. We shall assume that no two
calls can arrive at exactly the same time. The assumption of a unit arrival
rate, conditional on the past, can be written as

Es(N(t)-N(s)) = t-s (1)

where 0 < s < t and Es represents expectation conditional on the past at
time s . It is important to realise that the past, here, can include information
other than that given simply by arrivals; in the context of switching networks,
the past state of the the entire system, including both internal and external
traffic, might be included. [Formally, Es is expectation conditional on a
cf-algebra ^ , where {J^} is an increasing, right-continuous family of o-
algebras, with N(s) being ^ measurable and ^ being complete; see, for
example, Bremaud [2], Appendices A 1.5 and A 1.7, for details].

Suppose that 0 < Tx < T2 < ... are the random variables giving the times
of the 1st, 2nd,. . . arrivals. These times are examples of stopping times; a
stopping time is a random time, T , such that, for each fixed time t, it is
known whether or not T has occurred before t. [Formally, [z < t] e ^ for

https://doi.org/10.1017/S0334270000006913 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006913


350 T. C. Brown and P. K. Pollen [3]

each t > 0] . For stopping times a < r, (1) leads to the following identity:

E(N(r) - N(o)) = E(z - a). (2)

[This can be established by considering the cases when a and x take a finite
number of values: here (1) can be used directly. For other cases, convergence
theorems are used to extend from the finite case. Equation (2) is valid even
if one side is infinite, in which case both sides must be].

From (2), the familiar forward differential equations can be established.
To see this, let / > 1 be fixed. We aim to get a differential equation for
pt(t) = P(N(t) = i), t>0, involving pi_l. Now

pi(t) = P(Tl<t)-P(Tl+l<t), (3)

because there are exactly / arrivals up to and including t, if and only if the
/ th arrival is before or at t and the (/ + 1) th arrival is strictly after / . Let
a be the minimum of t and 7^._,, and T be the minimum of t and Tr

Then, by considering the possibilities, Ti_l < Tt < t, Tt_{ < t < Tt and
t < Tl{ < T{, it is easy to see that

I 0 otherwise.

Hence, in this case, (2) reads

where

I 0 otherwise.

Thus, upon changing the order of expectation and integration (this can be
justified because Y > 0), we get

P(T,<t)= fEY(s)ds
Jo

= fp._x(s)ds, (4)
Jo

by the definition of Y and pj_l . Combining (4) with (3) produces

P,{t) = I P,-\(s)ds- / Pj{s)ds,
Jo Jo

and this can be differentiated to give

(5)
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because the integrands must be continuous functions of s, being themselves
integrals. In similar fashion we get, for / = 0,

po{t)= 1 - / po(s)ds,
Jo

which gives

P'O = -Po-

This, together with (5), comprise the forward equations for the Poisson pro-
cess. They can be solved in the usual way to show that N(t) has a Poisson
distribution with parameter t.

Of course, this conclusion is not sufficient to prove that {N(0} *s a Poisson
process. We also require the independence of N(t) - N(s) (0 < s < t) of the
past at s. However, tf A is a fixed event in the past at a fixed time s , and

M{t) = N(s + t)- N{s),

then (2) gives, for 0 < t < u,

E't(M(u)-M(t)) = u-t,

where E\ refers to expectation conditional on the past at time t, includ-
ing the fixed event A. But the previous analysis then gives a Poisson(j)
distribution for M(t), that is, a Poisson distribution with parameter t for
N(s + t) - N(s), conditional on A . This establishes the required indepen-
dence.

The standard textbook approach to the Poisson process (see, for example,
Leon-Garcia [7]), is to assume that

Ps(N(s + t) - N(s) = l) = t + o(t)

Ps(N(s + t)- N(s) > 2) = o(t) (6)

Ps(N(s + t)- N(s) = 0) = 1 - t + o{t),

where s, t >0, Ps refers to conditional probabilities given the past at time
s, and o() refers to a function, / , such that f{h)/h -»0 as A - » 0 . The
important difference with the assumption (1), apart from the fact that (6)
is apparently much more detailed, is that (1) relates only to expectations
(which have nice properties like linearity), whereas (6) makes assumptions
about probabilities which may be harder to check. It is therefore remarkable
that one can proceed from the simple statement (1) about expectations, to
the detailed description of a Poisson process as having independent incre-
ments, unit rate increase of expectation and a Poisson distribution at each
time point. We shall see, in Section 4, that the description (1) is the key to
approximation results for the Poisson process.
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3. Poisson approximations in teletraffic networks

Apart from those which emanate from outside, traffic processes in telecom-
munications networks are rarely Poisson. For example, Melamed [8] showed
that in a Jacksonian queueing network, the flow from one node to another
is Poisson if and only if units are "routed" in such a way that they can pass
between the two nodes at most once. It is therefore of interest to delimit
circumstances in which traffic is approximately Poissonian.

Suppose that {N(t)} is a traffic process and let y(s) be the rate of the
process at time s conditional on the past state of the network, the so-called
conditional intensity. Since we shall be dealing only with Markovian mod-
els, y(s) is completely determined by the present state of the network and,
moreover, an explicit expression can be written down for y(s) in terms of
the state. Fix / > 0 and let A be an event detemined by N on [0, t], so
that, for example, A might be the event that the maximum time between
arrivals in [0, t] is 1 , or the event that N{s)/s < 2 for all s in [0, t]. It is
proposed to approximate P{A) by H{A), where Yl(A) is the probability that
A would have if N were Poisson with a specified rate, a. Using methods
which will be outlined in the next section, it can be shown that, for arbitrary
A,

< f'(E(a -
Jo

\P(A) - U(A)\ < f(E(a - Vis))2)* ds. (7)
Jo

It is not proposed that this bound will give useful numerical estimates of the
maximum difference in the probabilities, for reasons which we shall see in
the next section. However, for any given model, we shall seek criteria under
which the Poisson approximation is good, that is when this bound is close to
0. In the present context, we can further simplify the bound, since, because
we shall always assume that the network in question is in equilibrium, N will
be stationary, and so y(s) will have the same distribution for all s. Further,
since we are at liberty to choose a in any way we please, it is sensible to
choose a value which makes the bound as small as possible. This happens
when a = Ey(s), and so we can use the following simple expression:

\P(A)-U(A)\<t(yary(s))K (8)

Calculating the bound then simply amounts to determining the equilibrium
variance of the intensity of the traffic process.

For example, consider a circuit-switched star network, where there are K
outer nodes which communicate via a single central node. Thus there are K
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links (circuit groups), and each route consists of a pair of links (i, j). We
shall assume that the links have the same number of circuits, C . Assume
also that calls requesting the various routes arrive according to independent
Poisson streams and are offered at the same rate, p = v /(K - 1), that call
lengths have a negative exponential distribution with mean 1 and that these
are mutually independent, and independent of previous arrivals. Ziedins
and Kelly [11] showed that, by keeping the total offered traffic, v , fixed, and
letting the number of switching nodes, K, become large, the traffic offered to
any given link is approximately Poisson; recall that a call is said to be offered
to link A: if a call is offered to some route which includes link k and all
other links on that route have at least one free circuit. This conclusion was
made possible because the major result of their paper established that, for
large K, the links are blocked independently. In particular, if m((s) is the
number of circuits in use on link i at time s , then, when the network is in
equilibrium,

P(ml <C,m2<C)- (P(m{ < C)f -> 0, (9)

as K -* oo. Their argument for the Poisson approximation was as follows:
Let Nk{t) be the number of calls offered to link k in the time-interval [0, *] .
Then clearly yk , the conditional intensity of Nk , is given by

where

Thus, in equilibrium,
Eyk{

and

- v (pP{mx < C) + (j£Z^\ vP{mx <c,m2<Q- vP{mx < c

and so the result follows immediately from (8).
A simple extension of (8) involves considering a number of traffic pro-

cesses simultaneously. Suppose that Nlt N2, ... , Nt are / such processes
and y,(5), y2(s), ... , y,(s) are their conditional intensities at time s. Then,
if A is an event which is determined by these processes on the interval
[0, t], and n(^) is the probability that A would have if these processes
were independent Poisson processes with rates ax, a2, ... , at, then

\P(A) - Yl(A)\ < J2 f'(E(ak - y,(5))V ds.
k=i
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If the network is in equilibrium and a{, a2, ... , al are chosen such that
ak = Eyk(s), then a simpler bound is given by

J t ) ) { . (10)

The significance of this result in the analysis of the star network is clear:
the traffic offered jointly to any / of the links, where / < K is fixed, are
asymptotically independent Poisson processes. This is consistent with Ziedins
and Kelly's asymptotic result, (9), that links are blocked independently.

Let us now turn our attention to message and packet-switching networks.
In contrast to circuit-switching networks, where all the links along a given
path are used simultaneously, only one link is used at any one time in any
given transmission, and transmissions must be received in their entirety at
a given node before being transmitted along the next link in their route. If
the link cannot transmit immediately, the message (or packet) is stored in
a buffer until a circuit becomes available, hence the prevalent usage of the
term store-forward. Packet-switching differs from message-switching in that
messages are broken down into packets, which are transmitted individually
in a store-forward fashion. Consequently, different parts of a given message
can be transmitted simultaneously on successive links. Since packets are
stored and forwarded in the same manner as messages, we shall henceforth
use "message" as the generic term for both.

We shall label the links 1,2, ... , J and we shall make the usual sim-
plifying assumptions governing the way in which they operate. The links
are perfectly reliable and are not subject to noise, so that message transmis-
sion times are determined by their length. The time taken by the nodes to
switch, and, if necessary, buffer, reassemble and acknowledge messages, is
negligible in comparison with their transmission times. Traffic entering the
network from external sources is Poisson, and message lengths are mutually
independent and exponentially distributed with mean 1. It will be conve-
nient to suppose that the links function in the following way, conceived by
Kelly [5]: A total effort (or capacity) of <f>j(n) is provided by link j when
there are n messages whose transmission is incomplete. The message buffer
for link j has distinct positions labelled / = 1 , 2 , . . . . When there are
n messages present, a proportion, »;.(/, n), of the total capacity is offered
to position / ; when the transmission of this message is complete, messages
previously occupying buffer positions / + 1 , 1+2, ... , n now move into posi-
tions / , / + 1 , . . . , H - 1 , respectively. This apparent "shunting" of messages
will not occur in practice, but rather one might imagine a list of free posi-
tions is maintained for the purpose of allocating free buffer space, whence /
is merely the index of an occupied position. In the model, such indexing is
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superfluous and leads to unnecessary complications. If, for example,

!> , for n = 1, 2 . . . ,

>, f o r « = 0,

and

( i , f o r / = l , 2 . . . , / i , n=l,2,...,KJ-\,

1jV > ") = \ T, > f o r l = l , 2 . . . , K J t n = K J t K j + l , . . . , ( 1 2 )

I 0 , otherwise,

then a total capacity, <f>j , is apportioned equally among, at most, the first Kj
positions; this is termed the processor-sharing discipline. If Kj is infinite,
the capacity is apportioned equally among all messages present.

Yet another purely conceptual assumption is made by supposing that, when
a message which is required to be transmitted along link j arrives to find n
buffer positions occupied, it moves into position / , where I — 1, 2, ... , n +
1 , with probability <J.(/, n + 1), and messages in positions / , / + 1 , . . . , «
now move into positions / + l , / + 2 , . . . , « + l . Commonly, S is defined
by

ty/.iO-j1' « « l = n . n = l . 2 . . . . ,
1 \ 0, otherwise,

so that the new message "joins the end of the queue", but another useful
prescription for S. is

{
£ , for / = 1, 2 . . . , n , n=l,2,...,Kj-l,

4-, for / = 1, 2 . . . , K,, n = Kj, Ki + 1, . . . ,

0, otherwise,

which, together with (11) and (12), defines a preemptive-resume processor-
sharing discipline. It should be stressed that the prescription of 5} does not
have precisely to mirror the actual engineering of the buffer, but rather, a
regime is prescribed which has the same effect. Clearly it is necessary that
0.(0) = 0, (j>j{n) > 0 , for n > 0, and that

for all n > 0. The advantage of the model we have described is that the
parameters rjj, Sj and cfij can be specified to model most of the usual service
disciplines. For example, in addition to the abovementioned disciplines,
we can accommodate first-come-first-served and preemptive-resume last-come-
first-served.
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We shall identify messages by type, where the type of a message is a
unique collection, r , of links used by that message; we shall write r =
(rx,r2, ... , rw^), where w(r) is the total number of stages. We shall denote
by 31 the set of all types, and we shall suppose that type-r messages arrive
as a Poisson process with rate v{r) and that 31 indexes independent Pois-
son processes. This setup is known as fixed routing, but note that alternate
routing can be accommodated within the framework described (see Pollett
[10]).

Let us first examine the net traffic, {Nk(t)}, offered to a given link k,
on the interval [0, t]. Since all messages have unit mean length, the rate
at which messages are transmitted by link j is <£•(«) when there are n
messages present. Thus, if n-{s) is the number of messages present at link
j at time s, then yk , the conditional intensity of Nk , is given by

j

where vk is the rate of externally offered traffic (irrespective of type), and
kjk is the proportion of messages emanating from link j which next use link
k (again, irrespective of type); all of these quantities can be written down
explicitly in terms of u{r), r e 31. For simplicity we shall suppose that
A = (kjk) is an irreducible matrix and that, for each j ,

n

where a{, a2, ... , aj is the unique strictly positive solution to the system
of equationsof equations

Under these conditions, an equilibrium distribution exists for the model.
Indeed, in equilibrium, the states of the individual links are independent,
and the probability that there are « messages at link j is given by

Further, given the number of messages at link j , the message occupying
buffer position / is of type r with probability

where

•Mr if rs = j for some s,

otherwise,
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the message types being, themselves, conditionally independent (see, for ex-
ample, Kelly [6]).

This result allows one to show that, when the network is in equilibrium,

Eyk(s) = ak

and

(
j=\ \n=0

which, together with (8), establishes a bound on the degree of deviation of
Nk from a Poisson process with rate ak . Once the functions </>,, </>2, . . . , <$>j
have been specified, the bound can be calculated explicitly. If, for each j ,
<f>j is given by (11), for example in the processor-sharing discipline, then

( j \ " 2

\P(A) - Yl(A)\ < t E ^ P / I -Pj)\ , (14)

where Pj — aj/<f>j (note that <j>j > a. in order that (13) be satisfied). Thus,
if for each j , <f>jXJk = 0(1) and either

(i) <f>jXJk is o (7- 1 / 2 ) ,o r

(ii) pj is o{J~l), or

(iii) I-p. is o(J-1),

then the approximation will be good. Circumstance (ii) corresponds to light
traffic at link j , and therefore light input to link k from link j . Circum-
stance (iii) corresponds to heavy traffic at link j , and therefore link j will
mostly be busy; note that while the link is busy, messages are transmitted to
link k at a constant rate, <f>jAJk . Circumstance (i) is perhaps the most inter-
esting in that, if the network is large and the routing through the network and
to the outside is relatively even, the probabilities X . will be of the order of

J~ . Provided, then, that the transmission rates are moderate, (i) will hold
for each j . In other words, the bound tells us that the Poisson approxima-
tion will be good in large networks with moderate transmission rates. This
intuitive fact does not seem to be easily derivable by other means.

If (f)j(n) = n<pj , that is, link j has infinite capacity, then the bound (14)
is changed simply by removing the factor (1 - p.) in each term of the sum,
so that (i) and (ii) above continue to apply. If <£,(«) = <f> min{«, C } , that
is, link j has a maximum capacity of C , then a simple bound is obtained
by replacing the factor (1 - p.) by (C - p ) . Thus, (ii) is unchanged but
(i) becomes

(i)' <t>jXjk is o(CjJ-i)
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and the intuitive interpretation which arises is that the Poisson approxima-
tions will be good provided the network is large, the routing is even and the
transmission rates are moderate in relation to the maximum capacity of each
link.

Finally, we shall examine individually the components of the traffic offered
to link k. Let 91 k be the collection of routes that incorporate link k,
that is 91 k = {r e 92 : rs = k for some s = 1 , 2 , . . . , iu(r)}, so that if
N[(t) is the number of type-r messages to arrive at link k on [0, t], then

Now fix r in 9lk and let w be the (unique) stage
such that rw = k . Set

), otherwise.

If Uj(l; s) is the type of the message in buffer position / on link j at time
5, then yT

k , the conditional intensity of NT
k , is given by

where

), otherwise.

Note that the sum on the right-hand side of (15) will be positive for at
most one value of j . As one might expect, a simple calculation shows that
Eyr

k(s) = a'k when the network is in equilibrium. A similar calculation shows
that, again in equilibrium, Vary^s) = qk Varyk(s). Thus, individual bounds
on the degree of deviation of Nk from a Poisson process with rate a'k can be
obtained from the previous bound by simply including a factor, qk . Further,
and most importantly, all of the abovementioned criteria specify conditions
under which N'k , r e 91, can be approximated, jointly, by independent Pois-
son processes with rates ak , r e 91. This conclusion is a consequence of
(10) and the fact that the sum of the individual bounds is the original bound.

It should be stressed that the upper bounds of this section are just that:
there is no implication that the circumstances they indicate for good Poisson
approximations are the only such circumstances. We shall see, by analogy
with simpler examples in the next section, that the bounds here are not in
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fact the best possible, although, for the relatively complicated examples of
teletraffic networks, improvements await further developments in theory.

4. Derivation of the approximations

One key idea in deriving the approximations is to develop an equation
analogous to (1) for an arbitrary process of arrivals. This can be done using
the abovementioned notion of a conditional intensity. As before, let {N(t)}
be an arbitrary traffic process. Under regularity conditions, the conditional
intensity process, {y(s), s > 0} , defined by

s)-N(s)), (16)

exists, and, if T(t) = /0' y(s) ds, then

Es(N(t)-N(s))=Es(r(t)-r(s)) (17)

for 0 < s < t. [For an arbitrary traffic process such that EN(t) < oo for
all t, and arbitrary histories, there always exists an increasing, "previsible"
process, {F(f)}, such that (17) holds, but, in the models described in the
last section, the regularity conditions for (16) are certainly satisfied. See,
for example, Brown [3] for the general case, which is called the Doob-Meyer
decomposition of {N(t)} ]. We then also have a general analogue, and indeed
generalisation, of (2): for stopping times a < x,

Ea(N(x)-N(a)) = Ea(r(T)-r(a)), (18)

where Ea means expectation conditional on the past at time a [Formally,
the past at time a is the ofield of events, A, such that A n [a < t] e S^ for
each t > 0 ] .

The other key idea in deriving the approximations is that of coupling. Re-
call that we wish to bound \P(A) - Tl(A)\, where A is an event determined
by the traffic process during [0, t], and Yl(A) is the corresponding proba-
bility if N were a Poisson process of rate a . A measure-theoretic argument
shows that to bound globally the error in the approximation, it suffices to
consider events, A , of the form

A = [N(t{) = ; , , N(t2) - N(tl) = j 2 , ... , N(tn) - A^(rn_.) = jn],

where « > 1 , 0 < / , < • • • < * „ < t a n d j { , j 2 , . . . ,jne{0, 1 , 2 , . . . } . I f
{M(t), t > 0} is any Po i s son p rocess of r a t e a, we are r e q u i r e d t o b o u n d

where
X = (N(tl),N(t2)-N(tx),...,N(tn)-N(tn_l)),
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Y = (M(tl),M(t2)-M(tl),...,M{tn)-M{tn_l))

and j = (jl, ... , j n ) . But this quantity is bounded by

P{X = j and Y ? j) + P{X ? j and Y = j) < P(X ? Y). (19)

Thus, if a Poisson process of rate a can be constructed from N and the last
probability is bounded globally (over all n and all the t 's), then this will
be the desired bound. This procedure is called coupling because a couple of
random objects, in this case the traffic processes N and M, are constructed
in order to carry out the calculations.

To construct M, we define F(t) — inf{s : F(s) > t} so that F is a
(pseudo) inverse of the increasing (random) function 5 i-> T(S) ; if F is
strictly monotonic, then F is indeed its inverse. In general F(F(f)) = t, but
F(F(/)) > t, with inequality occurring at those / for which F is constant
around an interval containing t. Certainly, f (t) > T(s) for t >s and hence
we may apply (18) with a = F(.s) and T = T(t) to conclude that

£p(5){tf(f(O) - N(f(s))} = £p(j){r(f(0) - nf(s))} = t-s.

Thus, by the argument presented in Section 2, {N(T(t))} is a unit-rate Pois-
son process and so {M{t)} , where M(t) = N(T(at)) is a Poisson process of
rate a .

To compute the right side of (19) note that

Y) <£/>(*, ? y,.) < J2E\xi-Yi\-

Each term in the last sum is bounded in a similar fashion, so we shall consider
only the first. For this,

E\XX - y,| = E\N{tx) - N(f{atx))\ = E{N{xx) - N(a{) + N(r2) - N(a2)},

where er, is t{ if f(a/ ,) > tx and t otherwise, T, is T{atx) if F(af,) > tr

and / otherwise, a2 is F(a/,) if t{ > F(a^) and t otherwise, and r2 is t}

if r, > f(a/ , ) and / otherwise. Thus, using (18),

E\Xl-Yl\= E{N(Tt) - tf(<7,)} + ^{iV(T2) - N(a2)}
) - r(a2)}
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Finally, we obtain

JL I r>, r>,
y(s)dsP(X ? Y) < ]T El /"' ads - f'

,=i K',-i V i

< J2 f ' E\a - y(s)\d
/ = 1 " " - - I

= f E\a-y{s)\ds. (20)
Jo

In order to simplify computation and interpretation of bounds it is often
more convenient to use a slightly weaker bound than (20), obtained by ob-
serving that the integrand is bounded above by {E(a - y(s))2y .

To see why it is not reasonable to expect the bounds given here and in the
previous section to be particularly tight, we shall consider a somewhat sim-
pler example, using similar methods to those described above. The example
is also relevant to teletraffic theory. Indeed, the foreword to Traffic Engi-
neering Report No. 14 of the Australian Government, Postmaster-General's
Department, by C.W. Pratt, states

"Under simplifying assumptions of independence and uniformity of be-
haviour on the part of telephone users, the Binomial distribution is a satisfac-
tory model for traffic offered by a relatively small group of subscribers. For
a large number (say, greater than 200) of subscribers, each with a relatively
small probability of being engaged in a conversation, the Poisson distribution
is used as a good single-parameter approximation to the Binomial distribu-
tion. It is a limiting form of the Binomial distribution, and the nature of the
limiting process implies an infinite number of subscribers."

Consider a single telephone exchange and suppose that there are n sub-
scribers, who act independently. Let us generalise to the situation in which
subscriber i has probability pt of offering a call in a particular time period,
and let X( be 1 if the subscriber offers the call and 0 otherwise. Then
N = J2"=\ %i is t n e number of calls offered in that period. If /?, = p2 = • • • —
pn~ p (say), then N has a Binomial distribution with parameters n and
p . In the general case, the distribution of N is much more complicated and,
in principle, one requires a separate computation for each n and each set of
probabilities pl, p2., ... , pn .

To use the coupling device, let UX,U2,... ,Un be independent and iden-
tically distributed random variables with uniform distributions on (0, 1).
We could realise Xx, X2, ... , Xn by setting Xt = 1 if Vi > 1 - p i and 0
otherwise, for then we would have that

P{Xt = 1) = />(! -p. < ( / , . < ! ) = />,.
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and that Xx, X2, ... , Xn are independent. Suppose that A is an event de-
termined by N, and A = Y?l=\Pr I* is proposed to approximate P(A) by
11(^4), where Ti{A) is the probability of A when N has a Poisson distribu-
tion with parameter A. By the previous coupling argument,

\P{A)-U{A)\<P{N^M), (21)

where M is a random variable having a Poisson distribution with parameter
A. To construct M, take p > 0 and let .F(y) be the cumulative Poisson
probability of 0, . . . , j , so that F(j) = e~"+pe~p+- • •+^e~p and F ( - l ) =
0. For 0 < x < 1, let F(x) = j , where y is the unique non-negative integer
for which F(j - 1) < x < F(j) [F is again a pseudo inverse of F, but
here F(x) = inf{/: F(t) > x}]. Consider, for fixed / , the random variable
Yi = F{Ut), with pi replacing p . We then have that

P(Y. = j) = P(F(j - 1) < Ut < F(j)) = e'"'^,

so that Yj does have a Poisson distribution with parameter pi. Hence, by
standard theory, M, defined by M — J2"=i ^ > has a Poisson distribution
with parameter A. Moreover,

7 = 1

£ { P ( 1 -/>,. < C/,. < e~p') + P{Ut
1=1

<*P, (22)

where the fact that 1 -pt < e~Pl has been used in the 2nd and 4th steps, and
p is the maximum of px, p2, ... , pn . Combining (21) and (22), we have
that

\P{A)-U{A)\<kp. (23)

Thus, a good Poisson approximation is certainly obtained if the maximum
probability of a subscriber offering a call is small and the mean offered traffic
is moderate. It is worth noting that n , the number of subscribers, enters in
the opposite way to the above advice on the use of the Poisson distribution: if
p is small and n is not too large, then the approximation is sure to be good.
What happens if n is large, p is small and np is large? It is mentioned
later in the cited Traffic Engineering Report that, in these circumstances, the
approximation should be good because both N and M will, by the Central
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Limit Theorem, have approximate normal distributions. In fact, using a
dazzling technique originally due to Stein, Barbour and Hall [1] established
that

\P(A)-n(A)\<{l-e-*)p (24)

for all events, A, confirming the above reasoning. Moreover, they showed
that, for any set of probabilities, px, p2, ... , pn , such that A > 1, there
exists an event, A , for which

so that (24), which is an improvement on (22), is the right order of magnitude.
Thus, the advice should be that a Poisson approximation is appropriate when
the maximum probability of a subscriber offering traffic is small, irrespective
of the number of subscribers or of their uniformity of behaviour.

It is perhaps worth remarking that the bound (7) can be used to estimate
the error in approximating the whole process of calls by a Poisson process.
For simplicity, suppose that the subscribers wait for an exponentially dis-
tributed amount of time before offering a call and that the time period over
which the call process is observed is scaled to be [0, 1]. If n{ is the parame-
ter of the exponential time, T{, for the /th subscriber, then H, - - ln(l -p()
in order that P[Ti < 1) = p{. The conditional intensity of the call process
is y(s) = J2"=i HjYTi > s]. Assuming that the subscribers act independently,
we then have

1=1

so that the bound for approximating the actual call process by a non-homo-
geneous Poisson process with rate J2"=\ tije~>i's is

(25)

where n is the maximum of / i , , / i 2 , . . . , nn . For small p, fi is approxi-
mately equal to p and so this bound is better for large A than the bound
(23); of course, when applied to the process at 1, (25) is a bound for the
distance from a Poisson random variable with mean £"= 1 fit, rather than X.
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5. Conclusions

It is hoped that the paper has illustrated two vital themes of modern
stochastic processes:

(i) that conditional expectations and stopping times can be profitably
mixed;

(ii) that construction can be very helpful in calculations.

The last section has illustrated how both themes can be used in bounding
errors in Poisson approximations, but the bounds are not necessarily the best
possible. Work is currently in progress on

(a) combining the Stein-type approach of Barbour and Hall with condi-
tional-intensity calculations, and

(b) approximating blocking probabilities using this approach.
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