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Abstract

We study a special class of quasi-cyclic codes, obtained from a cyclic code over an extension field of the
alphabet field by taking its image on a basis. When the basis is equal to its dual, the dual code admits the
same construction. We give some examples of self-dual codes and LCD codes obtained in this way.
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1. Introduction

A quasi-cyclic code of length n = `m and index ` over a finite field Fq is a linear code
invariant under T `, where T denotes the shift operator. Quasi-cyclic codes contain
cyclic codes as the case of index one. It has been known for some time that, unlike
cyclic codes, quasi-cyclic codes are asymptotically good [1].

One approach to quasi-cyclic codes is to regard them as codes of length ` over a ring
of size qm [10]. Another approach is to view them as cyclic codes of length m over a
field of size q` [9]. This is the approach we follow here. We consider cyclic codes over
Fq` and construct quasi-cyclic codes of index ` from them. Note that the map that takes
a cyclic code over Fq` to a quasi-cyclic code of index ` is just the projection on a basis
of Fq` over Fq. This has been a celebrated operation in coding theory since Wolfmann’s
construction of the Golay code from a Reed–Solomon code over F8 [11]. It was used
more recently to define the notion of Type II codes over F4 [6]. In particular, when
the basis is self-dual, we can construct self-dual codes and LCD (linear codes with
complementary dual) codes, which are a class of codes introduced by Massey [12];
these have recently found applications in the security of embedded electronics [2, 3].
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This note is organised as follows. In Section 2, we study the module structure
of quasi-cyclic codes, introduce the special class of quasi-cyclic codes of interest to
us and establish theoretical foundations for these codes. Section 3 contains some
numerical examples. The concluding Section 4 presents some challenging open
problems.

2. Module structure of quasi-cyclic codes

We define the shift map T from Fn
q to Fn

q by T (c) = (cn−1, c0, . . . , cn−2) for all
c = (c0, c1, . . . , cn−1) ∈ Fn

q. A linear code C is called an `-quasi-cyclic code if C is
invariant under T `, that is, T `(C) = C. In other words, a cyclic shift of any codeword
by ` positions is still a codeword.

It is well known that a code is `-quasi-cyclic if and only if it is (`, n)-quasi-cyclic,
where (`, n) denotes the greatest common divisor of ` and n. We will therefore assume
that ` | n, so that n = `m for some integer m. The special case of ` = 1 gives the class
of cyclic codes. The class of quasi-cyclic codes, which contains cyclic codes as a
subclass, forms an important class of linear codes.

Let m be a positive integer such that gcd(m, q) = 1. Let Fq[x] denote the ring of
polynomials in the indeterminate x over Fq and define the ring Rm = Fq[x]/〈xm − 1〉.
We can represent a codeword of an [n, k, d]q `-quasi-cyclic code as

c(x) = (c0(x), c1(x), . . . , c`−1(x)) ∈ R`
m,

where each entry is given by ci(x) =
∑m−1

j=0 ci, jx j and ci, j ∈ Fq for 0 ≤ i ≤ ` − 1. Let
B = {e0, e1, . . . , e`−1} be a basis of Fq` over Fq and, for a positive integer `, define

φB : R`
m −→ Fq` [x]/〈xm − 1〉,

(c0(x), c1(x), . . . , c`−1(x)) 7−→
m−1∑
j=0

d jx j,

where d j =
∑`−1

i=0 ci, jei.
We denote the minimum distance of a code C over the field F by dF(C).

Theorem 2.1. If C is a cyclic code of length m over Fq` then φ−1
B (C) is an `-quasi-cyclic

code of length n = `m over Fq.

Proof. Linearity of C over Fq` entails linearity of the image φ−1
B (C) over Fq. Shifting

symbols in Fq` translates into shifting ` symbols of Fq. Thus cyclicity of C over Fq`

entails `-quasi-cyclicity of φ−1
B (C) over Fq. �

Theorem 2.2. Let C̃ be a quasi-cyclic code of length `m and index ` over Fq obtained
from a cyclic code C = φ−1

B (C̃) over Fq` with respect to a basis B = {e0, e1, . . . , e`−1} of
Fq` over Fq. Then dFq (C̃) ≥ dFq`

(C) and the equality holds if C has a minimum weight
vector, the nonzero components of which are elements of B.

https://doi.org/10.1017/S0004972717000636 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000636


[3] A special class of quasi-cyclic codes 515

Proof. Let d(x) =
∑m−1

j=0 d jx j be a codeword of C. With the above notation, the weight
of a component d j of d is nonzero if and only if at least one of the ci, j , 0. Thus the
weight of d j as a symbol of Fq` is at most the weight of the vector (c0, j, . . . , cl−1, j) and
equality holds if and only if just one of the ci, j is nonzero, that is, if and only if d j ∈ B.
The result follows by summation on j. �

The dual basis of B = {e0, e1, . . . , e`−1} has the form B∗ = {e∗0, e
∗
1, . . . , e

∗
`−1}, where

Tr(ei, e j) = δi, j. Here, Tr denotes the trace from Fq` to Fq and δi, j is the Kronecker
symbol.

Theorem 2.3. Keep the above notation. If C is a cyclic code over Fq` then

φ−1
B∗ (C

⊥) = φ−1
B (C)⊥.

Proof. The inclusion φ−1
B∗ (C

⊥) ⊆ φ−1
B (C)⊥ is immediate by comparing the scalar

products over Fm
q` and over F`mq , using the definition of the dual basis. Equality follows

from the fact that, since φB is a bijection, both sides have the same size. �

The following immediate consequences of Theorem 2.3 are useful in constructions.

Corollary 2.4. If B = B∗ and C is self-dual, then φ−1
B (C) is self-dual.

Note that Corollary 2.4 can only be applied when self-dual cyclic codes over Fq

exist, that is, in particular, when q is even [8].

Corollary 2.5. If B = B∗ and C is LCD, then φ−1
B (C) is LCD.

This construction is mentioned in Dougherty et al. [4]. Criteria for the existence of
LCD cyclic codes can be found in Yang and Massey [12].

3. Numerics

The following examples were obtained using an MDS Reed–Solomon code as the
cyclic code. In most cases, the quasi-cyclic code that is obtained is almost optimal.
The parameters for the corresponding best known linear code are given in the BKLC
column of Table 1 (based on the code tables [7]).

In Tables 2 and 3, the coefficients of the generator polynomials for the cyclic
codes (column 2) are arranged in descending order. For example, 11w4w4w3w3 means
g(x) = x5 + x4 + w4x3 + w4x2 + w3x + w3.

Using cyclic self-dual codes over F8 and F16, respectively, we obtain two quasi-
cyclic codes that are optimal self-dual codes according to Gaborit’s table of self-dual
codes [5]. These are a [42, 21, 8] code C42 and a [40, 20, 8] code C40 with respective
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Table 1. Examples of quasi-cyclic codes.

q Over Fq Over F2 BKLC
8 [7, 5, 3] [21, 15, 3] [21, 15, 4]
8 [7, 3, 5] [21, 9, 6] [21, 9, 8]

16 [15, 13, 3] [60, 52, 3] [60, 52, 4]
16 [15, 11, 5] [60, 44, 5] [60, 44, 6]
16 [15, 9, 7] [60, 36, 7] [60, 36, 9]
16 [15, 7, 9] [60, 28, 11] [60, 28, 12]
32 [31, 29, 3] [155, 145, 3] [155, 145, 4]
32 [31, 27, 5] [155, 135, 5] [155, 135, 6]
32 [31, 25, 7] [155, 125, 7] [155, 125, 8]

Table 2. Optimal self-dual quasi-cyclic codes.

q Generator polynomials over Fq Over Fq Over F2

8 11w4w411w2w2 [14, 7, 5] [42, 21, 8]
16 11w4w4w3w3 [10, 5, 4] [40, 20, 8]

weight enumerators:

WC42 (y) = y42 + 420y34 + 441y32 + 9968y30 + 54960y28 + 157038y26 + 329140y24

+ 496608y22 + 496608y20 + 329140y18 + 157038y16

+ 54960y14 + 9968y12 + 441y10 + 420y8 + 1,
WC40 (y) = y40 + 285y32 + 1024y30 + 11040y28 + 46080y26 + 117090y24

+ 215040y22 + 267456y20 + 215040y18 + 117090y16

+ 46080y14 + 11040y12 + 1024y10 + 285y8 + 1.

Using LCD cyclic codes over F4, F8 and F16 respectively, we obtain LCD quasi-
cyclic codes that are optimal according to the code tables [7]. The parameters of the
codes are summarised in Table 3.

4. Conclusion

In this note, we have studied a special class of quasi-cyclic codes obtained as the
image of cyclic codes over an extension field with a given basis. To construct the full
class of quasi-cyclic codes, it would be necessary to develop a theory of shift-invariant
Fq-linear cyclic codes over an extension of Fq. Indeed, the classical definition of cyclic
codes over a field assumes linearity over the alphabet field. There are shift-invariant
codes that are Fq-linear but not Fq` -linear over Fq` . Their image on a basis is still a
bona-fide quasi-cyclic code over Fq. While the subclass explored in this paper contains
very good codes (as shown in Section 3), it is still desirable to have a general theory
applicable to all quasi-cyclic codes. This is the main open problem of this research.
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Table 3. Optimal LCD quasi-cyclic codes.

q Generator polynomials over Fq Over Fq Over F2

4 1w1 [5, 3, 3] [10, 6, 3]
4 1w2w21 [5, 2, 4] [10, 4, 4]
4 1ww2w1 [13, 7, 5] [26, 14, 6]
4 1w2ww2w2ww21 [13, 6, 6] [26, 12, 8]
4 1w2ww21 [15, 11, 4] [30, 22, 4]
4 11w11 [17, 13, 4] [34, 26, 4]
4 1www2w2ww1 [17, 8, 8] [34, 16, 8]
4 1w2w2w1w2w21ww2w21 [17, 4, 12] [ 34, 8, 14]
4 1w211w21 [21, 14, 5] [42, 28, 6]
4 1w2ww1ww11ww1www21 [29, 14, 12] [58, 28, 12]
8 1w3w31 [9, 6, 4] [27, 18, 4]
8 1w4w3w5w5w3w41 [9, 2, 8] [27, 6, 12]
8 1ww2w2w1 [13, 8, 5] [39, 24, 6]
8 1ww4w4w1 [19, 12, 6] [57, 36, 8]

16 1w4w41 [17, 14, 4] [68, 56, 4]
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PATRICK SOLÉ, CNRS/LAGA, Université Paris 8,
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