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Abstract. We study the eigenvalue problem −∑N
i=1 ∂xi (|∂xi u|pi(x)−2∂xi u) =

λ|u|q(x)−2u in �, u = 0 on ∂�, where � is a bounded domain in �N with smooth
boundary ∂�, λ is a positive real number, and p1, . . . , pN , q are continuous
functions satisfying the following conditions: 2 ≤ pi(x) < N, 1 < q(x) for all x ∈ �, i ∈
{1, . . . , N}; there exist j, k ∈ {1, . . . , N}, j �= k, such that pj ≡ q in �, q is independent
of xj and max� q < min� pk. The main result of this paper establishes the existence
of two positive constants λ0 and λ1 with λ0 ≤ λ1 such that every λ ∈ (λ1,∞) is an
eigenvalue, while no λ ∈ (0, λ0) can be an eigenvalue of the above problem.

2010 Mathematics Subject Classification. 35D05, 35J60, 35J70, 58E05.

1. Introduction. The goal of this paper is to study the existence of solutions of
the following anisotropic eigenvalue problem

⎧⎪⎨
⎪⎩

−
N∑

i=1

∂xi

(∣∣∂xi u
∣∣pi(x)−2

∂xi u
) = λ|u|q(x)−2u in �,

u = 0 on ∂�,

(1)

where � ⊂ �N (N ≥ 3) is a bounded domain with smooth boundary ∂�, λ is a positive
number, and pi, q are continuous functions on � such that 2 ≤ pi(x) < N and q(x) > 1
for all x ∈ � and i ∈ {1, . . . , N}.

Our study is motivated by some recent advances on the eigenvalue problems for
anisotropic operators involving variable exponent growth conditions obtained in [19].
Considering different cases regarding the variable exponents pi(x) and q(x) involved
in equation (1), the authors of [19] found certain interesting results that will be briefly
presented in what follows:
� In the case when max{max� p1, . . . , max� pN} < min� q and q has a subcritical

growth, a mountain pass argument can be applied in order to show that any λ > 0
is an eigenvalue of problem (1) (see [19, Theorem 2]).

� In the case when min� q < min{min� p1, . . . , min� pN} and q has a subcritical
growth, using Ekeland’s variational principle, one can prove the existence of a
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continuous family of eigenvalues lying in a neighbourhood of the origin (see [19,
Theorem 4]).

� In the case when max� q < min{min� p1, . . . , min� pN} it can be proved that the
energy functional associated with problem (1) has a non-trivial (global) minimum
point for any positive λ large enough and, consequently, any positive λ large enough
is an eigenvalue of problem (1) (see [19, Theorem 3]). Obviously, in this case the above
result can also be applied and, thus, in this situation there exist two positive constants
λ� and λ�� such that every λ ∈ (0, λ�) ∪ (λ��,∞) is an eigenvalue of problem (1) (see
[19, Corollary 1]).

Our paper supplements the above results on problem (1) by considering a new
case, when there exist j, k ∈ {1, . . . , N} with j �= k such that pj is independent of xj,

pj(x) = q(x), ∀ x ∈ � and max
�

q < min
�

pk .

In this situation it will be proved that small values of λ cannot be eigenvalues of
problem (1) while every λ large enough is an eigenvalue of problem (1).

On the other hand, we point out that our study extends to the case of anisotropic
equations the results obtained in [22] and generalizes some other existing results on
eigenvalue problems involving variable exponent growth conditions [11, 12, 20, 21, 23].
Finally, we note that equations of type (1) are models for various phenomena which
arise from the study of electrorheological fluids (see [7, 14, 20, 29, 30]), image processing
(see [6]), or the theory of elasticity (see [35]).

2. Abstract framework. In this section we recall some definitions and basic
properties of the variable exponent Lebesgue–Sobolev spaces Lp(·)(�) and W 1,p(·)

0 (�),
where � is a bounded domain in �N . We will also introduce an adequate functional
space where problems of type (1) can be studied. Such a space will be called an
anisotropic variable exponent Sobolev space and it can be characterized as a functional
space of Sobolev’s type in which different space directions have different roles.

Set C+(�) = {h ∈ C(�) : minx∈� h(x) > 1}. For h ∈ C+(�) we define

h+ = sup
x∈�

h(x) and h− = inf
x∈�

h(x).

For p ∈ C+(�), we introduce the variable exponent Lebesgue space

Lp(·)(�) = {u : u is a measurable real–valued function such that
∫

�

|u(x)|p(x) dx < ∞},

endowed with the so-called Luxemburg norm

|u|p(·) = inf

{
μ > 0;

∫
�

∣∣∣∣u(x)
μ

∣∣∣∣
p(x)

dx ≤ 1

}
,

which is a separable and reflexive Banach space. If |�| < ∞ and p1, p2 are variable
exponents in C+(�) such that p1 ≤ p2 in �, then the embedding Lp2(·)(�) ↪→ Lp1(·)(�)
is continuous.

Let Lp′(·)(�) be the conjugate space of Lp(·)(�), obtained by conjugating the
exponent pointwise, that is, 1/p(x) + 1/p′(x) = 1. For every u ∈ Lp(·)(�) and v ∈
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Lp′(·)(�) the following Hölder type inequality∣∣∣∣
∫

�

uv dx
∣∣∣∣ ≤

(
1

p− + 1
p′−

)
|u|p(·)|v|p′(·) (2)

is valid.
An important role in manipulating the generalized Lebesgue–Sobolev spaces is

played by the p(·)-modular of the Lp(·)(�) space, which is the mapping ρp(·) : Lp(·)(�) →
� defined by

ρp(·)(u) =
∫

�

|u|p(x) dx.

If un, u ∈ Lp(·)(�) then the following implications hold

|u|p(·) > 1 ⇒ |u|p−
p(·) ≤ ρp(·)(u) ≤ |u|p+

p(·), (3)

|u|p(·) < 1 ⇒ |u|p+
p(·) ≤ ρp(·)(u) ≤ |u|p−

p(·), (4)

|un − u|p(·) → 0 ⇔ ρp(·)(un − u) → 0, (5)

since p+ < ∞.
Next, we define W 1,p(x)

0 (�) as the closure of C1
0(�) under the norm

‖u‖1,p(·) = |∇u|p(·) .

We point out that the above norm is equivalent with the following norm

‖u‖p(·) =
N∑

i=1

∣∣∂xi u
∣∣
p(·) ,

provided that p(x) ≥ 2 for all x ∈ � (see [18]). Hence W 1,p(·)
0 (�) is a separable,

reflexive Banach space. Note that if s ∈ C+(�) and s(x) < p�(x) for all x ∈ �, where
p�(x) = Np(x)/[N − p(x)] if p(x) < N and p�(x) = ∞ if p(x) ≥ N, then the embedding
W 1,p(·)

0 (�) ↪→ Ls(·)(�) is compact. For proofs, details and further results on variable
exponent Lebesgue and Sobolev spaces we refer to Musielak’s book [24] and the papers
of Kováčik and Rákosnı́k [17], Edmunds et al. [8–10], Samko and Vakulov [31], while
for applications of such kind of spaces to the study of partial differential equations we
refer to [1–7, 15, 19–23, 26, 29, 30, 35].

Finally, we introduce a natural generalization of the variable exponent Sobolev
space W 1,p(·)

0 (�) that will enable us to study problem (1) with sufficient accuracy. For
this purpose, let us denote by

→
p : � → �N the vectorial function

→
p = (p1, . . . , pN). We

define W 1,
→
p (·)

0 (�), the anisotropic variable exponents Sobolev space, as the closure of
C∞

0 (�) with respect to the norm

‖u‖→
p (·) =

N∑
i=1

∣∣∂xi u
∣∣
pi(·) .

As it was pointed out in [19], W 1,
→
p (·)

0 (�) is a reflexive Banach space.
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We also note that in the case when pi are all constant functions, the resulting
anisotropic Sobolev space is denoted by W 1,

→
p

0 (�), where
→
p is the constant vector

(p1, . . . , pN). The theory of such spaces was developed in [13, 25, 27, 33, 34].

On the other hand, in order to facilitate the manipulation of the space W 1,
→
p (·)

0 (�)

we introduce
→
P+,

→
P− ∈ �N as

→
P+ = (p+

1 , . . . , p+
N),

→
P− = (p−

1 , . . . , p−
N)

and P+
+, P+

−, P−
− ∈ �+ as

P+
+ = max{p+

1 , . . . , p+
N}, P+

− = max{p−
1 , . . . , p−

N}, P−
− = min{p−

1 , . . . , p−
N} .

Throughout this paper we assume that

N∑
i=1

1

p−
i

> 1, (6)

and define P�
− ∈ �+ and P−,∞ ∈ �+ by

P∗
− = N

N∑
i=1

1/p−
i − 1

, P−,∞ = max{P+
−, P∗

−} .

We recall that if s ∈ C+(�) satisfies 1 < s(x) < P−,∞ for all x ∈ �, then the embedding

W 1,
→
p (·)

0 (�) ↪→ Ls(·)(�) is compact (see [19, Theorem 1]).

3. The main result. We say that λ ∈ � is an eigenvalue of problem (1) if there

exists u ∈ W 1,
→
p (·)

0 (�)\{0} such that

∫
�

{
N∑

i=1

∣∣∂xi u
∣∣pi(x)−2

∂xi u∂xiϕ − λ|u|q(x)−2uϕ

}
dx = 0

for all ϕ ∈ W 1,
→
p (·)

0 (�). For λ ∈ � an eigenvalue of problem (1) the function u from the
above definition will be called a weak solution of problem (1) corresponding to the
eigenvalue λ.

In this paper our basic assumptions on the functions pi, q involved in equation
(1) will be the following:

(A1) Assume that there exists j ∈ {1, . . . , N} such that q(x) = q(x1, . . . ,

xj−1, xj+1, . . . , xN) (i.e. q is independent of xj) and pj(x) = q(x) for all x ∈ �.
(A2) Assume that there exists k ∈ {1, . . . , N} (k �= j with j given in (A1)) such that

max
x∈�

q(x) < min
x∈�

pk(x) .

https://doi.org/10.1017/S001708951000039X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951000039X


EIGENVALUE PROBLEM FOR AN ANISOTROPIC ELLIPTIC EQUATION 521

Define the Rayleigh type quotients λ0 and λ1 associated with problem (1) by

λ0 = inf
u∈W 1,

→
p (·)

0 (�)\{0}

∫
�

N∑
i=1

|∂iu|pi(x) dx

∫
�

|u|q(x) dx
, λ1 = inf

u∈W 1,
→
p (·)

0 (�)\{0}

∫
�

N∑
i=1

1
pi(x)

|∂iu|pi(x) dx

∫
�

1
q(x)

|u|q(x) dx
.

The main result of this paper is given by the following theorem:

THEOREM 1. Assume that conditions (A1) and (A2) are fulfilled. Then 0 < λ0 ≤ λ1

and every λ ∈ (λ1,∞) is an eigenvalue of problem (1), while no λ ∈ (0, λ0) can be an
eigenvalue of problem (1).

REMARK 1. At this stage, we are not able to say whether λ0 = λ1 or λ0 < λ1. In the
latter case, an interesting question concerns the existence of eigenvalues of problem (1)
in the interval [λ0, λ1]. We propose to the reader the study of these open problems.

REMARK 2. The result of Theorem 1 also supplements some earlier classical results
on eigenvalue problems. For instance, in the case when in equation (1) we consider
pi(x) = q(x) = 2 for all x ∈ �, i ∈ {1, . . . , N}, a basic result in the elementary theory of
partial differential equations asserts that the spectrum of the negative Laplace operator
(in H1

0 (�)) is discrete (if � is a bounded domain in �N with smooth boundary).
This celebrated result goes back to the Riesz–Fredholm theory of self-adjoint and
compact operators on Banach spaces. Furthermore, in the case when in equation (1)
we have pi(x) = q(x) = p for all x ∈ �, i ∈ {1, . . . , N}, with p > 1 a given constant,
then the operator involved in the equation is similar with the p-Laplace operator, i.e.
	pu = div(|∇u|p−2∇u). In this case the Lusternik–Schnirelman theory asserts that
the spectrum of the negative p-Laplace operator contains at least an unbounded
sequence of positive eigenvalues, say 0 < μ1 < μ2 ≤ · · · ≤ μn ≤ · · · . Unfortunately,
to our best knowledge, nothing is known in general about the possible existence of
other eigenvalues in (μ1,∞). However, it is known (see [4]) that μ1 is an isolated point
of the spectrum (actually, μ1 is given by the infimum of the Rayleigh quotient which
defines λ1 above).

We point out that in the two cases presented above the two Rayleigh quotients,
which define λ1 and λ0, are equal and consequently, in these two cases, we have λ1 = λ0.
Clearly, that fact is a consequence of the homogenity of the equations in these two
particular cases. The loss of homogenity in the case emphasized in Theorem 1 will lead
to a continuous spectrum for problem (1).

4. An auxiliary result. A key result in proving Theorem 1 is given by the following
proposition which extends the result of relation (11) in [13]. The proof of this result is
inspired by the proof of relation (11) in [13].

PROPOSITION 1. Assume that condition (A1) is fulfilled. Then there exists a positive
constant C = C(aj, q+) such that∫

�

|u|q(x) dx ≤ C
∫

�

|∂xj u|q(x) dx, ∀ u ∈ C1
0(�) .
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Proof. First, we recall the definition of the width of the domain � in a direction.
Consider that {e1, . . . , eN} is the canonical basis in �N . We say that � has width ai > 0
in the ei direction if

sup
x,y∈�

(x − y, ei) = ai .

Without loss of generality, we assume that

� ⊂ {x ∈ �N ; 0 < xj ≤ aj}.

For each u ∈ C1
0(�) we put

v(x) = u(x)∂xj u(x).

Next, we extend u and v on the whole �N by setting 0 outside supp(u)
and supp(v). For each x = (x1, . . . , xj−1, xj, xj+1, . . . , xN) ∈ �N let us denote x′ =
(x1, . . . , xj−1, xj+1, . . . , xN) ∈ �N−1. In order to emphasize the jth component of x
we will write x = (xj, x′).

With the above notation we have q(x) = q(x′) for all x ∈ �N . Note that

0 = |u(aj, x′)|q(x′) − |u(0, x′)|q(x′)

q(x′)
=

∫ aj

0
|u(t, x′)|q(x′)−2v(t, x′) dt

=
∫ aj

0
|u(t, x′)|q(x′)−2v+(t, x′) dt −

∫ aj

0
|u(t, x′)|q(x′)−2v−(t, x′) dt ,

where v±(t, x′) = max{0,±v(t, x′)}.
On the other hand, the following equality holds true

∫ aj

0
|u(t, x′)|q(x′)−2|v(t, x′)| dt =

∫ aj

0
|u(t, x′)|q(x′)−2v+(t, x′) dt

+
∫ aj

0
|u(t, x′)|q(x′)−2v−(t, x′) dt.

The above equalities imply

∫ aj

0
|u(t, x′)|q(x′)−2v+(t, x′) dt = 1

2

∫ aj

0
|u(t, x′)|q(x′)−2|v(t, x′)| dt.

Using the last relation and some elementary estimates we deduce

|u(xj, x′)|q(x′) = q(x′)
∫ xj

0
|u(t, x′)|q(x′)−2v(t, x′) dt

≤ q(x′)
∫ xj

0
|u(t, x′)|q(x′)−2v+(t, x′) dt

≤ q(x′)
∫ aj

0
|u(t, x′)|q(x′)−2v+(t, x′) dt

= q(x′)
2

∫ aj

0
|u(t, x′)|q(x′)−1|∂xj u(t, x′)| dt ,
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for all xj ∈ (0, aj). Now, using Young’s inequality, we deduce that

|u(t, x′)|q(x′)−1|∂xj u(t, x′)| ≤ q(x′) − 1
q(x′)

ε
q(x′ )

q(x′ )−1 |u(t, x′)|q(x′) + 1
q(x′)εq(x′) |∂xj u(t, x′)|q(x′) ,

for all (t, x′) ∈ �N and all ε > 0.
The last two relations yield

|u(xj, x′)|q(x′) ≤ q(x′) − 1
2

ε
q(x′ )

q(x′ )−1

∫ aj

0
|u(t, x′)|q(x′) dt + 1

2εq(x′)

∫ aj

0
|∂xj u(t, x′)|q(x′) dt ,

for all xj ∈ (0, aj), all x′ ∈ �N and all ε > 0. Integrating the above inequality with
respect to xj ∈ (0, aj) we get

∫ aj

0
|u(t, x′)|q(x′) dt ≤ aj

q(x′) − 1
2

ε
q(x′)

q(x′)−1

∫ aj

0
|u(t, x′)|q(x′) dt

+ aj

2εq(x′)

∫ aj

0
|∂xj u(t, x′)|q(x′) dt,

for all x′ ∈ �N and all ε > 0. Next, for all ε ∈ (0, 1) we find

[
1 − aj

q+ − 1
2

ε
q+

q+−1

] ∫ aj

0
|u(t, x′)|q(x′) dt ≤ aj

2εq+

∫ aj

0
|∂xj u(t, x′)|q(x′) dt ,

for all x′ ∈ �N . Obviously, there exists ε0 ∈ (0, 1), small enough, such that

α := 1 − aj
q+ − 1

2
ε

q+
q+−1

0 > 0.

Thus, we find

∫ aj

0
|u(t, x′)|q(x′) dt ≤ aj

2αε
q+
0

∫ aj

0
|∂xj u(t, x′)|q(x′) dt.

Finally, letting C = aj

2αε
q+
0

and integrating the last inequality with respect to x′ ∈ �N

we conclude

∫
�

|u|q(x) dx ≤ C
∫

�

|∂xj u|q(x) dx ,

for every u ∈ C1
0(�).

The proof of Proposition 1 is complete. �

5. Proof of the main result. From now on E denotes the anisotropic variable

exponent Orlicz–Sobolev space W 1,
→
p (·)

0 (�). Define the functionals J, I , J1, I1 : E → �
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by

J(u) =
∫

�

N∑
i=1

1
pi(x)

∣∣∂xi u
∣∣pi(x) dx, I(u) =

∫
�

1
q(x)

|u|q(x) dx,

J1(u) =
∫

�

N∑
i=1

∣∣∂xi u
∣∣pi(x) dx, I1(u) =

∫
�

|u|q(x) dx.

Standard arguments imply that J, I ∈ C1(E, �) and their Fréchet derivatives are given
by

〈J ′
λ(u), v〉 =

∫
�

N∑
i=1

∣∣∂xi u
∣∣pi(x)−2

∂xi u∂xiv dx, 〈I ′
λ(u), v〉 =

∫
�

|u|q(x)−2uv dx ,

for all u, v ∈ E.
� First, we note that by Proposition 1 we can easily infer that

λ0 = inf
u∈E\{0}

J1(u)
I1(u)

> 0 and λ1 = inf
u∈E\{0}

J(u)
I(u)

> 0.

� Second, we point out that no λ ∈ (0, λ0) can be an eigenvalue of problem (1).
Indeed, assuming by contradiction that there exists λ ∈ (0, λ0) an eigenvalue of
problem (1) it follows that there exists a wλ ∈ E \ {0} such that

〈J ′(wλ), v〉 = λ〈I ′(wλ), v〉, ∀ v ∈ E.

Thus, for v = wλ we find

〈J ′(wλ), wλ〉 = λ〈I ′(wλ), wλ〉,
that is,

J1(wλ) = λI1(wλ).

The fact that wλ ∈ E \ {0} assures that I1(wλ) > 0. Since λ < λ0, the above
information yields

J1(wλ) ≥ λ0I1(wλ) > λI1(wλ) = J1(wλ).

Clearly, the above inequalities lead to a contradiction. Consequently, no λ ∈ (0, λ0)
can be an eigenvalue of problem (1).

� Third, we will prove that every λ ∈ (λ1,∞) is an eigenvalue of problem (1).
In order to do that, we need the following auxiliary result.

LEMMA 1.

lim
‖u‖→

p (·)→∞
J(u)
I(u)

= ∞.

Proof. Assume by contradiction that the conclusion of Lemma 1 does not hold
true. Then there exists an M > 0 such that for each n ∈ �∗ there exists a un ∈ E with
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‖un‖→
p (·) > n and

J(un)
I(un)

≤ M. (7)

While ‖un‖→
p (·) = ∑N

i=1 |∂xi un|pi(·) → ∞ as n → ∞, the sequence {|∂xk un|pk(·)}n (with k
given by condition (A2)) is either bounded or unbounded.

On the other hand, it is not difficult to see that∫
�

|u|q(x) ≤
∫

�

|u|q−
dx +

∫
�

|u|q+
dx, ∀ u ∈ E.

Next, using relation (11) in [13] we find that there exists a positive constant c1 such that∫
�

|u|q−
dx +

∫
�

|u|q+
dx ≤ c1

(∫
�

|∂xk u|q−
dx +

∫
�

|∂xk u|q+
dx

)
, ∀ u ∈ E.

Since by condition (A2) we have q+ < p−
k ≤ P+

− ≤ P−,∞ we deduce that Lpk(·) is
continuously embedded in Lq±

(�). The above pieces of information lead to the existence
of a positive constant c2 such that∫

�

|u|q(x) ≤ c2[|∂xk u|q+
pk(·) + |∂xk u|q−

pk(·)], ∀ u ∈ E. (8)

If {|∂xk un|pk(·)}n is bounded then by inequality (8) we have that {I(un)}n is also bounded
while by relation (19) in [19] we have that

J(un) ≥ c3‖un‖P−
−

→
p (·) − c4, ∀ n ∈ �∗ ,

where c3 and c4 are two positive constants. Consequently, in this case we obtain that
limn→∞

J(un)
I(un) = ∞ which contradicts (7).

Now, we assume that |∂xk un|pk(·) → ∞, as n → ∞, on a subsequence of un denoted
again un. We can assume that |∂xk un|pk(·) > 1 for all n. Using relations (3) and (8) we
find

J(un)
I(un)

≥
c5

∫
�

|∂xk un|pk(x) dx

c2
[|∂xk un|q+

pk(·) + |∂xk un|q−
pk(·)

] ≥
c5|∂xk un|p

−
k

pk(·)
c2

[|∂xk un|q+
pk(·) + |∂xk un|q−

pk(·)
] ∀ u ∈ E, n ∈ �∗,

where c5 is a positive constant. Since by condition (A2) we have p−
k > q+ the above

inequalities show that J(un)/I(un) → ∞, as n → ∞, which contradicts again (7).
Therefore, the conclusion of Lemma 1 is valid. �

Now, we are prepared to show that every λ ∈ (λ1,∞) is an eigenvalue of problem
(1).

Let λ ∈ (λ1,∞) be arbitrary but fixed. Define Tλ : E → � by

Tλ(u) = J(u) − λI(u).

Clearly, Tλ ∈ C1(E, �) with

〈T ′
λ(u), v〉 = 〈J ′(u), v〉 − λ〈I ′(u), v〉, ∀ u ∈ E.
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Thus, λ is an eigenvalue of problem (1) if and only if there exists uλ ∈ E \ {0} a critical
point of Tλ.

By Lemma 1 we get that Tλ is coercive, i.e. lim‖u‖→
p (·)→∞ Tλ(u) = ∞. On the other

hand, similar arguments as those used in the proof of [20, Lemma 3.4] show that the
functional Tλ is weakly lower semi-continuous. These two facts enable us to apply
[32, Theorem 1.2 ] in order to prove that there exists uλ ∈ E a global minimum point
of Tλ and thus, a critical point of Tλ. In order to conclude that λ is an eigenvalue of
problem (1) it is enough to show that uλ is not trivial. Indeed, since λ1 = infu∈E\{0}

J(u)
I(u)

and λ > λ1 it follows that there exists vλ ∈ E such that

J(vλ) < λI(vλ),

or

Tλ(vλ) < 0.

Thus,

inf
E

Tλ < 0

and we conclude that uλ is a non-trivial critical point of Tλ, that is λ is an eigenvalue
of problem (1).
� Finally, we note that by the above arguments we can infer that λ0 ≤ λ1.

The proof of Theorem 1 is complete.
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