ON AN EIGENVALUE PROBLEM FOR AN ANISOTROPIC ELLIPTIC EQUATION INVOLVING VARIABLE EXPONENTS

MIHAI MIHĂILESCU

Department of Mathematics, Central European University, 1051 Budapest, Hungary; Department of Mathematics, University of Craiova, 200585 Craiova, Romania e-mail: mmihailes@yahoo.com

and GHEORGHE MOROŞANU

Department of Mathematics, Central European University, 1051 Budapest, Hungary e-mail: Morosanug@ceu.hu

(Received 25 March 2009; revised 29 October 2009; accepted 21 February 2010)

Abstract. We study the eigenvalue problem $-\sum_{i=1}^{N} \partial_{x_i}(|\partial_{x_i}u|^{p_i(x)-2}\partial_{x_i}u) = \lambda |u|^{q(x)-2}u$ in Ω , u = 0 on $\partial \Omega$, where Ω is a bounded domain in \mathbb{R}^N with smooth boundary $\partial \Omega$, λ is a positive real number, and p_1, \ldots, p_N , q are continuous functions satisfying the following conditions: $2 \le p_i(x) < N$, 1 < q(x) for all $x \in \Omega$, $i \in \{1, \ldots, N\}$; there exist $j, k \in \{1, \ldots, N\}, j \ne k$, such that $p_j \equiv q$ in $\overline{\Omega}, q$ is independent of x_j and $\max_{\overline{\Omega}} q < \min_{\overline{\Omega}} p_k$. The main result of this paper establishes the existence of two positive constants λ_0 and λ_1 with $\lambda_0 \le \lambda_1$ such that every $\lambda \in (\lambda_1, \infty)$ is an eigenvalue, while no $\lambda \in (0, \lambda_0)$ can be an eigenvalue of the above problem.

2010 Mathematics Subject Classification. 35D05, 35J60, 35J70, 58E05.

1. Introduction. The goal of this paper is to study the existence of solutions of the following anisotropic eigenvalue problem

$$\begin{cases} -\sum_{i=1}^{N} \partial_{x_i} \left(\left| \partial_{x_i} u \right|^{p_i(x)-2} \partial_{x_i} u \right) = \lambda |u|^{q(x)-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1)

where $\Omega \subset \mathbb{R}^N$ ($N \ge 3$) is a bounded domain with smooth boundary $\partial \Omega$, λ is a positive number, and p_i , q are continuous functions on $\overline{\Omega}$ such that $2 \le p_i(x) < N$ and q(x) > 1 for all $x \in \overline{\Omega}$ and $i \in \{1, ..., N\}$.

Our study is motivated by some recent advances on the eigenvalue problems for anisotropic operators involving variable exponent growth conditions obtained in [19]. Considering different cases regarding the variable exponents $p_i(x)$ and q(x) involved in equation (1), the authors of [19] found certain interesting results that will be briefly presented in what follows:

- In the case when max{max_Ω p₁,..., max_Ω p_N} < min_Ω q and q has a subcritical growth, a mountain pass argument can be applied in order to show that any λ > 0 is an eigenvalue of problem (1) (see [19, Theorem 2]).
- In the case when min_Ω q < min{min_Ω p₁,..., min_Ω p_N} and q has a subcritical growth, using Ekeland's variational principle, one can prove the existence of a

MIHAI MIHĂILESCU AND GHEORGHE MOROȘANU

continuous family of eigenvalues lying in a neighbourhood of the origin (see [19, Theorem 4]).

• In the case when $\max_{\overline{\Omega}} q < \min\{\min_{\overline{\Omega}} p_1, \ldots, \min_{\overline{\Omega}} p_N\}$ it can be proved that the energy functional associated with problem (1) has a non-trivial (global) minimum point for any positive λ large enough and, consequently, any positive λ large enough is an eigenvalue of problem (1) (see [19, Theorem 3]). Obviously, in this case the above result can also be applied and, thus, in this situation there exist two positive constants λ^* and λ^{**} such that every $\lambda \in (0, \lambda^*) \cup (\lambda^{**}, \infty)$ is an eigenvalue of problem (1) (see [19, Corollary 1]).

Our paper supplements the above results on problem (1) by considering a new case, when there exist $j, k \in \{1, ..., N\}$ with $j \neq k$ such that p_j is independent of x_j ,

$$p_j(x) = q(x), \quad \forall \ x \in \overline{\Omega} \quad \text{and} \quad \max_{\overline{\Omega}} q < \min_{\overline{\Omega}} p_k$$

In this situation it will be proved that small values of λ cannot be eigenvalues of problem (1) while every λ large enough is an eigenvalue of problem (1).

On the other hand, we point out that our study extends to the case of anisotropic equations the results obtained in [22] and generalizes some other existing results on eigenvalue problems involving variable exponent growth conditions [11, 12, 20, 21, 23]. Finally, we note that equations of type (1) are models for various phenomena which arise from the study of electrorheological fluids (see [7, 14, 20, 29, 30]), image processing (see [6]), or the theory of elasticity (see [35]).

2. Abstract framework. In this section we recall some definitions and basic properties of the variable exponent Lebesgue–Sobolev spaces $L^{p(\cdot)}(\Omega)$ and $W_0^{1,p(\cdot)}(\Omega)$, where Ω is a bounded domain in \mathbb{R}^N . We will also introduce an adequate functional space where problems of type (1) can be studied. Such a space will be called an anisotropic variable exponent Sobolev space and it can be characterized as a functional space of Sobolev's type in which different space directions have different roles.

Set $C_+(\overline{\Omega}) = \{h \in C(\overline{\Omega}) : \min_{x \in \overline{\Omega}} h(x) > 1\}$. For $h \in C_+(\overline{\Omega})$ we define

$$h^+ = \sup_{x \in \Omega} h(x)$$
 and $h^- = \inf_{x \in \Omega} h(x).$

For $p \in C_+(\overline{\Omega})$, we introduce the variable exponent Lebesgue space

 $L^{p(\cdot)}(\Omega) = \{u : u \text{ is a measurable real-valued function such that } \int_{\Omega} |u(x)|^{p(x)} dx < \infty\},$

endowed with the so-called Luxemburg norm

$$|u|_{p(\cdot)} = \inf\left\{\mu > 0; \ \int_{\Omega} \left|\frac{u(x)}{\mu}\right|^{p(x)} \ dx \le 1\right\},\$$

which is a separable and reflexive Banach space. If $|\Omega| < \infty$ and p_1, p_2 are variable exponents in $C_+(\overline{\Omega})$ such that $p_1 \le p_2$ in Ω , then the embedding $L^{p_2(\cdot)}(\Omega) \hookrightarrow L^{p_1(\cdot)}(\Omega)$ is continuous.

Let $L^{p'(\cdot)}(\Omega)$ be the conjugate space of $L^{p(\cdot)}(\Omega)$, obtained by conjugating the exponent pointwise, that is, 1/p(x) + 1/p'(x) = 1. For every $u \in L^{p(\cdot)}(\Omega)$ and $v \in$

518

 $L^{p'(\cdot)}(\Omega)$ the following Hölder type inequality

$$\left| \int_{\Omega} uv \, dx \right| \le \left(\frac{1}{p^-} + \frac{1}{p'^-} \right) |u|_{p(\cdot)} |v|_{p'(\cdot)} \tag{2}$$

is valid.

An important role in manipulating the generalized Lebesgue–Sobolev spaces is played by the $p(\cdot)$ -modular of the $L^{p(\cdot)}(\Omega)$ space, which is the mapping $\rho_{p(\cdot)} : L^{p(\cdot)}(\Omega) \to \mathbb{R}$ defined by

$$\rho_{p(\cdot)}(u) = \int_{\Omega} |u|^{p(x)} dx.$$

If $u_n, u \in L^{p(\cdot)}(\Omega)$ then the following implications hold

$$|u|_{p(\cdot)} > 1 \Rightarrow |u|_{p(\cdot)}^{p^-} \le \rho_{p(\cdot)}(u) \le |u|_{p(\cdot)}^{p^+},\tag{3}$$

$$|u|_{p(\cdot)} < 1 \Rightarrow |u|_{p(\cdot)}^{p^+} \le \rho_{p(\cdot)}(u) \le |u|_{p(\cdot)}^{p^-}, \tag{4}$$

$$|u_n - u|_{p(\cdot)} \to 0 \Leftrightarrow \rho_{p(\cdot)}(u_n - u) \to 0, \tag{5}$$

since $p^+ < \infty$.

Next, we define $W_0^{1,p(x)}(\Omega)$ as the closure of $C_0^1(\Omega)$ under the norm

$$||u||_{1,p(\cdot)} = |\nabla u|_{p(\cdot)}$$

We point out that the above norm is equivalent with the following norm

$$\|u\|_{p(\cdot)} = \sum_{i=1}^{N} \left|\partial_{x_i}u\right|_{p(\cdot)}$$

provided that $p(x) \ge 2$ for all $x \in \overline{\Omega}$ (see [18]). Hence $W_0^{1,p(\cdot)}(\Omega)$ is a separable, reflexive Banach space. Note that if $s \in C_+(\overline{\Omega})$ and $s(x) < p^*(x)$ for all $x \in \overline{\Omega}$, where $p^*(x) = Np(x)/[N - p(x)]$ if p(x) < N and $p^*(x) = \infty$ if $p(x) \ge N$, then the embedding $W_0^{1,p(\cdot)}(\Omega) \hookrightarrow L^{s(\cdot)}(\Omega)$ is compact. For proofs, details and further results on variable exponent Lebesgue and Sobolev spaces we refer to Musielak's book [24] and the papers of Kováčik and Rákosník [17], Edmunds et al. [8–10], Samko and Vakulov [31], while for applications of such kind of spaces to the study of partial differential equations we refer to [1–7, 15, 19–23, 26, 29, 30, 35].

Finally, we introduce a natural generalization of the variable exponent Sobolev space $W_0^{1,p(\cdot)}(\Omega)$ that will enable us to study problem (1) with sufficient accuracy. For this purpose, let us denote by $\vec{p}: \overline{\Omega} \to \mathbb{R}^N$ the vectorial function $\vec{p} = (p_1, \ldots, p_N)$. We define $W_0^{1,\vec{p}(\cdot)}(\Omega)$, the *anisotropic variable exponents Sobolev space*, as the closure of $C_0^{\infty}(\Omega)$ with respect to the norm

$$\|u\|_{\overrightarrow{p}(\cdot)} = \sum_{i=1}^{N} \left|\partial_{x_i} u\right|_{p_i(\cdot)}.$$

As it was pointed out in [19], $W_0^{1, \vec{p}(\cdot)}(\Omega)$ is a reflexive Banach space.

MIHAI MIHĂILESCU AND GHEORGHE MOROȘANU

We also note that in the case when p_i are all constant functions, the resulting anisotropic Sobolev space is denoted by $W_0^{1,\vec{p}}(\Omega)$, where \vec{p} is the constant vector (p_1, \ldots, p_N) . The theory of such spaces was developed in [13, 25, 27, 33, 34].

On the other hand, in order to facilitate the manipulation of the space $W_0^{1,\vec{p}(\cdot)}(\Omega)$ we introduce $\vec{P}_+, \vec{P}_- \in \mathbb{R}^N$ as

$$\vec{P}_{+} = (p_1^+, \dots, p_N^+), \quad \vec{P}_{-} = (p_1^-, \dots, p_N^-)$$

and $P_+^+, P_-^+, P_-^- \in \mathbb{R}^+$ as

520

$$P^+_+ = \max\{p^+_1, \dots, p^+_N\}, \quad P^+_- = \max\{p^-_1, \dots, p^-_N\}, \quad P^-_- = \min\{p^-_1, \dots, p^-_N\},$$

Throughout this paper we assume that

$$\sum_{i=1}^{N} \frac{1}{p_i^-} > 1,$$
(6)

and define $P_{-}^{\star} \in \mathbb{R}^{+}$ and $P_{-,\infty} \in \mathbb{R}^{+}$ by

$$P_{-}^{*} = \frac{N}{\sum_{i=1}^{N} 1/p_{i}^{-} - 1}, \qquad P_{-,\infty} = \max\{P_{-}^{+}, P_{-}^{*}\}.$$

We recall that if $s \in C_+(\overline{\Omega})$ satisfies $1 < s(x) < P_{-,\infty}$ for all $x \in \overline{\Omega}$, then the embedding $W_0^{1,\vec{p}(\cdot)}(\Omega) \hookrightarrow L^{s(\cdot)}(\Omega)$ is compact (see [19, Theorem 1]).

3. The main result. We say that $\lambda \in \mathbb{R}$ is an *eigenvalue* of problem (1) if there exists $u \in W_0^{1, \vec{p}(\cdot)}(\Omega) \setminus \{0\}$ such that

$$\int_{\Omega} \left\{ \sum_{i=1}^{N} \left| \partial_{x_i} u \right|^{p_i(x)-2} \partial_{x_i} u \partial_{x_i} \varphi - \lambda |u|^{q(x)-2} u \varphi \right\} dx = 0$$

for all $\varphi \in W_0^{1,\vec{p}(\cdot)}(\Omega)$. For $\lambda \in \mathbb{R}$ an eigenvalue of problem (1) the function *u* from the above definition will be called a *weak solution* of problem (1) corresponding to the eigenvalue λ .

In this paper our basic assumptions on the functions p_i , q involved in equation (1) will be the following:

- (A1) Assume that there exists $j \in \{1, ..., N\}$ such that $q(x) = q(x_1, ..., x_{j-1}, x_{j+1}, ..., x_N)$ (i.e. q is independent of x_j) and $p_j(x) = q(x)$ for all $x \in \overline{\Omega}$.
- (A2) Assume that there exists $k \in \{1, ..., N\}$ $(k \neq j \text{ with } j \text{ given in (A1)})$ such that

$$\max_{x\in\overline{\Omega}}q(x)<\min_{x\in\overline{\Omega}}p_k(x).$$

Define the Rayleigh type quotients λ_0 and λ_1 associated with problem (1) by

$$\lambda_{0} = \inf_{u \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} \sum_{i=1}^{N} |\partial_{i}u|^{p_{i}(x)} dx}{\int_{\Omega} |u|^{q(x)} dx}, \quad \lambda_{1} = \inf_{u \in W_{0}^{1, \vec{p}(\cdot)}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} \sum_{i=1}^{N} \frac{1}{p_{i}(x)} |\partial_{i}u|^{p_{i}(x)} dx}{\int_{\Omega} \frac{1}{q(x)} |u|^{q(x)} dx}.$$

The main result of this paper is given by the following theorem:

THEOREM 1. Assume that conditions (A1) and (A2) are fulfilled. Then $0 < \lambda_0 \le \lambda_1$ and every $\lambda \in (\lambda_1, \infty)$ is an eigenvalue of problem (1), while no $\lambda \in (0, \lambda_0)$ can be an eigenvalue of problem (1).

REMARK 1. At this stage, we are not able to say whether $\lambda_0 = \lambda_1$ or $\lambda_0 < \lambda_1$. In the latter case, an interesting question concerns the existence of eigenvalues of problem (1) in the interval $[\lambda_0, \lambda_1]$. We propose to the reader the study of these open problems.

REMARK 2. The result of Theorem 1 also supplements some earlier classical results on eigenvalue problems. For instance, in the case when in equation (1) we consider $p_i(x) = q(x) = 2$ for all $x \in \overline{\Omega}$, $i \in \{1, \dots, N\}$, a basic result in the elementary theory of partial differential equations asserts that the spectrum of the negative Laplace operator (in $H_0^1(\Omega)$) is discrete (if Ω is a bounded domain in \mathbb{R}^N with smooth boundary). This celebrated result goes back to the Riesz-Fredholm theory of self-adjoint and compact operators on Banach spaces. Furthermore, in the case when in equation (1) we have $p_i(x) = q(x) = p$ for all $x \in \overline{\Omega}$, $i \in \{1, \dots, N\}$, with p > 1 a given constant, then the operator involved in the equation is similar with the *p*-Laplace operator, i.e. $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u)$. In this case the Lusternik–Schnirelman theory asserts that the spectrum of the negative p-Laplace operator contains at least an unbounded sequence of positive eigenvalues, say $0 < \mu_1 < \mu_2 \leq \cdots \leq \mu_n \leq \cdots$. Unfortunately, to our best knowledge, nothing is known in general about the possible existence of other eigenvalues in (μ_1, ∞) . However, it is known (see [4]) that μ_1 is an isolated point of the spectrum (actually, μ_1 is given by the infimum of the Rayleigh quotient which defines λ_1 above).

We point out that in the two cases presented above the two Rayleigh quotients, which define λ_1 and λ_0 , are equal and consequently, in these two cases, we have $\lambda_1 = \lambda_0$. Clearly, that fact is a consequence of the homogenity of the equations in these two particular cases. The loss of homogenity in the case emphasized in Theorem 1 will lead to a *continuous* spectrum for problem (1).

4. An auxiliary result. A key result in proving Theorem 1 is given by the following proposition which extends the result of relation (11) in [13]. The proof of this result is inspired by the proof of relation (11) in [13].

PROPOSITION 1. Assume that condition (A1) is fulfilled. Then there exists a positive constant $C = C(a_j, q^+)$ such that

$$\int_{\Omega} |u|^{q(x)} dx \le C \int_{\Omega} |\partial_{x_j} u|^{q(x)} dx, \quad \forall \ u \in C_0^1(\Omega).$$

Proof. First, we recall the definition of the *width* of the domain Ω in a direction. Consider that $\{e_1, \ldots, e_N\}$ is the canonical basis in \mathbb{R}^N . We say that Ω has *width* $a_i > 0$ in the e_i direction if

$$\sup_{x,y\in\Omega}(x-y,e_i)=a_i.$$

Without loss of generality, we assume that

$$\Omega \subset \{ x \in \mathbb{R}^N; \quad 0 < x_i \le a_i \}.$$

For each $u \in C_0^1(\Omega)$ we put

$$v(x) = u(x)\partial_{x_i}u(x).$$

Next, we extend u and v on the whole \mathbb{R}^N by setting 0 outside supp(u) and supp(v). For each $x = (x_1, \ldots, x_{j-1}, x_j, x_{j+1}, \ldots, x_N) \in \mathbb{R}^N$ let us denote $x' = (x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_N) \in \mathbb{R}^{N-1}$. In order to emphasize the *j*th component of x we will write $x = (x_j, x')$.

With the above notation we have q(x) = q(x') for all $x \in \mathbb{R}^N$. Note that

$$0 = \frac{|u(a_j, x')|^{q(x')} - |u(0, x')|^{q(x')}}{q(x')} = \int_0^{a_j} |u(t, x')|^{q(x')-2} v(t, x') dt$$

= $\int_0^{a_j} |u(t, x')|^{q(x')-2} v^+(t, x') dt - \int_0^{a_j} |u(t, x')|^{q(x')-2} v^-(t, x') dt$,

where $v^{\pm}(t, x') = \max\{0, \pm v(t, x')\}.$

On the other hand, the following equality holds true

$$\int_{0}^{a_{j}} |u(t, x')|^{q(x')-2} |v(t, x')| dt = \int_{0}^{a_{j}} |u(t, x')|^{q(x')-2} v^{+}(t, x') dt + \int_{0}^{a_{j}} |u(t, x')|^{q(x')-2} v^{-}(t, x') dt$$

The above equalities imply

$$\int_0^{a_j} |u(t,x')|^{q(x')-2} v^+(t,x') dt = \frac{1}{2} \int_0^{a_j} |u(t,x')|^{q(x')-2} |v(t,x')| dt.$$

Using the last relation and some elementary estimates we deduce

$$\begin{aligned} |u(x_j, x')|^{q(x')} &= q(x') \int_0^{x_j} |u(t, x')|^{q(x')-2} v(t, x') dt \\ &\leq q(x') \int_0^{x_j} |u(t, x')|^{q(x')-2} v^+(t, x') dt \\ &\leq q(x') \int_0^{a_j} |u(t, x')|^{q(x')-2} v^+(t, x') dt \\ &= \frac{q(x')}{2} \int_0^{a_j} |u(t, x')|^{q(x')-1} |\partial_{x_j} u(t, x')| dt \,, \end{aligned}$$

522

for all $x_i \in (0, a_i)$. Now, using Young's inequality, we deduce that

$$|u(t,x')|^{q(x')-1}|\partial_{x_j}u(t,x')| \leq \frac{q(x')-1}{q(x')}\varepsilon^{\frac{q(x')}{q(x')-1}}|u(t,x')|^{q(x')} + \frac{1}{q(x')\varepsilon^{q(x')}}|\partial_{x_j}u(t,x')|^{q(x')},$$

for all $(t, x') \in \mathbb{R}^N$ and all $\varepsilon > 0$.

The last two relations yield

$$|u(x_j, x')|^{q(x')} \leq \frac{q(x') - 1}{2} \varepsilon^{\frac{q(x')}{q(x') - 1}} \int_0^{a_j} |u(t, x')|^{q(x')} dt + \frac{1}{2\varepsilon^{q(x')}} \int_0^{a_j} |\partial_{x_j} u(t, x')|^{q(x')} dt,$$

for all $x_j \in (0, a_j)$, all $x' \in \mathbb{R}^N$ and all $\varepsilon > 0$. Integrating the above inequality with respect to $x_j \in (0, a_j)$ we get

$$\begin{split} \int_{0}^{a_{j}} |u(t,x')|^{q(x')} dt &\leq a_{j} \frac{q(x')-1}{2} \varepsilon^{\frac{q(x')}{q(x')-1}} \int_{0}^{a_{j}} |u(t,x')|^{q(x')} dt \\ &+ \frac{a_{j}}{2\varepsilon^{q(x')}} \int_{0}^{a_{j}} |\partial_{x_{j}} u(t,x')|^{q(x')} dt, \end{split}$$

for all $x' \in \mathbb{R}^N$ and all $\varepsilon > 0$. Next, for all $\varepsilon \in (0, 1)$ we find

$$\left[1-a_j\frac{q^+-1}{2}\varepsilon^{\frac{q^+}{q^+-1}}\right]\int_0^{a_j}|u(t,x')|^{q(x')}\,dt\leq \frac{a_j}{2\varepsilon^{q^+}}\int_0^{a_j}|\partial_{x_j}u(t,x')|^{q(x')}\,dt\,,$$

for all $x' \in \mathbb{R}^N$. Obviously, there exists $\varepsilon_0 \in (0, 1)$, small enough, such that

$$\alpha := 1 - a_j \frac{q^+ - 1}{2} \varepsilon_0^{\frac{q^+}{q^+ - 1}} > 0.$$

Thus, we find

$$\int_0^{a_j} |u(t,x')|^{q(x')} dt \le \frac{a_j}{2\alpha\varepsilon_0^{q^+}} \int_0^{a_j} |\partial_{x_j}u(t,x')|^{q(x')} dt.$$

Finally, letting $C = \frac{a_j}{2\alpha \varepsilon_0^{q^+}}$ and integrating the last inequality with respect to $x' \in \mathbb{R}^N$ we conclude

$$\int_{\Omega} |u|^{q(x)} dx \leq C \int_{\Omega} |\partial_{x_j} u|^{q(x)} dx,$$

for every $u \in C_0^1(\Omega)$.

The proof of Proposition 1 is complete.

5. Proof of the main result. From now on *E* denotes the anisotropic variable exponent Orlicz–Sobolev space $W_0^{1,\vec{p}(\cdot)}(\Omega)$. Define the functionals *J*, *I*, *J*₁, *I*₁ : *E* $\rightarrow \mathbb{R}$

524 by

$$J(u) = \int_{\Omega} \sum_{i=1}^{N} \frac{1}{p_i(x)} |\partial_{x_i} u|^{p_i(x)} dx, \quad I(u) = \int_{\Omega} \frac{1}{q(x)} |u|^{q(x)} dx.$$
$$J_1(u) = \int_{\Omega} \sum_{i=1}^{N} |\partial_{x_i} u|^{p_i(x)} dx, \quad I_1(u) = \int_{\Omega} |u|^{q(x)} dx.$$

Standard arguments imply that $J, I \in C^1(E, \mathbb{R})$ and their Fréchet derivatives are given by

$$\langle J'_{\lambda}(u), v \rangle = \int_{\Omega} \sum_{i=1}^{N} \left| \partial_{x_i} u \right|^{p_i(x)-2} \partial_{x_i} u \partial_{x_i} v \, dx, \quad \langle I'_{\lambda}(u), v \rangle = \int_{\Omega} |u|^{q(x)-2} u v \, dx,$$

for all $u, v \in E$.

• First, we note that by Proposition 1 we can easily infer that

$$\lambda_0 = \inf_{u \in E \setminus \{0\}} \frac{J_1(u)}{I_1(u)} > 0 \quad \text{and} \quad \lambda_1 = \inf_{u \in E \setminus \{0\}} \frac{J(u)}{I(u)} > 0.$$

 Second, we point out that no λ ∈ (0, λ₀) can be an eigenvalue of problem (1). Indeed, assuming by contradiction that there exists λ ∈ (0, λ₀) an eigenvalue of problem (1) it follows that there exists a w_λ ∈ E \ {0} such that

$$\langle J'(w_{\lambda}), v \rangle = \lambda \langle I'(w_{\lambda}), v \rangle, \quad \forall v \in E.$$

Thus, for $v = w_{\lambda}$ we find

$$\langle J'(w_{\lambda}), w_{\lambda} \rangle = \lambda \langle I'(w_{\lambda}), w_{\lambda} \rangle,$$

that is,

$$J_1(w_{\lambda}) = \lambda I_1(w_{\lambda}).$$

The fact that $w_{\lambda} \in E \setminus \{0\}$ assures that $I_1(w_{\lambda}) > 0$. Since $\lambda < \lambda_0$, the above information yields

$$J_1(w_{\lambda}) \ge \lambda_0 I_1(w_{\lambda}) > \lambda I_1(w_{\lambda}) = J_1(w_{\lambda}).$$

Clearly, the above inequalities lead to a contradiction. Consequently, no $\lambda \in (0, \lambda_0)$ can be an eigenvalue of problem (1).

 Third, we will prove that every λ ∈ (λ₁, ∞) is an eigenvalue of problem (1). In order to do that, we need the following auxiliary result.

Lemma 1.

$$\lim_{\|u\|_{\overrightarrow{p}(\cdot)}\to\infty}\frac{J(u)}{I(u)}=\infty.$$

Proof. Assume by contradiction that the conclusion of Lemma 1 does not hold true. Then there exists an M > 0 such that for each $n \in \mathbb{N}^*$ there exists a $u_n \in E$ with

 $||u_n||_{\overrightarrow{p}(\cdot)} > n$ and

$$\frac{J(u_n)}{I(u_n)} \le M. \tag{7}$$

While $||u_n||_{\vec{p}(\cdot)} = \sum_{i=1}^N |\partial_{x_i} u_n|_{p_i(\cdot)} \to \infty$ as $n \to \infty$, the sequence $\{|\partial_{x_k} u_n|_{p_k(\cdot)}\}_n$ (with k given by condition (A2)) is either bounded or unbounded.

On the other hand, it is not difficult to see that

$$\int_{\Omega} |u|^{q(x)} \leq \int_{\Omega} |u|^{q^-} dx + \int_{\Omega} |u|^{q^+} dx, \quad \forall \ u \in E.$$

Next, using relation (11) in [13] we find that there exists a positive constant c_1 such that

$$\int_{\Omega} |u|^{q^-} dx + \int_{\Omega} |u|^{q^+} dx \le c_1 \left(\int_{\Omega} |\partial_{x_k} u|^{q^-} dx + \int_{\Omega} |\partial_{x_k} u|^{q^+} dx \right), \quad \forall \ u \in E.$$

Since by condition (A2) we have $q^+ < p_k^- \le P_-^+ \le P_{-,\infty}$ we deduce that $L^{p_k(\cdot)}$ is continuously embedded in $L^{q^{\pm}}(\Omega)$. The above pieces of information lead to the existence of a positive constant c_2 such that

$$\int_{\Omega} |u|^{q(x)} \le c_2[|\partial_{x_k} u|^{q^+}_{p_k(\cdot)} + |\partial_{x_k} u|^{q^-}_{p_k(\cdot)}], \quad \forall \ u \in E.$$

$$\tag{8}$$

If $\{|\partial_{x_k} u_n|_{p_k(\cdot)}\}_n$ is bounded then by inequality (8) we have that $\{I(u_n)\}_n$ is also bounded while by relation (19) in [**19**] we have that

$$J(u_n) \ge c_3 \|u_n\|_{\vec{p}(\cdot)}^{P_-^-} - c_4, \quad \forall n \in \mathbb{N}^*,$$

where c_3 and c_4 are two positive constants. Consequently, in this case we obtain that $\lim_{n\to\infty} \frac{J(u_n)}{I(u_n)} = \infty$ which contradicts (7).

Now, we assume that $|\partial_{x_k} u_n|_{p_k(\cdot)} \to \infty$, as $n \to \infty$, on a subsequence of u_n denoted again u_n . We can assume that $|\partial_{x_k} u_n|_{p_k(\cdot)} > 1$ for all n. Using relations (3) and (8) we find

$$\frac{J(u_n)}{I(u_n)} \geq \frac{c_5 \int_{\Omega} |\partial_{x_k} u_n|^{p_k(x)} dx}{c_2 [|\partial_{x_k} u_n|^{q^+}_{p_k(\cdot)} + |\partial_{x_k} u_n|^{q^-}_{p_k(\cdot)}]} \geq \frac{c_5 |\partial_{x_k} u_n|^{p^-_k}_{p_k(\cdot)}}{c_2 [|\partial_{x_k} u_n|^{q^+}_{p_k(\cdot)} + |\partial_{x_k} u_n|^{q^-}_{p_k(\cdot)}]} \quad \forall \ u \in E, \ n \in \mathbb{N}^*,$$

where c_5 is a positive constant. Since by condition (A2) we have $p_k^- > q^+$ the above inequalities show that $J(u_n)/I(u_n) \to \infty$, as $n \to \infty$, which contradicts again (7).

 \square

Therefore, the conclusion of Lemma 1 is valid.

Now, we are prepared to show that every $\lambda \in (\lambda_1, \infty)$ is an eigenvalue of problem (1).

Let $\lambda \in (\lambda_1, \infty)$ be arbitrary but fixed. Define $T_{\lambda} : E \to \mathbb{R}$ by

$$T_{\lambda}(u) = J(u) - \lambda I(u).$$

Clearly, $T_{\lambda} \in C^{1}(E, \mathbb{R})$ with

$$\langle T'_{\lambda}(u), v \rangle = \langle J'(u), v \rangle - \lambda \langle I'(u), v \rangle, \quad \forall u \in E.$$

Thus, λ is an eigenvalue of problem (1) if and only if there exists $u_{\lambda} \in E \setminus \{0\}$ a critical point of T_{λ} .

By Lemma 1 we get that T_{λ} is coercive, i.e. $\lim_{\|u\|_{p'(\cdot)}\to\infty} T_{\lambda}(u) = \infty$. On the other hand, similar arguments as those used in the proof of [20, Lemma 3.4] show that the functional T_{λ} is weakly lower semi-continuous. These two facts enable us to apply [32, Theorem 1.2] in order to prove that there exists $u_{\lambda} \in E$ a global minimum point of T_{λ} and thus, a critical point of T_{λ} . In order to conclude that λ is an eigenvalue of problem (1) it is enough to show that u_{λ} is not trivial. Indeed, since $\lambda_1 = \inf_{u \in E \setminus \{0\}} \frac{J(u)}{I(u)}$ and $\lambda > \lambda_1$ it follows that there exists $v_{\lambda} \in E$ such that

$$J(v_{\lambda}) < \lambda I(v_{\lambda}),$$

or

$$T_{\lambda}(v_{\lambda}) < 0$$

Thus,

$$\inf_E T_\lambda < 0$$

and we conclude that u_{λ} is a non-trivial critical point of T_{λ} , that is λ is an eigenvalue of problem (1).

• Finally, we note that by the above arguments we can infer that $\lambda_0 \leq \lambda_1$. The proof of Theorem 1 is complete.

ACKNOWLEDGEMENTS. The authors thank the referee for some useful comments and suggestions that lead to an improved version of the paper. The first author has been supported by Grant CNCSIS PNII–79/2007 'Degenerate and Singular Nonlinear Processes'.

REFERENCES

1. E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth, *Arch. Ration. Mech. Anal.* **156** (2001), 121–140.

2. E. Acerbi and G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math. **584** (2005), 117–148.

3. C. O. Alves and M. A. Souto, Existence of solutions for a class of problems in \mathbb{R}^N involving the p(x)-Laplacian, in *Contributions to nonlinear analysis, a tribute to D.G. de Figueiredo on the occasion of his 70th birthday* (Cazenave T., Costa D., Lopes O., Manàsevich R., Rabinowitz R., Ruf R. and Tomei C., Editors), Progress in Nonlinear Differential Equations and Their Applications, Vol. **66** (Birkhäuser, Basel, Switzerland, 2006), 17–32.

4. A. Anane, Simplicité et isolation de la première valeur propre du *p*-laplacien avec poids, *C. R. Acad. Sci. Paris Sér.* I **305** (1987), 725–728.

5. J. Chabrowski and Y. Fu, Existence of solutions for p(x)-Laplacian problems on a bounded domain, J. Math. Anal. Appl. **306** (2005), 604–618.

6. Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image processing, *SIAM J. Appl. Math.* 66 (2006), 1383–1406.

7. L. Diening, Theoretical and numerical results for electrorheological fluids, PhD thesis (University of Frieburg, Germany, 2002).

8. D. E. Edmunds, J. Lang and A. Nekvinda, On $L^{p(x)}$ norms, *Proc. R. Soc. Lond.* Ser. A 455 (1999), 219–225.

9. D. E. Edmunds and J. Rákosník, Density of smooth functions in $W^{k,p(x)}(\Omega)$, *Proc.* R. Soc. Lond. Ser. A **437** (1992), 229–236.

10. D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent, *Studia Math.* 143 (2000), 267–293.

11. X. Fan, Remarks on eigenvalue problems involving the p(x)-Laplacian, J. Math. Anal. Appl. **352** (2009), 85–98.

12. X. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), 306–317.

13. I. Fragalà, F. Gazzola and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear equations, *Ann. Inst. H. Poincaré, Anal. Non Linéaire* 21 (2004), 715–734.

14. T. C. Halsey, Electrorheological fluids, Science 258 (1992), 761–766.

15. P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, *Potential Anal.* **25** (2006), 79–94.

16. P. Hästö, On the density of continuous functions in variable exponent Sobolev spaces, *Rev. Mat. Iberoamericana* 23 (2007), 74–82.

17. O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1,p(x)}$, *Czech. Math. J.* **41** (1991), 592–618.

18. M. Mihăilescu and G. Moroşanu, Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions, *Appl. Anal.* 89 (2010), 257–271.

19. M. Mihăilescu, P. Pucci and V. Rădulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, *J. Math. Anal. Appl.* **340** (2008), 687–698.

20. M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, *Proc. R. Soc. Lond. Ser.* A **462** (2006), 2625–2641.

21. M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, *Proc. Amer. Math. Soc.* **135** (2007), 2929–2937.

22. M. Mihăilescu and V. Rădulescu, Continuous spectrum for a class of nonhomogeneous differential operators, *Manuscr. Math.* **125** (2008), 157–167.

23. M. Mihăilescu and V. Rădulescu, Spectrum in an unbounded interval for a class of nonhomogeneous differential operators, *Bull. Lond. Math. Soc.* **40** (6) (2008), 972–984.

24. J. Musielak, *Orlicz spaces and modular spaces*, Lecture Notes in Mathematics, vol. 1034 (Springer, Berlin, 1983).

25. S. M. Nikol'skii, On imbedding, continuation and approximation theorems for differentiable functions of several variables, *Russ. Math. Surv.* **16** (1961), 55–104.

26. C. Pfeiffer, C. Mavroidis, Y. Bar–Cohen and B. Dolgin, Electrorheological fluid based force feedback device, in *Proc. 1999 SPIE Telemanipulator and Telepresence Technologies VI Conf.*, vol. 3840 (Boston, MA, 1999), pp. 88–99.

27. J. Rákosník, Some remarks to anisotropic Sobolev spaces I, Beitr. Anal. 13 (1979), 55-68.

28. J. Rákosník, Some remarks to anisotropic Sobolev spaces II, Beitr. Anal. 15 (1981), 127–140.

29. K. R. Rajagopal and M. Ruzicka, Mathematical modelling of electrorheological fluids, *Contin. Mech. Thermodyn.* **13** (2001), 59–78.

30. M. Ruzicka, *Electrorheological fluids: Modeling and mathematical theory* (Springer-Verlag, Berlin, 2002).

31. S. Samko and B. Vakulov, Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, *J. Math. Anal. Appl.* **310** (2005), 229–246.

32. M. Struwe, Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems (Springer, Heidelberg, 1996).

33. M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, *Ricerche Mat.* **18** (1969), 3–24.

34. L. Ven'-tuan, On embedding theorems for spaces of functions with partial derivatives of various degree of summability, *Vestn. Leningr. Univ.* **16** (1961), 23–37.

35. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, *Math. USSR Izv.* **29** (1987), 33–66.