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CERTAIN UNITARY REPRESENTATIONS OF

THE INFINITE SYMMETRIC GROUP, I

NOBUAKI OBATA

Introduction

Let X be the set of all natural numbers and let ©^ be the group of
all finite permutations of X. The group ©«,, equipped with the discrete
topology, is called the infinite symmetric group. It was discussed in F. J.
Murray and J. von Neumann [3] as a concrete example of an ICC-group,
which is a discrete group with infinite conjugacy classes. It is proved
that the regular representation of an ICC-group is a factor representation
of type Πj. The infinite symmetric group is, therefore, a group not of
type I. This may be the reason why its unitary representations have not
been investigated satisfactorily. In fact, only few results are known. For
instance, all indecomposable central positive definite functions on ©«,,
which are related to factor representations of type 11̂  were given by E.
Thoma [6]. Later on, A. M. Vershik and S. V. Kerov obtained the same
result by a different method in [7] and gave a realization of the repre-
sentations of type Πj in [8]. Concerning irreducible representations, A.
Lieberman [2] and G. I. OΓshanskii [4] obtained a characterization of a
certain family of countably many irreducible representations by introduc-
ing a particular topology in ©«,. However, irreducible representations have
been studied not so actively as factor representations.

The main purpose of the present paper is to give a family of uncount-
ably many irreducible representations of ©^ explicitly with the halp of
induced representation. Let Aut (X) denote the group of all bijections (or
automorphisms) from X onto itself. For any θ e Aut (X) we denote by H(θ)
the subgroup of all permutations in ©^ which commute with θ. For each
unitary character 1 of H(θ) we form the induced representation Uθ'χ =
Ind!^) £ on L2{&JH(Θ)), the Hubert space of all square summable functions
on <5JH(Θ).

In this paper, for technical simplicity, we shall restrict ourselves to
a special kind of automorphisms as follows. For each p > 2, we denote
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by Autp (X) the set of all automorphisms θ having the next two properties:

(i) θ = Πm=i(Wmi ίmp-i) in cycle-notation

(ii) supp θ = X, i.e. no point of X is fixed by θ.

As is shown in Section 2, the subgroup H(θ) is a semidirect product of

an abelian group and the infinite symmetric group, and admits exactly 2p

unitary characters.

With the help of a general theory of unitary representations of discrete

groups (see Section 1), we obtain the first result:

THEOREM 1. Let θ be a member of Autp (X) with p > 2.

(1) For any unitary character X of H(θ), Uθ'χ is irreducible.

(2) For two unitary characters X and Xr of H(θ), Uθ'χ is equivalent to

Uθ^' if and only if X = X'.

Next we shall discuss equivalence between two irreducible represen-

tations Uθ'χ and Uθ''χf. For two automorphisms θ — Πm=i(w'mi * * ίmP-i)

and θ' = Un=ΛJnoJni ' ' - Λp-i) i n Autp(X), we denote by N(θ, β') the number

of pairs (m, ή) such that {ίm0, , imp_^ — {jn0, ,;BP.1}.

THEOREM 2. Let θ and θ; be members of Autp (X) and Autp, (X) with

p, p' > 2, and let 1 and 1' be unitary characters of H(θ) and H{θf), respec-

tively.

(1) If p = pf and if N{θ,θ;) is finite, Uθ>χ is not equivalent to Uθ'tX'.

(2) If p ^p\ Uθ'χ is not equivalent to Uθ>'1'.

Finally we refer to the irreducible representations discussed in [2] and

[4]. Let p be an irreducible representation of the finite symmetric group

<SS, s = 0, 1, 2, . We denote by πp the representation of ©^ correspond-

ing to p. By a slight modification we obtain another class of irreducible

representations of (2L, which are denoted by τtp. (For details, see Section 3.)

We have the following

THEOREM 3. Let θ be a member of Autp (X) with p > 2 and let X be a

unitary character of H(θ). Then Uθ'χ is equivalent to neither πp nor πp for

any irreducible representation p of ©s, s = 0, 1, 2,

For an arbitrary automorphism θ e Aut (X), the unitary representation

Uθ'χ is not irreducible in general. If θ has a finite support, i.e. θe^^,

the corresponding unitary representation is decomposed into a sum of

irreducible ones πp and πp. Hence our method yields the irreducible repre-
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sentations discussed in [2] and [4]. It would be possible to discuss a

general case with our technique.

The author would like to express his thanks to Professor H. Yoshizawa

for his kind advice.

§ 1. Preliminary results

Let G be a discrete group, H a subgroup and Ω = GjH the quotient

space. We denote by ωoe Ω the point whose isotropy group is H. For

each unitary character X of H we consider the induced representation Uχ

= Ind# X. It is convenient to adopt the following realization of Ux.

Let U(Ω) be the Hubert space of all square summable functions on Ω.

We fix a cross section ω *-+ s[ω] e G for the canonical projection g ι-> gω0

efl, ge G. Then the induced representation Uχ is given by the formula:

(U*(g)f)(ω) =

where fe U(Ω) and ge G. We may assume s[ωQ] = e (the identity).

For each ω e Ω we denote by δω the delta-function concentrated at ω,

namely, δω(ω') = 1 if α> = ωr and = 0 otherwise. Then the family {δω;

ω e Ω} becomes a complete orthonormal basis for L2(,Q). For any g e G we

have

Here we note that the factor Xisigωo]'^) is a constant and that δωo is a

cyclic vector for the unitary representation Uχ.

PROPOSITION 1.1. Assume that all H-orbίts in Ω are infinite sets except

the orbit {ωQ}. Then we have

(1) Uχ is irreducible;

(2) Uχ is equivalent to U1' if and only if X = X\

Proof. (1) Suppose that T is a bounded operator on U(Ω) satisfying

U*(g)T = TU*(g) for all ge G. If he H, we have

U*(h)TδmQ = TU*(Iι)δωQ = X{h)Tδm .

Therefore, in view of the definition of Ux(h), we see that

ω)\9 heH, ωeΩ.

Since Tδωoe L2(Ω), it follows from the assumption that Tδωo = iδωQ for some

teC. Consequently, for any ge G we have
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which implies T=tl (I is the identity operator). By repeating the above

proof we can show (2) easily. •

If 1 is a unitary character of H and if a is an automorphism of G,

we define a unitary character T of a(H) by

r{a{h)) = χ(Λ) , Λ 6 if .

We put Vχ = Vχ'a = ΪΏ.d^iH)X
a. Using the natural isomorphism between

U(Ω) = L\GIH) and U(Gla(H)\ we can realize V* on L2(β):

where feL\Ω) and geG. In other words, £7* = V*o#, where Z7χ =

Ind|Z as before.

PROPOSITION 1.2. If \H: a(gHg~ι)f]H\ = +oo /or αZZ geG, two unitary

representations U1 and Vχf are disjoint for any unitary characters X and

r of H.

Proof. Suppose that T is a bounded operator on U(Ω) satisfying

TUχ(g) = Vχ'(g)T for all geG. If h e H, we have

V^(/ι)Γ^0 = TU*(h)δωQ = χ(Λ)Γ3β0 .

Hence

- ^ / r » | - IΓ^0(ω)| , heH, ωeΩ.

On the other hand, the αΓ^/iO-orbit containing gω0 (e Ω) is isomorphic to

a-\H)lgHg-ιr\a-\H). Therefore all αΓ^JSO-orbits in Ω are infinite sets

by assumption. Since Tδωo e L\Ω), we conclude Tδωo = 0. This implies

T — 0 immediately. •

Remarks. (1) If the assumption of Proposition 1.2 holds, the auto-

morphism a is necessarily an outer automorphism.

(2) Analoguous results are found in Godement [1] and Saito [5].

Yoshizawa [9] applied those arguments to free groups.

§ 2. 4 characterization of certain subgroups of ©^

Let X be the set of all natural numbers and ©^ the group of all finite

permutations of X. The group ©«,, equipped with the discrete topology,
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is called the infinite symmetric group. Each permutation g e ©^ can be

written in cycle-notation, i.e. as a product of pairwise disjoint cycles.

We denote by Aut(Z) the group of all bisections (or automorphisms)

from X onto itself. Obviously ©^ is a normal subgroup of Aut (X). Any

6 e Aut (X) also admits a cycle-notation which may be an infinite product

of cycles or may contain cycles of infinite length.

For any θ e Aut (X) we denote by H(θ) the subgroup of all permu-

tations in ©TO which commute with θ:

H(θ) = {ge ©.; gθ = θg}(= Hiθ-1)) .

In what follows we shall restrict ourselves to some special automor-

phisms of X. For any integer p > 2, we denote by Autp (X) the set of all

automorphisms θ e Aut (X) having the following two properties:

(i) θ = Πm-i(Wmi * ίmp-i) in cycle-notation
(ii) supp#=X, i.e. no point of X is fixed by θ.

Let A(θ) be the abelian subgroup of ©^ which is generated by all

cyclic permutations (imQimi imp-\)> m — 1? 2, , and S(θ) the subgroup

of all permutations ge ©^ having the following property: there exists some

σ e ©TO such that g(ίmlc) = iff(TO)fc for all m = 1, 2, and ft = 0,1, p — 1.

As is easily seen, A(Θ)S(Θ) = S(Θ)A(Θ) = S(θ) tx A(θ) (semidirect product)

and S(Θ)A(Θ) c #(0). Note that S(Θ)A(Θ) does not depend on the choice of

a sequence {ϊm0}m=i,2,... though S(0) does. The main purpose of this section

is to show the following

PROPOSITION 2.1. We have

H{θ) = S(0) K A(θ) (semidirect product) .

We need some preliminaries. The group A(θ) is isomorphic to the

restricted direct product group (Zp)£ = {a = (au a2, •) 6 (Zp)°°; an = 0 except

finitely many n}. On the other hand, S(#) is isomorphic to ©TO by de-

finition. Through these isomorphisms we define a permutation (σ, a) of

^ b y

((7, β)( i m f c ) = lσ(m)k + am

The second suffix k+am is taken as an element of Zp. Then we have

(σ, a)(a', αθ = (<*/, ασ/ + α') ,

where aσ' = (ασ/(1), ασ/(2), •)•
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LEMMA 2.2. (1) Let σ = (mλm2 mn) e ©^ and a = (au α2, •) e (ZP)J\

1/ α, = 0 for j ±rml9 - ,mn and amχ + αm 2 + + αm n = 0 (modp), the

cycle-notation of (σ, a) is given by

(σ, a) = (*, *„)«?(*,) • *(*,,)) (0*-'(*,) • fl'-'OO) ,

Where Xλ — l m i 0 , X2 = £T O 2αm i> * *> # n — &m»αmi + . + α m n _ 1

(2) For Λ1, . , i B e X we put ϊ0 = ( X Λ xn) and r, - 0>ro0-Λ j =

0, 1, , p - l . 1/ f0, λi, , Γp_i are pairwίse disjoint cycles, there exist

a e ©„ and a e (Zp)^ sz/c/i that ΐoΐί ϊp_1 = (σ, a).

Proof. (1) Ί£ m Φ mu , mn, obviously we have (σ, a)(ίmk) = /mJL. On

the other hand, inductively we see

0 , αXxO = ((7, α ) ( / m i 0 ) = i f f ( m i ) α m i = i m 2 α m i = * 2 ,

(σ, a) 2 (xj) = (σ, a ) ( x 2 ) - im 3aT O 1 + am 2 = * 3 ,

(σ, ay-^Xt) = 0 , a)(xn^) = ίmnami + ... + amn_1 = *n ,

((7, a ) \X\) = i m i a m i + . . . + a , m ? ι

 : : := ϊ m i o
 = ^ i

Therefore the cycle (x1 xn) is contained in the cycle-notation of (σ, α).

Since (σ, α) commutes with 0, we obtain the desired expression.

(2) Choose ml9 , mn > 1 and 0 < ku , kn <p such that xx = iOTlfcl,

* * *> ^w = = imnkn a n d p u t α m i = /22 A ,̂ α m 2 = /23 /22, , α m w - 1 = κn κn-u

avln = kx — &n. Since m1? , mn are pairwise distinct by assumption, a =

(mj τnn) e ©«,. We define a = (α^ α2, •) 6 (ZP)S° by putting a5 = 0 for

all j ^f mί9 m2y , mn. Then it is easily seen that ΪJX ϊp_ί = (σ, α). •

LEMMA 2.3. Let q and qf be two positive integers. For xl9 , xn e X

we put (formally)

r0 = (Xl xnθ*(xύ ^9(χκ) θ^-^{xλ) β«'-1)q(χn)).

(1) If (p, q) = 1 and £/ g7 = p, r0 belongs to S(Θ)A(Θ) whenever ΪQ is

a cycle, i.e. all elements in the right hand side are mutually distinct.

(2) If (p, q) = r ^ 1 and if qf is the smallest positive integer such that

qqf = 0 (modp), TQTι 7r-\ belongs to S(Θ)A(Θ) whenever ϊ0, Tl9 , ϊr-i are

pairwίse disjoint cycles, where ϊό = θ3ϊoθ~j, j = 0, 1, , r — 1.

Proof. We put

θ'-'ixdYixt • • • χnχβ(χi) • • • <?(*.)) (θpΛ*i) • • • ffl 'XxJ) •
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(1) In view of Lemma 2.2 one can easily verify that h belongs to

S(Θ)A(Θ) and that h = ϊ0.

(2) Obviously h belongs to S(Θ)A(Θ) and we see h = TJ{ ϊr_1. •

Proof of Proposition 2.1. We have only to show that S(β)A(θ) ID H(θ).

Let g be an arbitrary element of H(β) and g = gλg2 gn, where gk =

(#fcA2 Xjesj), its cycle-notation. For each k = 1, 2, , n, there exists a

unique / = l(k) such that θgφ'1 = gl9 namely, (θ(xkl) 6(xkSk)) = (xn xls).

Without loss of generality we may assume k = 1. For simplicity we write

sι = s and Xj = xu, j = 1, 2, , s.

(a) In case of Z = l, that is, (flfo) θ(xs)) = (χ1 - xs). As is easily

seen, there exist two integers t > 1 and q > 1 with (p, g) = 1 such that

(*,-•• x5) = (^ x ^ ^ ) θ%xt) θ^'ixd θw*(xt)) ,

which belongs to S(Θ)A(Θ) by Lemma 2.3 (1).

(b) In case of Z ̂  1. There exists some g with 1 < q < /? such that

the cycles (^ xs\ (θfa) θ(x,)), , ί^- 1^) θq-ι(xs)) are pairwise

disjoint but (x1 x5) = (β ί̂xj) θq(xs)). Necessarily (p, q) = r ^ 1 since

Z ̂  1. Let g/ be the smallest positive integer such that qq' — 0 (modp).

By a similar argument to (a) we see that there exist two integers t > 1

and u > 1 with (u, qf) = 1 such that

(Xl . Λ ί) = (^ xtθ
qu(xl) - - fl^te) θ^-^ixj θ{q'-1)qu(xt)) .

Since (p, qu) = r, (xt jOίφO ^(xs)) (θr~\^i) ' - ' ^r~1(^s)) belongs to
S(Θ)A(Θ) by Lemma 2.3 (2). •

We end this section by giving the structure of H(θ) for a general

automorphism θ e Aut (X). For any subset Y of X we denote by ©(7) the

subgroup of all permutations in ©^ which act identically outside Y. Let

#eAut(X) be an automorphism whose cycle-notation is of the form: θ —

f |m(im oim l ••• ϊmp_!), where the number of the cycles is finite or infinite,

and possibly supp θ ̂  X. We denote by H\θ) the subgroup of all permu-

tations in ©(supp θ) which commute with θ. Then the structure of H\θ)

is known by virtue of Proposition 2.1. There is no difficulty in verifying

the next result which describes the structure of Ή{θ) for an arbitrary auto-

morphism θ e Aut (X).

PROPOSITION 2.4. Any #eAut(X) admits an expression of the form:

0 = 6006263 , where 6n is a product of disjoint cycles of length n and the
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subsets supp θn, n = oo, 2, 3, are mutually disjoint. Furthermore H(β) =

(&(X — supp θ) X H'(θz) X #'(#3) X in the sense of restricted direct product

§ 3. Construction of irreducible representations

We keep the notations introduced in the previous section. Let θ =

Πm=i(Wmi imp-i) be the cycle-notation of an automorphism θ e Aut^X).

Since S(β) is isomorphic to ©«,, it has exactly two unitary characters: 1

(the trivial character) and sgn (S(θ) ~ <&„ 9 σ »-* sgn σ e {± 1}). For any

= 0,1, p — 1, we define a unitary character 15 of A(0) ~ (Zp)~ by

; ak) ,f; ak) , α = (α1? α2,

Then one can easily verify that H(θ) = S(Θ)A(Θ) has exactly 2p unitary

characters: %t = 1 ® Ẑ  and Xj = sgn ® Ẑ  , jf = 0,1, , p — 1.

For any unitary character X of H(θ) we put Uθ'χ = Indf^X. As in

Section 1, we put Ω = &JH(Θ) and ω0 denotes the point of Ω whose iso-

tropy group is H{θ).

LEMMA 3.1. All H(θ)-orbίts in Ω are infinite sets except {ω0}.

Proof. It is sufficient to show that S(θ)gω0 is an infinite set for any

g $ H(θ). Since g does not commute with θ, there exists some n0 e X such

that g~ιθ(n<) ̂  θg~ι(n^. Fix a sufficiently large moe X such that {n0, θ(n0),

- , θp~\n0)}Usuppg C Um°=i{imo, , imp-i}. Since ^9(^0) e {i10, i20, , imoo} for

some g > 0, σk = l\PjZl(eq+j(n0) ίkj) belongs to S(θ). It is sufficient to show

that σkgω0 ^ σk,gω0 whenever k =̂ kf > m0. In fact we see

and

Hence by assumption we obtain

θg-χσk}σkg{ikfp_^ Srg^σjσtgiίvp.^) = g'^σ^θii^^^ .

This shows that g~ισ^σkg does not commute with 0. Therefore we have

F Gk'gMo as desired. •

In view of Proposition 1.1, immediately we have the following

THEOREM 1. Let θ be a member of Kntp (X) with p > 2.
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(1) For any unitary character X of H(θ), UθiX is irreducible.

(2) For two unitary characters X and Xf of H(θ), Uθ'x is equivalent to

U6'*' if and only if X = X'.

We shall now discuss the question of equivalence between two irre-

ducible representations E7' z and U6''χ', where θ e Autp (X) and θf e Autpf(X).

First we assume p — pf. For two automorphisms θ = Πϊ-i(Wmi imp-i)

and ff = Π»=i UnoJm ' -' jnp-i) in Autp (X), we denote by N(θ, θ') the number

of pairs (m, ή) such that {ίm, ίmu , i ^ . J = {jn0,jnl, , jnp^}.

LEMMA 3.2. If N(θ,θ') is finite, \H(Θ): H(Θ)ΠH(Θ')\ = + co.

Proof Let m0 be the largest number such that {imo0, , ίmoP-i} =

Uno, '' -Jnp-i} for some n. Put gm = (im0 imp_,) e A(^) c iϊ(^). It is suf-

ficient to show that {gm(H(θ)ΠH(θf)); m > m0} is an infinite set. Suppose

that g^gm e #(#) ΓΊ H(θ') for two distinct numbers m and m' > m0. Note

that g^/gm is just a cycle-notation. Since gm does not commute with θf

by assumption, we have θ'g^,θf~ι = gm and θ'gj)''1 = g^ϊ>> In particular,

gm, is uniquely determined by gm if it exists. This proves the assertion. •

LEMMA 3.3. If p' is not a divisor of p, \H(Θ): H(θ)f)H(θ')\ = + oo for

any θ e Autp (X) and θf e Autp, (X).

The proof is similar to that of Lemma 3.2. In case when p/ is a

divisor of p, the above result does not hold in general.

THEOREM 2. Let θ and df be members of Autp (X) and Autp, (X) with

p, pf > 2, and let X and X' be unitary characters of H{θ) and H(θ'), respec-

tively.

(1) If p = pf and if N(θ,θ') is finite, Uθ>χ is not equivalent to Uθ''χ'.

(2) If p # p ' , Uθ*x is not equivalent to Uθ'>χf.

Proof. (1) There exists some ae Aut(X) such that θf — aθa~\ We

denote by a the automorphism of ©^ defined by ά(g) = aga~\ ge^B^.

Obviously we have ά(H(θ)) = H(θ'). Note that N(θ,gθfg-χ) is finite for all

g e ©oo by assumption. Since

ά(gH(θ)g-1) = agH(θ)g-1a-ί = Hiagθg^a-1) = Hiaga'Ψag-'a'') ,

it follows from Lemma 3.2 that \H(Θ): ά(gH(θ)g-1)f]H(6)\ = + oo. Then

the desired result follows immediately from Proposition 1.2.

(2) The proof is modelled after Proposition 1.2. Here we only note
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that \H(Θ): H(θ)ΠH(gθ/g~ί)\ = + °° for all ge&«, whenever p' > p. This

follows from Lemma 3.3. •

Next we shall recall the irreducible representations discussed by

Lieberman [2] and OΓshanskii [4]. For brevity we write ©s = ©({1, 2, , s})

and ©oo-s = ©({s + 1, s + 2, •••}). For any finite dimensional unitary repre-

sentation p of ©s we put πp = Indls°°xSoo_s p® 1. Then they proved the

following

PROPOSITION 3.4. (1) If p is irreducible, so is πp.

(2) Let p and pf be irreducible representations of &s and ©s,, respectively.

Then πp is equivalent to πpf if and only if p is equivalent to pf {including

s = sθ.

In addition we can construct another class of unitary representations

of ©«,. For any finite dimensional unitary representation p of ©„ we put

πp = Indi~x@oo_s/o® sgn. The following result is then easily verified.

PROPOSITION 3.5. (1) If p is irreducible, so is πp.

(2) Let p and ρf be irreducible representations of ©s and ©s,, respec-

tively. Then πp is equivalent to πpf if and only if p is equivalent to p'.

(3) Let p and ρf be the same as above. Then πp is not equivalent to

πpf.

By repeating the proof of Proposition 1.2 we have the following result

with no difficulty.

THEOREM 3. Let θ be a member of Autp (X) with p > 2 and let 1 be

a unitary character of H(θ). Then UθiX is equivalent to neither πp nor πp

for any irreducible representation p of ©s, s — 0, 1, 2,

Remarks. (1) In this paper we restricted ourselves to rather special

automorphisms θ e Autp (X) with p ^ 2 and discussed the corresponding

unitary representations Uθ'x. However, with the help of Proposition 2.4,

we may discuss unitary representations corresponding to general auto-

morphisms θ e Aut (X). Some comments for a particular case are given in

the next paragraph.

(2) Let θ e Aut (X) have a finite support, i.e. θ e ©^. By a suitable

inner automorphism of ©oo, we may assume supp# = {1, 2, , s}. Then

H(θ) admits a direct product decomposition: H(θ) = H/(θ)χ(BO0_s, with the

notation introduced in Section 2. We now consider unitary representa-
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tions of H(θ) of the form p' ® 1 and pf ® sgn, where ρf is a finite dimen-

sional unitary representation of H'{0). Note that all unitary characters

of H(θ) are of the form above. Then we can prove the following result:

Indf?,, p' ® 1 ~ Σ® [Indf^} p': p]τS

and

Indlfe) pf ® sgn ~ Y® [Ind|V) p'\ p\π^ ,
/)G3S

where @5 denotes the set of all equivalence classes of irreducible repre-

sentations of ©s.
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