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FINITE NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS
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An approach to analysing the family of Cayley graphs for a finite group G is given
which identifies normal edge-transitive Cayley graphs as a sub-family of central im-
portance. These are the Cayley graphs for G for which a subgroup of automorphisms
exists which both normalises G and acts transitively on edges. It is shown that, for a
nontrivial group G, each normal edge-transitive Cayley graph for G has at least one
homomorphic image which is a normal edge-transitive Cayley graph for a character-
istically simple quotient group of G. Moreover, given a normal edge-transitive Cayley
graph Ffj for a quotient group G/H, necessary and sufficient conditions are obtained
for the existence of a normal edge-transitive Cayley graph F for G which has F# as
a homomorphic image, and a method for obtaining all such graphs F is given.

1. INTRODUCTION

For a group G, and a subset 5 of G such that l c 0 S, the Cayley graph Cay (G,S)
of G relative to S is defined as the graph with vertex set G and edge set E(S) consisting
of those ordered pairs (x,y) from G for which yx~x G S. If S is symmetric, that is, if
S"1 := {s"1 : s e S} is equal to 5, then (x,y) is an edge if and only if (y,x) is an
edge, and Cay(G, 5) is said to be undirected. The graph Cay (G,S) is vertex-transitive
since it admits G, acting by right multiplication, as a subgroup of automorphisms. Thus
G < Aut(Cay(G, 5)) and this action of G is regular on vertices, that is, G is transitive
on vertices and only the identity element of G fixes a vertex. A graph F is (isomorphic
to) a Cayley graph for some group if and only if its automorphism group Aut(F) has a
subgroup which is regular on vertices, (see [2, Lemma 16.3]). For small values of n, the
vast majority of undirected vertex-transitive graphs with n vertices are Cayley graphs
(see [8, Table 1]).
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A Cayley graph F = Cay(G, 5) is said to be edge-transitive if Aut(F) is transitive on
edges. Also, if F is undirected, then an unordered pair of edges {(x,y),{y,x)} is called
an unordered edge, and F is said to be edge-transitive as an undirected graph if Aut(F)
is transitive on unordered edges. In this paper we present an approach to studying the
family of Cayley graphs for a given finite group G, which focuses attention on those
graphs F for which TVAut(r) (G) is transitive on edges, and those undirected graphs F for
which TVAut(r) (G) is transitive on unordered edges. Such a graph is said to be normal
edge-transitive, or normal edge-transitive as an undirected graph, respectively. Not every
edge-transitive Cayley graph is normal edge-transitive. This can be seen by considering
the complete graphs Kn on n vertices.

E X A M P L E 1. The complete graph Kn is an undirected Cayley graph for any group of
order n, and its automorphism group Sn acts transitively on edges, and hence also on
unordered edges. However Kn is normal edge-transitive (and also normal edge-transitive
as an undirected graph) if and only if n is a prime power. If n = pa (p a prime and
a ^ 1), then taking G = Z£ we have Kn ^ Cay(G,G\ {1}) and NSn(G) = AGL(a,p) is
transitive on edges (and on undirected edges).

However in most situations, it is difficult to find the full automorphism group of a
graph. Although we know that a Cayley graph C&y(G,S) is vertex-transitive, simply
because of its definition, in general it is difficult to decide whether it is edge-transitive.
On the other hand we often have sufficient information about the group G to determine
TV = A^Aut(Cay(G,s))(G'); for TV is the semidirect product

(1) TV = G • Aut(G; 5), where Aut(G; 5) := {a € Aut(G) | S° = S}.

Thus it is often possible to determine whether Cay(G, S) is normal edge-transitive.

Independently of our investigation, and as another attempt to study the structure
of finite Cayley graphs, Xu [12] defined a Cayley graph F = Cay(G, 5) to be normal if G
is a normal subgroup of the full automorphism group Aut(F). Xu's concept of normality
for a Cayley graph is a very strong condition. For example, Kn is normal if and only if
n ^ 4. However any edge-transitive Cayley graph which is normal, in the sense of Xu's
definition, is automatically normal edge-transitive. This provides several more families
of examples of normal edge-transitive Cayley graphs. For example, the normal Cayley
graphs on 2p vertices (p a prime) which are not undirected were completely classified
in [4]. Also it was shown in [1] that most small valency Cayley graphs for finite Abelian
groups are normal. Each of these families contains some normal edge-transitive Cayley
graphs.

In Section 2 we show how to express an arbitrary Cayley graph for G as an edge-
disjoint union of normal edge-transitive Cayley graphs for G. Moreover if the original
graph F is undirected then we write F as an edge-disjoint union of undirected Cayley
graphs for G, all of which are normal edge-transitive as undirected graphs (see The-
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orem 2). We obtain in Proposition 1 necessary and sufficient conditions in terms of
Aut(G; S) for Cay(G, 5) to be normal edge-transitive. We illustrate this with the family
of Cayley graphs for a cyclic group of prime order. (The assertions made in Example 2
can easily be deduced from Chao's classification of symmetric graphs of prime order in [3].
Details are also given in [6, Section 5.2].)

E X A M P L E 2. Let G = Zp denote the additive group of integers modulo a prime p .
Let i be a generator of Aut(G), which we identify with the cyclic multiplicative group
of nonzero integers modulo p , and for each i let (xx) denote the subgroup of Aut(G)
generated by x*. Note that, as a set, (xl) C G\{0}, and that (xl) is symmetric, as a subset
of G, if and only if it contains —x*, that is, if and only if either p = 2 or gcd(p—1, i) divides
(p - l ) /2 . For each divisor a of p - 1, the Cayley graph F(p;a) := Cay(G, (x^-1)/'))
has out-valency a, and is normal edge-transitive with AfAut(r(p;o))(G) = G • (x(p~1) /o).
Moreover, F(p; a) is undirected if and only if either p = 2 or a is even. Conversely, each
normal edge-transitive Cayley graph for G is either an empty graph, or is isomorphic
to F(p; a) for some divisor a of p - 1, and a non-empty undirected Cayley graph for G,
which is normal edge-transitive as an undirected graph, is isomorphic to F(p; a) where
either p = 2 or a is even. For an arbitrary Cayley graph F = Cay(G, S) for G, we
have iVAut(r)(G) = G • (x<-p~l^a) for some a, and F is the edge-disjoint union of graphs
isomorphic to F(p; a).

In Section 3, we investigate quotients of Cayley graphs and determine conditions
under which the quotient is a Cayley graph for a quotient group, and conditions for the
quotient to be normal edge-transitive. We prove in Theorem 3 that a group G induces
a group of automorphisms of a quotient of Cay(G, S) relative to a vertex partition V
if and only if V is the set of cosets of a subgroup H of G, and that the quotient is a
Cayley graph for a quotient group of G if and only if H is a normal subgroup. In this
case the quotient is C&y(G/H,SH/H), and is undirected if Cay(G, 5) is undirected. If
G • Aut(G; S) is transitive on edges (or on unordered edges if Cay(G, S) is undirected),
then G • Aut(G; 5) acts transitively on edges (or unordered edges) of the quotient if and
only if H is Aut(G; S)-invariant. This will be the case in particular if if is a characteristic
subgroup of G.

Thus, given a normal edge-transitive Cayley graph Cay(G,S) for a nontrivial fi-
nite group G, we obtain a non-empty set C(G,S) of normal edge-transitive Cayley
graphs for certain quotient groups of G. We show in Theorem 4 that every graph
Cay(G/L, SL/L) € C(G, S) has at least one homomorphic image which is a graph
Cay(G/H,SH/H) e C{G,S) with H a maximal Aut(G; 5)-invariant subgroup of G.
For such a 'minimal' element Cay(G,S) = Cay(G/H,SH/H), the group G = G/H is
characteristically simple (which we define just before Theorem 4) and is a minimal nor-
mal subgroup of N := G • Aut(G : 5) . Unfortunately, this latter property does not imply
that N acts quasiprimitively on G since N may have an intransitive normal subgroup
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which centralises G. (A permutation group G on Q, is said to be quasiprimitive on Q
if every nontrivial normal subgroup of G is transitive on Q..) However, quasiprimitive
permutation groups with regular normal subgroups provide a large class of examples of
normal edge-transitive Cayley graphs Cay(G, 5) with G characteristically simple. The
quasiprimitive permutation groups are well understood (see [9, 10]), and fall naturally
into eight disjoint classes, as described in [10, Section 5]. Each quasiprimitive group
in four of these classes very naturally gives rise to examples of normal edge-transitive
Cayley graphs for a characteristically simple group. These classes are labelled HA, HS,
HC, and TW, and groups in these classes have characteristically simple regular normal
subgroups; one simply takes any non-trivial orbital graph of a quasiprimitive group in
one of these classes. Groups in two of the remaining four classes, namely the classes
SD and CD, visibly contain characteristically simple regular subgroups which are not
normal, and consequently all orbital graphs for quasiprimitive groups in these two classes
will also be edge-transitive Cayley graphs for characteristically simple groups, but they
may or may not be normal edge-transitive.

Thus normal-edge transitive Cayley graphs for finite characteristically simple groups
are of particular importance, as is the relationship between the graphs in C(G, S) and
the original graph Cay(G, 5) for general finite groups G. The analysis presented in
this paper suggests that the following questions concerning the automorphism groups of
normal edge-transitive Cayley graphs deserve further attention.

QUESTION 1. Construct ion. Given a normal edge-transitive Cayley graph Cay(G, S)
(possibly undirected), and a group G with normal subgroup H such that G/H = G,
when is it possible to construct a Cayley graph Cay(G, S) with SH/H — S such that
there is a group Ar which normalises G, leaves H invariant, and is transitive on edges (or
unordered edges if Cay (G, 5) is undirected)? If there is such a graph, give a description of
the family of all such graphs. When is there such a graph which is a cover of Cay(G, S)?

QUESTION 2. Reconstruct ion. Given a normal edge-transitive Cayley graph
Cay(G, S), under what conditions is it determined by its quotient graphs in C(G, 5)?

The simplest cases of Questions 1 and 2 have been addressed by Pantazis Houlis in.
his MSc thesis [6]. There the case where G/H is cyclic of prime order, and G is Abelian
of order a product of two primes has been analysed completely. In Section 4, we give a
general answer for Question 1, which may be used to obtain explicit lists of possibilities
for individual groups or families of groups, see Theorem 5. As an application, we discuss
the strategy used by Houlis to obtain his classification results.

QUESTION 3. Characterist ically simple Cayley graphs. Give a useful description
of the family of connected normal edge-transitive Cayley graphs for finite characteristi-
cally simple groups.

There are many interesting examples of such graphs. For example, in [7] it was
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proved that all connected Cayley graphs Cay(PSL(2,<?),S) with \S\ = 2 are normal;
many of these are edge-transitive and hence are normal edge-transitive. (The connected
component containing 1Q of Cay(G, 5) is the collection of elements of G expressible as
a product s ^ . . • sT of elements Sj 6 S, and hence for a finite group G, Cay(G, 5) is
connected if and only if 5 is a generating set for G.) It would be interesting, for example,
to know whether every connected Cayley graph of valency 2 for a given nonabelian simple
group is normal.

QUESTION 4. Full a u t o m o r p h i s m g roup . For a normal edge-transitive Cayley graph
F = Cay(G, S), how much information about Aut(F) is contained in its subgroup
Aut(G; 5)? In particular when can we guarantee that G • Aut(G; 5) is not much smaller
than Aut(r)?

QUESTION 5. Edge- t rans i t iv i ty . What can be said about the structure of Cayley
graphs F which are edge-transitive but not normal edge-transitive?

These two questions seek information about the possible non-normality of edge-
transitive Cayley graphs. The complete graphs of prime power order discussed in Ex-
ample 1 provide examples of normal edge-transitive Cayley graphs for which the full
automorphism group is much larger than G • Aut(G;5) . We are seeking general condi-
tions which might guarantee that G- Aut(G; 5) is close to Aut(F). The following theorem
is a result of this type, and will be proved in Section 5. It was Cai Heng Li who suggested
that it might be true, and suggested a strategy for its proof.

THEOREM 1 . Let G be a nonabelian simple group, and suppose that T =
Cay (G, 5) is a connected undirected graph of valency 3. If T is normal edge-transitive as
an undirected graph, then F is normal, that is, Aut(F) = G • Aut(G; S).

2. DECOMPOSING CAYLEY GRAPHS AND UNDIRECTED GRAPHS

Let F = Cay(G, S) be a Cayley graph for a finite group G, let E(S) denote the set of
edges of F, and let TV be a subgroup of Aut(F) which contains G. Since G acts regularly
on vertices, we have TV = GTV0 and TVonG = {lc}, where TV0 is the stabiliser in TV of the
vertex l c 6 G. For g € G, let V(g) denote the set of vertices h such that (g, h) £ E(S),
that is, the set of out-neighbours of g in F. Then T(g) = {h : hg~l e S } = Sg, so in
particular, F(1G) = S.

Suppose that, in its action on E(S), the group TV has orbits E\,... , ET. Then the
sets Si := [h \ (1G>^) S Et}, for 1 < i ^ r, are the orbits of TV0 in F(1G)- Moreover,
for 1 ^ i ^ r, the Cayley graph Cay(G, Si) has edge set Et and admits TV as an edge-
transitive subgroup of automorphisms. Thus we may partition the edge set of Cay(G, 5)
in such a way that each part of the partition is the edge set of a Cayley graph for G
which admits the group TV acting edge-transitively.
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Moreover if Cay(G, 5) is undirected, that is, if 5 is symmetric, then we may also
partition the edge set of Cay (G, S) in such a way that each part of the partition is the edge
set of an undirected Cayley graph for G which admits the group N acting transitively
on unordered edges. We do this as follows. There is a natural pairing on the Ei and on
the Si. The set of edges paired with Et is denned as E\ := {(h, g) \ {g,h) € Ei}, and the
subset of 5 paired with Si is denned as S't := {h | (1G, / I ) G £,'}. It is straightforward to
show that E[ is an TV-orbit in E(S) so that E\ = £V for some i' with 1 ^ i' ^ r, and
hence that 5,' = S? is an ./Vo-orbit in 5 . Moreover we have the following.

LEMMA 1 . Suppose that Cay(G, 5) is undirected. Then, with the notation above,
for each i = 1 , . . . , r, the subset £y paired with Si is equal to S~l, and hence Cay(G,
Si U Si>) is undirected and N is transitive on its unordered edges.

P R O O F : Note g e 5,' if and only if (leg) 6 E[ which, by definition, holds if and
only if (g, 1Q) € Ei. Applying g~* € G to this pair, we see that the latter inclusion holds
if and only if ( le f f" 1 ) € Et, that is, if and only if g'1 e 5,-. Hence S't = S'1 (which is in
particular an 7V0-orbit in 5) , so T :— Si U 5J is symmetric and Cay(G, T) is undirected.
Moreover if (g, h) and [g',h') are edges of Cay(G, T) then one of (g',h') and {h',g') lies
in the JV-orbit on edges which contains (g,h), and hence some element of N maps the
unordered edge {(g', h'), (h',g')} to the unordered edge {(g, h), (h, <?)}. D

Clearly the paired orbit of E\ and the paired subset of 5- are equal to Et and Si
respectively. It is possible for E\ to be equal to Ei and in this case Si is symmetric,
Cay(G, Si) is undirected, and ./V is transitive on its edges. We have therefore proved the
following result.

THEOREM 2 . Let T = Cay(G, 5) be a Cayiey graph for a finite group G, and let
N satisfy G ^ N ^ Aut(F). Then we may partition the edge set ofT into edge sets
for Cayley graphs F i , . . . , Fr for G such that N is transitive on the edges of each of the
Fj. Moreover. ifF is undirected then we may alternatively choose each of the Fj to be
undirected with N transitive on its unordered edges.

Note that Theorem 2 holds for any subgroup N containing G. If, in Theorem 2, N
normalises G, then the graphs Fj are all normal edge-transitive Cayley graphs, or normal
edge-transitive as undirected graphs if F is undirected. In the next section we shall
examine certain quotient graphs of an edge-transitive Cayley graph F for a group G, and
we shall see that in order to guarantee that the quotient graphs are also edge-transitive
Cayley graphs it is appropriate to choose V̂ to normalise G.

In the remainder of this section we give a preliminary discussion of normal edge-
transitive Cayley graphs F = Cay(G,S). First we make some comments about equation
(1). The group Nsym(G){G) is called the holomorph of G, and is the semidirect product
G • Aut(G), where elements of Aut(G) have the natural conjugation action on the normal
subgroup G (that is, o~xgo = g" for g € G, a € Aut(G)), and also act naturally as
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permutations of G (that is, a : g i-> g"). The subgroup Aut(G) is the stabiliser of l c in

Nsym(G)(G). Thus, when G ^ N ^ JVA u t ( r ) (G), we have AT = GN0, where JV0 ^ Aut(G).

In particular, it is not difficult to prove that ATAut(r)(G) = G • Aut(G; 5 ) as in (1). It is

possible to characterise normal edge-transitivity in terms of the action of Aut(G; 5 ) .

PROPOSITION 1 . Let T = Cay (G ,5 ) be a Cayley graph for a finite group G

with S^%, and let N = G • No where No ^ Aut(G; 5 ) . Then

(a) N is transitive on edges if and only if S is an No-orbit;

(b) if F is undirected, then N is transitive on unordered edges if and only if

either S is an No-orbit, or S is the disjoint union of sets T and T " 1 where

both T and T " 1 are N0-orbits;

(c) F is normal edge-transitive if and only if Aut(G; S) is transitive on S, and

if F is undirected, then F is normal edge-transitive as an undirected graph

if and only if Aut (G;S) is either transitive on S, or has two orbits in S

which are inverses of each other.

P R O O F : We give a proof of part (b). The proof of part (a) is similar and easier,

and part (c) follows immediately from parts (a) and (b). As discussed above, No acts

on vertices by conjugation, and fixes setwise the set 5 of out-neighbours of l c Suppose

that N is transitive on unordered edges, and let s, s' € 5 . Then, ( l c s) and ( 1 G , s') are

edges of F so there is an element n = gno & N which maps the unordered edge containing

( l c , s) to the unordered edge containing ( l c , s ) , with g € G, no € No. If g = l c then

sn° = s'. On the other hand if g ^ lc then g must map s to l c , so g = s~l, and no maps

s"1 to s'. Thus s' lies in the iV0-orbit containing s or s"1.

Conversely, suppose that No is either transitive on iS, or has two orbits in 5 which

are inverses of each other. For any two unordered edges e, e', we may apply elements

of G to e, e' so that the images are unordered edges which contain (lc,s) and {lc,s'),

say, where s,s' € 5 . By our assumption on A'o, some element of iV0 will map ( 1 G , S ) to

( l c s') or ( 1 G , (s ' )" 1 ) . a n < i m t n e latter case further application of s' € G will map this

ordered pair to (s', l c ) . Thus e and e' lie in the same iV-orbit on unordered edges. D

Finally we make a few remarks concerning the connectivity of graphs occurring in

the decomposition process described above. Similar remarks apply in the undirected case.

R E M A R K 1. If Cay(G, S) is a connected Cayley graph, then in general the subgraphs

Cay(G,5i) defined above need not be connected. However it is straightforward to check

that each connected component of Cay(G, Si) will be isomorphic to the connected Cay-

ley graph Cay((5j) ,Sj ) , and that the latter graph admits a (possibly unfaithful) edge-

transitive action of the subgroup NN({Si)) of N. This means that in some circumstances

we may assume that the Cayley graphs are connected as well as normal edge-transitive.

However some care may be needed in extracting information about general Cayley graphs

from similar information about connected normal edge-transitive Cayley graphs.
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3. QUOTIENTS OF CAYLEY GRAPHS AND DIGRAPHS

For a graph F with vertex set V, and a partition V of V, the quotient graph Tp of F
with respect to V is defined to have vertex set V, with (p,p') an edge of T-p if and only
if there are vertices x € p and x' € p' such that (x, x') is an edge of F. If F is undirected
then clearly T-p will be undirected also.

Now consider the special case where F is a Cayley graph Cay(G,5). Here V is a
partition of the group G. Moreover the regular subgroup G of Aut(F) is our evidence
that F is a Cayley graph. The quotient graphs which will be of particular interest to
us are those which we know to be Cayley graphs because we know regular subgroups of
automorphisms of them which are related to the group G. The next result shows that
T-p will be the Cayley graph of a group associated with G precisely when V is the set of
cosets of a normal subgroup of G. For g € G let V(g) denote the part of V containing
the element g.

THEOREM 3 . Suppose that V is a partition of the vertex set G of the Cayley
graph T = Cay (G, S).

(a) Then G induces a group of automorphisms ofTv (such that, for x,g e G,
x : V(g) >-> V(gx)) if and only ifV is the set [G : H] of right cosets of a
subgroup H of G.

(b) IfV — [G : H] for some subgroup H, then the automorphism group induced
by G on T-p is regular if and only if H is normal, and in this case T-p =
Cay{G/H,SH/H).

(c) If V = [G : H] for some normal subgroup H, and if N = GNQ where
No < Aut(G;5), then N induces a group of automorphisms ofTp if and
only if H is No-invariant. Moreover, in this case, if N is edge-transitive
on F then N is also edge-transitive on Tp; and ifT is undirected and N
is transitive on the unordered edges ofT, then N is also transitive on the
unordered edges ofTp.

PROOF: Suppose that, for x,g e G, x maps V{g) to V{gx). Set H := V(lG).
Then x maps H to Hx and so V(x) = Hx, for all x € G. In particular, for h, h! 6 H,
V(h) = P(h') = V{\G) = H. Since h~l maps H = V(h) to P(hh~l) = V(lG) = H, it
follows that Hh~l — H, so h'h~l € H. Thus H is a subgroup of G and V is the set
of right cosets of H. Conversely if V is the set of right cosets of a subgroup H, so that
V(g) = Hg for g € G, then G induces an action on V by right multiplication and it is
straightforward to check that G preserves adjacency in Tp so that G induces a group of
automorphisms of T-p.

Now let H be a subgroup of G and V = [G : H]. The group induced by G on Tp is
regular if and only if the setwise stabiliser of V{lc) in G, namely H, fixes all parts of V
setwise, that is, Hgh = Hg for all g G G and he H. This is true if and only if H is normal
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in G, and in this case T-p is a Cayley graph for G/H. In this case, (Hg, Hg') is an edge
of Tv if and only if, for some h, h' € H, (hg, h'g') is an edge of T, that is h'g'(hg)~l 6 S,
which is equivalent to g'g~l € (h'^Sh C SH. Thus Tv = Ca.y(G/H,SH/H).

Suppose now that H is normal in G, so that T-p — Cay(G/H,SH/H), and let
N = GNo with No ^ Aut(G; 5). Then N acts as a group of automorphisms of T-p if and
only if No does. If No acts as a group of automorphisms of T-p, then No leaves invariant
V(lc) — H. Conversely, suppose that H is iVo-invariant, and that (Hx,Hy) is an edge
of Tv. Then {Hy)(Hx)~1 = Hyx~l e HS/H, say yx'1 = hs where he H, s G S, and
since both H and S are N0-invariant, it follows that, for n E No, (Hyx~l)n = Hhnsn =
Hsn € HS/H, and hence that (Hxn, Hyn) is an edge of TP. Thus we have shown that
N acts as a group of automorphisms of T-p if and only if H is No-invariant. Finally,
verifying the assertions about transitivity of N on edges and unordered edges of T-p is
straightforward. D

We can now prove the assertions made in the introduction about the family C(G, S) of
quotient graphs of a normal edge-transitive Cayley graph Cay(G, S) modulo Aut(G;S)-
invariant subgroups of G. A subgroup H of a group G is said to be characteristic if
H is invariant under the full automorphism group Aut(G). In particular characteristic
subgroups are normal, and the identity subgroup is a proper characteristic subgroup of
a nontrivial group G. A nontrivial group G is said to be characteristically simple if
its only characteristic subgroups are the identity subgroup and the group G. It is well
known, see for example [5, 2.1.4], that a finite group is characteristically simple if and
only if it is a direct product of isomorphic simple groups. Suppose that N = GN0 with
iV0 ^ Aut(G;S). Then each characteristic subgroup of G is 7V0-invariant. Consequently
if H is a maximal No-invariant subgroup of G, then G/H is characteristically simple
since if L/H is a characteristic subgroup of G/H, where H ^ L ^ G, then L is a
characteristic subgroup of G. Also, if if is a maximal No-invariant subgroup of G,
then G/H is a minimal normal subgroup of (G/H) • No where No is the subgroup of
Aut(G/H) induced by No. For N0-invariant subgroups L, H such that L ^ H < G,
there is a natural epimorphism G/L —¥ G/H which maps SL/L to SH/H, and therefore
induces a graph homomorphism from Cay (G/L, SL/L) onto Cay (G/i/ , SH/H). We shall
say that an element Cay(G/H, SH/H) 6 C(G, S) is N-minimal if H is a maximal No-
invariant subgroup of G. Thus Cay(G/H, SH/H) is N-minimal if and only if the only
graph homomorphism Cay(G/L,SL/L) —> Ca.y(G/H,SH/H) as above is the identity
homomorphism. Thus we have proved the following.

THEOREM 4 . Let T = Cay(G, 5), for a nontrivial Mite group G, and let N =
GN0, where No ^ Aut(G;S), be such that either N is edge-transitive on T, or T is
undirected and N is transitive on unordered edges. Then the family C(G, S) is non-
empty. Moreover,

(a) ifCa.y(G/H,SH/H) e C(G,S) is N-minimal, then G/H is characteristi-
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cally simple and is a minimal normal subgroup of(G/H) • NQ, where No is
the subgroup ofAut(G/H; SH/H) induced by No; and

(b) for every I > = Cay(G/L, SL/L) e C(G, S) there is at least one graph

homomorphism from T-p onto an N-minimal element ofC(G, S).

4. CONSTRUCTING NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS FROM QUOTIENTS

In this section we give a general answer to Question 1. Suppose that the following
hypothesis holds.

HYPOTHESIS 1. Let E = Cay(G, 5) be a Cayley graph for a finite nontrivial group G,
and let N = GNo, where No ^ Aut(G, S), be such that either (i) N is edge-transitive
on E, or (ii) E is undirected and N is transitive on the unordered edges of E. Suppose
further that G is a group with normal subgroup H such that G/H = G.

We wish to know if the following is true.

CONCLUSION 1. There is a subgroup TV = GNQ such that No ^ NAut(C)(H), and there
is a Cayley graph Cay(G, S) for G such that SH/H — S, and either N is edge-transitive
on Cay(G, 5), or Cay(G,5) is undirected and N is transitive on the unordered edges of
Cay(G, 5) , according as (i) or (ii) of Hypothesis 1 holds.

For Conclusion 1 to hold, there is a necessary condition on N which can be described
as follows. Observe that the natural action of Aut(G) on G induces a homomorphism
4> • NAut{G)(H) -> Aut(G). Set Mo := 0(/VAut(G)(#)) n Aut(E).

LEMMA 2 . Suppose that Hypothesis 1 holds. A necessary condition for Conclu-
sion 1 to hold is that GM0 is transitive on edges or unordered edges of E, according as
(i) or (ii) of Hypothesis 1 holds.

P R O O F : Suppose that such a subgroup N and graph Cay(G, 5) exist. Then, by
Theorem 3 (c), TV is transitive on the edges or unordered edges of E, according as (i) or
(ii) holds. The group induced by N on £ is G<t>(N0). Since <j>{N0) C Mo, it follows that
GMo is transitive on the edges or unordered edges of E respectively. D

We show below that the necessary condition of Lemma 2 is also sufficient, and we
describe the class of all normal edge-transitive Cayley graphs for G which correspond to
the given graph E. Recall that, by Proposition 1, if GMo is edge-transitive on E, then
Mo is transitive on 5, and if GMo is transitive on the unordered edges of S, then either
Mo is transitive on 5, or S = f U f~l with f an M0-orbit. For s e G and X ^ Aut(G)
we denote the X-orbit containing s by sx, that is, sx — {sx \ x 6 X}.

THEOREM 5 . Suppose that Hypothesis 1 holds. Then Conclusion 1 holds if and
only if GM0 is transitive on edges or unordered edges of £, according as (i) or (ii)
of Hypothesis 1 holds. Suppose then that this condition on GMo is satisfied, and let
Mo := 4>~1(M0) be the full pre-image of Mo.
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(a) Let TV0 be a subgroup of Mo such that G<f>(No) is transitive on edges or
unordered edges of E, according as (i) or (ii) of Hypothesis 1 holds. Let
s€G be such that Hs 6 5 . Let S = sNo if(i) holds, and S = sNo\J(sN°)-1

if (ii) holds. Then SH/H = 5, and t ie conditions of Conclusion 1 are
satisfied for N := GN0 and Cay(G, 5).

(b) All subgroups TV and graphs Cay(G, S) for which the conditions of Con-
clusion 1 hold can be constructed as in part (a).

PROOF: Suppose that GM0 is transitive on edges or unordered edges of E, according
as (i) or (ii) of Hypothesis 1 holds. Let TV0 and 5 be as in part (a). By the definition of
S and Proposition 1, it follows that SH/H = 5, that S is symmetric if (ii) holds, and
that the conditions of Conclusion 1 hold for TV and Cay(G, S). This proves part (a), and
also proves that the condition on GMQ in Lemma 2 is sufficient for Conclusion 1 to hold.

Conversely, suppose that Conclusion 1 holds for TV = GNQ and Cay (G,S). Then
SH/H — S. By Theorem 3 (c), TV induces a group of automorphisms of E, and hence
in particular, No ^ MQ. Also, by Theorem 3 (c), G<£(TV0) has the transitivity properties
required in part (a). By Proposition 1, S = sN° if (i) holds, and S = sN° U (sN°)-1 if (ii)
holds. Thus TV and Cay(G,S) can be constructed as in part (a). D

Houlis [6] used essentially the strategy described in this section to classify all TV and
Cay(G, 5) arising in Conclusion 1 in the case where G = ZP with p a prime, 5 ^ 0 , and
G = Zp x Zp, ZP2, or Zp x Zq for a prime q ^ p. In this case, by Example 2, E = F(p; a)
for some divisor a of p - 1, with p or a even if E is undirected. (Houlis [6] considered
only undirected Cayley graphs.)

Since E is connected, the disconnected examples Cay(G, 5) are isomorphic to \G\/p
copies of E. So we may assume that Cay(G, 5) is connected. Since all the groups G
considered are Abelian, the map a which inverts every element of G lies in Aut(G). If S is
undirected, and we are seeking symmetric subsets 5, we may assume that a 6 Aut(G; S).
Hence in all cases Ma is transitive on 5, and so Mo = Za.

In the cases G = Zp* and G = Zp,, there is a unique subgroup H such that G/H = G,
and hence H is invariant under Aut(G). Hence the classification gives all normal edge-
transitive Cayley graphs for these groups. In the former case, Mo = Zpa, and TV0 is
any subgroup of Mo for which 4>(N0) = Mo, that is, TV0 = Mo or Za. For each of these
possibilities Houlis showed that there is up to isomorphism only one possibility for 5 (as
we may always assume that 1 € 5). Thus we get two possible graphs Cay(G, 5) for each
E = T(p; a). This was proved by Houlis in [6, Chapter 7], and is the easiest of the three
cases. If G = Zp, with q # p, then Aut(G) ^ Zp_, x Z,_j, and Mo = Za x Z,_!. The
group TV0 can be any subgroup of Mo which projects onto Za in the first factor. In this
case the group G also has a unique quotient group isomorphic to Z9, and the normal edge-
transitive graphs Cay(G, 5) will have also a normal edge-transitive quotient isomorphic
to T(q; b) for some divisor b of q - 1, with q or b even if the graphs are undirected. Thus
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it is helpful to use a and b as parameters of the graphs Cay(G, 5). For a given a,b,

the subgroup No is a subdirect product of Za x Zb, and each such subdirect product
corresponds to a normal edge-transitive graph Cay(G, 5). The subdirect products of
Zo x Zb, and hence the connected normal edge-transitive Cay ley graphs for Zpq were
parametrised in [6. Chapter 8].

If G = Zp x Zp, then as Aut(G) = GL(2,p) is transitive on the p + 1 subgroups of
G of order p, we may assume that H = ((1,0)), and then we have

bd^O, d" = 1 (mod p) 1
I \ c " / J

and

Houlis [6, Chapter 6] showed that either Cay(G, S) is the lexicographic product F(p; a)[Kp],
or No is a subdirect product of Zp_i x Za. In the latter case, G has a second iV0-invariant
subgroup of order p, and hence a second quotient, say T(p;b). For fixed a,b, the group
iVo is a subdirect product of Zb x Za, and the possibilities for NQ and Cay(G, S) were
parametrised, and isomorphisms identified by Houlis in a similar way to the previous
case. For G = Zp x Zp, this classification gives all normal edge-transitive Cayley graphs
Cay(G,S) such that Aut(G;5) acts reducibly on G.

5. PROOF OF THEOREM 1

Let G be a finite nonabelian simple group, and suppose that F = Cay(G, 5) is a
connected undirected graph of valency 3, which is normal edge-transitive as an undirected
graph. Then 5 is symmetric of size 3, and 5 generates G. Let N = G • No, where
Af0 = Aut(G;5). It follows from Proposition 1 that 5 is an A'o-orbit, so in particular
|yvo| is divisible by 3. Also, the action of A^ on 5 is faithful, and hence |iV0| = 3 or 6.

Set A := Aut(F), and suppose that A i=- N (that is, that F is not normal). By
(1), N = NA(G). Since G is transitive on vertices, we have A = GA0, where Ao is the
stabiliser in A of the vertex 1G. Thus A^ < Ao- Since N, and hence also A, are transitive
on edges (which are ordered pairs of vertices), it follows from a result of Tutte, see [2,
Theorem 18.6], that |.4o| = 3 - 2 ' , where 1 < t ^ 4. In particular Ao is soluble, and
n:=\A: N\ divides 16.

Let M — n Na, the core of Â  in A. Then M is the kernel of the action of A by right

multiplication on the set Q := [A : N] of right cosets of N in A. Thus A/M is isomorphic
to a subgroup A of the symmetric group Sn- Now G is a characteristic subgroup of N.
If G were contained in M, then it would be characteristic in M and hence normal in A,
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and this contradicts our assumption. Hence G D M — 1, so M x G ^ N, whence \M\
divides 6 and n|MI2 ^ 16. The stabiliser N = N/M in A has a subgroup isomorphic to
G, and hence A is insoluble, so n = 8 or 16. Thus \A0\ = 24 or 48, Ao = S4 or 5 4 x Z2,
and /I is transitive on the 4-arcs or 5-arcs of F respectively, (see [2, 18C on p.26]). In
particular some element of Ao inverts the subgroup Xo of NQ of order 3.

Suppose first that 3 divides \M\. Then M has a characteristic subgroup X of order
3, and Xo is contained in X x G and projects nontrivially onto each factor. Since some
element of Ao inverts Xo, it follows that A inverts X. Hence the centraliser Ax :— CA{X)
has index 2 in A. Thus we have Nx := N n Ax = X x G and M C\ Ax = X. Now
\A : Ni\ = \A : G|/3 divides 16, and hence \At : Ni\, which is the length of the orbits
of Ai = AiM/M in Q, divides 8. Since Ax is insoluble we have \Ai : A x̂| = 8 . Since
the group induced by Ai on each of its orbits in Q, is insoluble, and since Ai has a
unique insoluble composition factor (since \Ai : G\ divides 16), it follows that G acts
nontrivially on each /Ij-orbit. A transitive permutation group of degree 8 with insoluble
point stabiliser must be primitive and, for example by [11, Table 1], must be one of
S8,^8> or AGL(3,2). Since the point stabiliser N\ = G is simple, Ai — A$ or AGL(3,2),
G = A7.or GL(3,2), and A = (Z3 x A8) • 2 or (Z3 x AGL(3,2)) • 2 respectively. In either
case |J4O| = 48, so Ao — S4 x Z2l and A is transitive on the 5-arcs of F. In the former
case, A has a normal subgroup Y — As which is vertex-transitive (because G < Y), and
the stabiliser of 1© in Y is Yo = YC\A0 of order \Y : G\ = 8. The group induced by Yo on
F(1G) is therefore a normal 2-subgroup of the group induced by Ao on r ( l c ) . Since the
latter group is 53, it follows that Yo acts trivially on F(1G)- This however contradicts the
connectivity of F. In the latter case, A has a normal subgroup Y = 7>\ which has more
than 2 orbits on vertices, and so by [9, Theorem 4.1], the quotient graph Fy modulo the
V-orbits is 5-arc transitive with |G | / | y | = 21 vertices. There is no such graph.

Thus \M\ is not divisible by 3. Since N does not have a normal subgroup of order
2, it follows that M = 1. Thus A = A, and the point stabiliser N has a simple normal
subgroup G of index 3 or 6. As in the previous paragraph, the only transitive groups of
degree 8 with insoluble point stabilisers are S8, As, and AGL(3,2), and none of these have
stabilisers of the required form. Hence n = 16, and therefore N — G-3. Suppose that A is
imprimitive. Then A ^ SuwrS« where uv = 16, and since A is insoluble, (u,v) — (2,8)
or (8,2). In the former case, the action of A on a set of 8 blocks of imprimitivity is
transitive and a stabiliser is isomorphic to N = G • 3 (since the kernel of this action is a
2-group). We have just shown that there are no such groups. In the latter case the action
induced on a block of size 8 has this property, and again we have a contradiction. Hence
A is primitive of degree 16. It follows from [11. Table 1] that A = Z\ • N and G = Ab.
Thus F has 60 vertices and so the normal subgroup Y = 7,\ of A is intransitive with more
than 2 orbits. Since n = 16, A acts transitively on the 5-arcs of F, and it follows from [9,
Theorem 4.1] that Y is semiregular on vertices. This implies that 16 divides 60, which is
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a contradiction. Thus Theorem 1 is proved.
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