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Abstract
Developing countries experience both household air pollution resulting from the use of
biomass fuels for cooking and industrial air pollution. We conceptualise and estimate
simultaneous exposure to both outdoor and household air pollution by adapting the Total
Exposure Assessment model from environmental health sciences. To study the relationship
between total exposure and health, we collected comprehensive data from a region (Goa) in
India that had extensivemining activity. Our data allowed us to apportion individuals’ expo-
sure to pollution inmicro-environments: indoor, outdoor, kitchen, and at work.We find that
higher cumulative exposure to air pollution is positively associated with both self-reported
and clinically- diagnosed respiratory health issues. Households in regions with higher eco-
nomic (mining) activity had higher incomes and had switched to cleaner cooking fuels. In
other words, household air pollution due to higher biomass use had been substituted away
for outdoor air pollution in regions with economic activity.
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1. Background
Nine out of ten people worldwide breathe polluted air, with one out of nine deaths in
2012 attributed to air-pollution related conditions (WHO, 2016a). Air pollution repre-
sents themost significant environmental risk to health. Developing countries experience
the worst of both household air pollution resulting from biomass fuels for cooking and
the air pollution resulting from industry and transport.While it is widely recognised that
outdoor air pollution levels in developing countries often exceed theWorldHealthOrga-
nization (WHO) guidelines, India among other developing countries suffers severely
due to household air pollution (HAP) arising primarily from biomass cooking fuels
(Smith et al., 2014; Jeuland et al., 2015b). Approximately 3 billion people, mostly in low-
income countries, continue to use solid fuels (fuelwood, animal dung and crop waste)
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for cooking and heating (WHO, 2014), contributing to both deforestation (Bailis et al.,
2015) and global climate change (Ramanathan and Carmichael, 2008).

India and China together constitute more than 50 per cent of the world population
still using solid fuels, with another 21 per cent living in Sub-SaharanAfrica (Jeuland et al.,
2015b). The concentrations of HAP in biomass fuel using households are even higher
than the high levels of urban outdoor air pollution. The typical 24-hour concentration
of PM10 (particulates smaller than 10 microns in diameter) in homes using biomass as
fuels may range from 200 to 5000 μg/m3 or more, depending on the type of stove, fuel
and housing (Ezzati andKammen, 2002; Laumbach andKipen, 2012). Since the pioneer-
ing work of Smith (1988) in epidemiology, it is believed that exposure to high levels of
HAP causes substantial health effects in developing countries (Naeher et al., 2007; Smith,
2013).

Exposure to air pollution results in a wide range of acute and chronic health outcomes
ranging fromminor physiological changes to death from respiratory and cardiac diseases
(Bascom et al., 1996; Dominici et al., 2003; Gauderman et al., 2015, 2007). Epidemio-
logical studies (Ezzati and Kammen, 2002; Salvi and Barnes, 2009; Lozano et al., 2012;
Mannucci and Franchini, 2017) have estimated that in addition to ambient (or outdoor)
air quality, there is robust evidence that HAP poses a serious threat to human health,
especially in low-income countries that still use biomass fuels as an energy resource. The
WHO estimated that air pollution was responsible for nearly seven million deaths every
year, with 4.3 million due to HAP (WHO, 2014). Women and young children bear a
disproportionately large burden of mortality, with 500,000 children under five that die
due to acute respiratory infections (Langbein, 2017).

In addition to exposure to outdoor and household air pollution, workplace exposure
could pose a potential risk to health.Millions of workers in a variety of occupations, such
asmining, construction and abrasive blasting, are exposed to high levels of airborne dust
particles. Inhalation of these particles may cause respiratory diseases such as bronchi-
tis, silicosis and pneumoconiosis. Prevalence rate or trends in occupational respiratory
problems in developing countries are mostly unknown, but the magnitude of the prob-
lem could be substantial (WHO, 2016b). The exposure to work-related pollution in our
study includes a source of pollution not studied often, which is mining.

Jeuland et al. (2015b), in their review of HAP at a global level, used a conceptual
model. Our attempt is to use a conceptual model in this specific, local context. In this
study, we conceptualize an integrated framework to estimating cumulative exposure to
air pollution over time and space that results in poor health, irrespective of whether it
originates in a stove or a mine. Pollution is not only caused by mining and associated
transport, but also by the combustion of fuels for cooking in the household.We estimate
the simultaneous exposure to both outdoor and household air pollution by measuring
pollutant concentrations and time spent in each location. We develop a model borrow-
ing from conceptual foundations in environmental health sciences and the economics
of households in developing countries. Specifically we draw from health production
models (Harrington and Portney, 1987), agricultural household models (Singh et al.,
1986), and a branch of environmental health sciences called Total Exposure Assessment
(Smith, 1993). Our analytical model examines the relationship between the cumulative
exposure to air pollution from outdoor and cooking sources of individuals in a rural
household in a developing country and their health. The empirical implementation of
this framework that incorporates both household and outdoor air pollution required
the use of a household questionnaire which included time budget questions, measure-
ment of air pollution concentrations in different micro-environments, health diaries
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for self-reporting ailments and doctor visits, and clinical measurements of respiratory
health.

Total exposure is the result of people spending time in different micro-environments
(for example, indoors, in the kitchen, and outdoors) with different levels of air pollu-
tion concentration levels. Pitt et al. (2006) stressed the importance of gathering data on
time allocation across different micro-environments. They used micro-data to examine
how household structure affects the distribution of cooking time among women in rural
Bangladeshi households, and the health effects of cooking time, as a proxy for exposure
to HAP. Our study takes it further by unpacking the micro-environments into outdoor,
indoor and work besides the kitchen. We chose a region where pollution due to iron ore
mining and transportation activity heavily contributes to outdoor air quality, to study the
relationship between cumulative exposure in different micro-environments and health.

The exposure is cumulative and over time leads to higher susceptibility to respiratory
problems. As we aimed to study the relationship of total exposure with air pollution,
we chose to study a region that characterises both household and outdoor air pollution
in India. We collected data from regions which had varying levels and lengths of mining
activity in Goa, India. In Goa, we studied this process in different mining clusters, with
different levels of cumulative exposure among the population. The paper firstly examines
the socio-economic correlates of time spent in polluting environments by individuals,
followed by the choice of cooking fuel by households. We unpack the contributors to
cumulative exposure, by apportioning it to different micro-environments, time spent
in these environments and the type of fuel used. We finally examine the relationship
between cumulative exposure to air pollution and respiratory health indicators.

We find that gender and age are associatedwith the time spent by individuals indoors,
in the kitchen and outdoors, with middle-aged women spending much time cooking.
We find that households in regions with higher mining activity had higher incomes
on average and a higher proportion of cleaner fuels (LPG) used for cooking. Active
mining clusters which experienced higher outdoor pollution levels had a significantly
lower proportion of households that used polluting biomass fuels for cooking. In other
words, HAP from biomass fuels is substituted with outdoor air pollution in regions with
higher economic activity. Finally, we find that higher cumulative exposure is associ-
ated with higher levels of morbidity: (a) reported health measures are respiratory sick
days and chronic respiratory sick days, and (b) observed clinical health measures are the
doctor’s diagnosis of the X-rays and lung function tests. Our use of twomethods tomea-
sure health indicators – self-reported health and clinical examination – strengthens the
validity of our results.

In section 2, we describe our study area and examine our data. In section 3, we develop
our theoretical model and present our results in section 4. We discuss the results and
conclude in section 5.

2. Study area and data
Our study area was the heavily iron oremined regions of Goa, India. Iron oreminingwas
an integral part of the state’s economy for almost fifty years and contributed to 60 per
cent of India’s iron ore exports at the time of the study (2003). Given the scale of iron ore
mining in Goa and the documented environmental issues, it was an ideal setting to study
total exposure to air pollution.1 For the purposes of this study, we divided the mining

1At the time of this writing, iron ore mining has been banned in Goa (since 2018) and is estimated to
have reduced the state GDP by approximately 25 per cent.
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Table 1. Sample size distribution across villages and clusters

Area Description Village Households Individuals

Cluster 1 Earliest mining Piligao 37 177

Cluster 2 Intensive mining Surla, Pale, Pissurlem 101 465

Cluster 3 Newmining Sanvordem, Codli-Kiriapal 85 401

Cluster 4 Mining corridor Curchorem 40 180

Cluster 5 Nomining (control) Rivona 47 188

Total 310 1411

regions of Goa into five clusters, including a control cluster with nomining activity at the
time of data collection between June 2003 and May 2004. These clusters were chosen to
have varying vintage and levels of mining activity. Cluster 1 was the mining region with
the earliest mining activity (over 40 years at the time of the study) but where the activity
had subsided relative to Cluster 2, the most intensively mined cluster, where mining had
begun approximately 25 years prior to this study. Cluster 3 was the region where mining
activity was relatively at its inception, having begun 15 years prior to the study. Cluster 4
was the mining corridor, that is, the region where trucks transported the ore from the
mines to the barges or the coast. Cluster 5 was the control region that was away from the
mining region and with no history of mining activity at the time of this study.

Table 1 presents the distribution of villages and the sample size of households and
individuals selected for the study. We first selected the regions to represent the levels of
mining activity across the state, and then randomly chose both the villages and (within
these villages) the households from the census of the households. We surveyed 310
households and 1411 individuals from these households in the five clusters for a detailed
assessment of individual and household characteristics, concentrations of pollutants
(PM10) in the micro-environments, and clinical and reported health measures.

The survey questionnaire had two modules: household and individual. Both ques-
tionnaires were conducted as a personal interview between the enumerator and the
individuals, including the head of the household, who also responded to the household
questionnaire. The questionnaireswere translated into the local language and pilot tested
before the actual surveys were carried out by trained enumerators (mostly local social
workers).

2.1. Household survey
The first survey in the sampled households was administered to the head of the house-
hold and included questions eliciting demographic information, household income,
housing characteristics (such as number of rooms, whether the kitchen has windows
or exhaust fan), fuel and stove types (see the online appendix for the questionnaires and
health diaries). Table 2 presents the summary statistics of the household characteristics
used in the empirical analysis.

2.2. Individual survey
The individual survey was conducted with each member of the household to gather
detailed information on smoking status, occupation, time spent in each micro-
environment and health status.We used the standardized respiratory health questions of
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Table 2. Summary of variables used in regressions

Variable Units N Mean Std. Dev.

Individual level variables

Age Years 1402 32.212 18.542

Male Dummy, 1=male 1405 0.506 0.50

Time spent indoors Hours 1411 14.289 3.54

Time spent in kitchen Hours 1411 1.543 2.163

Time spent outdoors Hours 1411 6.776 4.012

Time spent working Hours (across age) 1411 0.592 2.198

Education years Years 1148 7.517 4.285

Avg. 24- hr exposure to PM10 μg/m3 1409 278.835 117.708

Cumulative exposure PM10 Millionμg/m3 hours 1401 70.863 56.574

Respiratory sickdays Days in last 3 months 1288 5.67 24.34

Chronic resp. sickdays Days in last 3 months 1288 3.51 18.552

Individuals’ clinical health measurements (adult sub-sample)

X-ray diagnosed symptom Dummy, 1= diagnosed 769 0.110 0.313

PFT symptom Dummy, 1= diagnosed 668 0.042 0.201

Household level variables

Pucca House Dummy, 1= pucca 310 0.299 0.456

Exhaust fan Dummy, 1= use exhaust fan 310 0.503 0.501

Separate kitchen inside Dummy, 1= sep. kitchen 310 0.610 0.489

Kitchen outside house Dummy, 1= kitchen outside 310 0.177 0.383

Window in kitchen Dummy, 1=window in kitchen 310 0.168 0.374

No. of rooms in the house Number 310 4.922 7.933

LPG stove Dummy, 1= use LPG stove 310 0.626 0.485

the BritishMedical Research Council. For children (those aged 15 or below) the individ-
ual surveys and time activity information was collected from their mothers (or primary
caretakers). The surveys used the recall method to ascertain the specific health problems
in the last three months that were self-reported by the individuals, including doctor vis-
its and fees. Given the focus on respiratory health in this study, illnesses reported in the
individual survey were classified into three groups by the cardio-respiratory specialist,
namely: (1) upper respiratory (illnesses and symptoms related to the upper respiratory
tract that could be linked to air pollution, but not necessarily prolonged exposure); (2)
lower respiratory (chronic illnesses related to the lower respiratory tract that are likely
to occur as a result of prolonged exposure to air pollution); and (3) all other illnesses. In
our main estimations, we use the sick days attributed to upper respiratory illness as res-
piratory sick days and the sick days from lower respiratory illness as chronic respiratory
sick days (Cooper et al., 2006).

The time budget (or time spent in the various micro-environments) of these indi-
viduals in a day was collected through the individual questionnaire. Responses were
further verified by a field assistant when making household measurements. In addition,
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subjects in each household were provided health diaries (in Marathi, the local language)
and asked to record details on type and days of illness, visits to the doctor, doctor fees,
work lost and cost of treatment. Table 2 summarizes the key individual level information
collected.

2.3. Air pollution measurement
The air pollution monitoring component of the study measured the exposure to both
outdoor and household air pollution of the individuals from the sampled households.
Environmental monitoring and the time budget survey of individuals for the exposure
assessment were carried out for the study (betweenMay 2003 and April 2004). A prelim-
inary surveywas conductedwhich aided in identifying the essentialmicro-environments
necessary for estimating daily exposure. Four micro-environments were selected for the
study: (1) indoor or living room, (2) cooking area during cooking, (3) outdoor or ambi-
ent, and (4) work area (including mining workers and truck drivers). The assessment of
daily exposure entailedmeasuring concentrations of PM10 (respirable suspended partic-
ulate matter or RSPM) in these micro-environments. RSPM in cooking and living room
micro-environments was collected on a conditioned and pre-weighed filter paper using
low volume universal pump (SKC, UK). In the living room, sampling was done for a
period of 24 hours in all the sampled households. In the cooking micro-environment,
monitoring was carried out for a subset of households during the cooking period
(covering 2 or 3 meals cooking in a day) which typically was about 2 to 3 hours in a day.

Outdoor air samples were collected through high volume air samplers (Envirotech,
India). The outdoor concentrations were measured in three locations in each of the four
mining clusters. One location was chosen for outdoor concentration measurement in
the control cluster. The sampling in each location was continuous for three days in two
seasons, and the filters were replaced every 8 hours. After sampling, RSPM levels were
calculated by the gravimetric method (difference in the weight of filter paper after sam-
pling divided by volume of air sampled). The daily 24-hour average concentration was
derived for each cluster from this data. RSPM sampling in the workplace was carried out
for working hours in a day (about 8 hours) with a low volume personal air sampler
(SKC, UK) for a sub-sample of 18 subjects working in mining-related occupations.

2.4. Health tests and diagnosis
The clinical measures were conducted by trained technicians in local clinics for a sub-
sample of individuals from the sampled households. We collected data on the chest
X-rays for 769 adults (900 including children) and pulmonary lung function test (PFT)
for 668 adults (782 including children). The chest X-ray and PFT reports were analyzed
and diagnosed by a cardio-respiratory health specialist for chronic respiratory symp-
toms. The X-rays are expected to highlight the impacts of long-term exposure while PFT
measures lung efficiency/capacity at the time of the test. We use the specialist’s interpre-
tation of the reports by creating dummy variables: X-ray symptom (equals 1, if diagnosed
“not normal”) and PFT symptom (equals 1, if PFT results were diagnosed as “not okay”).
The X-ray reports were provided to the subjects after the radiologist’s and specialist’s
diagnosis.2

2Subjects with diagnosed or potential problems were referred to their local doctors in the area for follow-
up and required treatment.
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Table 3. Fuel usage, income and concentration across clusters (%)

Clusters

Fuel and kitchen type (%) 1 2 3 Corridor Control Total

Biomass only (%) 35 26 20 7.5 79 31

LPG only (%) 11 19 42 68 2 28

Biomass and LPG (%) 46 43 33 15 9 32

Separate kitchen inside (%) 46 69 77 90 2 61

Kitchen outside (%) 14 7 8 2.5 79 18

Mean income (Rs. per month) 6505 4333 4692 6194 3470 4805

Outdoor concentration (μg/m3) 294 389 301 528 71 323

Indoor concentration (μg/m3) 268 250 279 283 190 256

Cooking concentration (μg/m3 ) 515 447 361 247 467 408

N 37 101 85 40 47 310

Note: Indoor concentration was measured in each household; outdoor in three locations per cluster.
Cooking concentration was measured in a sub-sample for each fuel type which was used to estimate the household con-
centration based on the fuels used. The fuel use percentages do not add up to 100% as some households did not have a
kitchen (or do not report cooking).

Table 2 includes summary statistics of the individual characteristics, average 24-hr
pollution exposure to PM10, respiratory sick days, clinical tests and medical diagnosis.
In our sample, the mean age was 32 years and 50 per cent were male. Eleven per cent of
the X-ray reports were diagnosed with respiratory problems and just over 4 per cent had
below normal PFT measurements.

2.5. Fuel usage
In the overall sample, the fuel categories of biomass only, liquefied petroleum gas (LPG)
only, and biomass and LPG account for almost equal proportions (table 3). However,
there are sharp contrasts in the shares of fuels among the clusters. As expected, the con-
trol cluster, which is a relatively less connected region, has a very high proportion of
households (79 per cent) that use biomass fuels only. In contrast, the corridor cluster,
with better road connectivity and where we would expect the highest LPG availability,
has the highest proportion of LPG only users (68 per cent). Clusters 1, 2 and 3 exhib-
ited lower LPG usage than the corridor (but higher than the control region) and lower
biomass only use compared to the control cluster (but higher than the corridor). The
control cluster also had the highest number of kitchens located outside the house, while
the corridor had the least. Themean income in the corridorwas the highest (lowest in the
control region) and the corridor correspondingly has the highest percentage of separate
kitchens inside the household (the control the lowest). The income distributions among
clusters observed in table 3 partly explain the fuel usage patterns, where the households
with higher income (mining activity regions) had higher usage of cleaner fuels compared
to the control cluster which had the lowest mean income.3

3Measuring income particularly of rural households is rife with issues (Ravallion, 1999) and we therefore
include pucca house dummy as an additional control in our estimations.
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Table 4. Illustration of total exposure calculation for an individual

Concentration Time 24-hr exposure
Micro-environment (μg/m3) (hours) (μg/m3 hours)

Indoor 132 12.5 1650

Cooking 740 3 2220

Outdoor 219 8.5 1862

Workplace Not applicable 0 0

Total 24 5732

Table 3 also shows that the outdoor air quality (discussed in detail in the next subsec-
tion) was the worst in the corridor, more than seven times higher than the control. Due
to high LPG usage, the cooking concentration is the lowest among households in the
corridor. Note that the indoor concentration will be affected both by outdoor air quality
(due to infiltration) as well as cooking. The high concentration of PM10 indoors among
households in the corridor region (despite having the lowest cooking concentration)
suggests that infiltration of pollutants from the outside can affect indoor air quality.

2.6. Air quality and exposure
We construct the total 24-hr exposure for each individual by computing the exposure
in each micro-environment (share of the day spent in the micro-environment × con-
centration in the micro-environment) and summing it over all the micro-environments.
We measured outdoor at the village level and indoor in the living area of all households,
while cooking measurements from a subset were used with information about the fuel
choice in the household to get the cooking concentration.

Table 4 illustrates the data and calculations for one of the individuals (anonymized)
in the sample. We multiply the concentration in each micro-environment by the time
spent by the individual in each micro-environment in a day, to arrive at the 24-hr expo-
sure (see the last column in table 4). We then divide the total 24-hr exposure by 24 hours
to arrive at the average 24-hr exposure. Thus, the units of concentration and total expo-
sure (this is a weighted average of concentrations, with weights being the fraction of time
spent in each micro-environment) are the same, μg/m3. Although the workplace expo-
sure was measured for those working in the mines, mining offices or driving, for most
individuals in the sample, workplace exposure was not applicable (as in the case of the
individual in table 4).

The average 24-hr exposure for this individual is equal to:∑
m Concentrationm × time spentm

24
= 5732/24 = 239μg/m3.

2.7. Cumulative exposure
The cumulative exposure to air pollution is the total 24-hr exposure to pollutants
summed up over the years of residence for the individual in the region4 as:

Cumulative exposurei = total 24-hr exposurei × 365× exposure yearsi, which cap-
tures the accumulated exposure to air pollution over the years for each individual living

4This can be lower than the age of the individual if the family moved to this region from another region.
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Figure 1. Relationship among concentrations (μg/m3) and cumulative exposure (millionμg/m3 hours). Top row
shows distributions of outdoor, indoor concentrations and cumulative exposure; bottom row shows scatterplots.

in a particular environmentwhich determines respiratory health. Therefore by construc-
tion, time spent in polluting micro-environments and their concentration will have a
positive relationship with cumulative exposure. Biomass fuel usage will directly enter
cumulative exposure via higher concentrations in the kitchen and indoor environment
and correspondingly affect health (Das et al., 2018; Jeuland et al., 2018; Pattanayak et al.,
2019).

Figure 1 captures the key argument of this paper. In the top panels of figure 1, we
see that the distribution of outdoor concentration is very different from that of indoor
concentration and cumulative exposure. In the far left scatter plot in the bottom panels
of figure 1, in which we have plotted indoor concentration on the y-axis and outdoor
concentration on the x-axis, we can see that there is a very low correlation between the
two. Some observations are characterised by high values of indoor concentration and
low values of outdoor concentration. This reinforces the claim that using either as a
measure of exposure is inadequate. Outdoor concentrations only vary by cluster, and
would be particularly inadequate, though theirmeasurements would be reasonably accu-
rate. Studies which focus on ambient (outdoor) concentration or household (indoor) air
pollution in isolation may also fail to document the relationship between outdoor and
indoor air quality in such a setting. In the other two scatterplots in the bottom panels of
figure 1, we see that cumulative exposure has a weak positive relationship with outdoor
concentration and a relatively stronger positive relationship with indoor concentration.

Table 5 presents the two sample t-test for difference of means in exposure for the
four mining clusters compared to the control cluster. Outdoor exposure in column (1)
is higher in all the clusters (with mining activity) compared to the control region (with
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Table 5. Difference in individuals’ exposure to PM10 (vs. control)

(2) (4)
(1) Indoor (3) Average 24-hr (5)

Outdoor μg/m3 Cooking millionμg/m3 hours Cumulative

Cluster 1 75.63*** 41.73** 5.377 122.8*** 28.99***
(7.303) (18.82) (5.085) (21.16) (7.564)

Cluster 2 97.29*** 34.60*** 2.842 137.6*** 30.21***
(6.522) (12.96) (3.892) (14.28) (5.095)

Cluster 3 62.69*** 63.01*** −9.229** 127.2*** 17.97***
(3.433) (12.85) (3.704) (13.09) (5.504)

Corridor 118.5*** 70.91*** −14.39*** 194.1*** 46.73***
(7.303) (23.18) (4.072) (22.44) (9.882)

Constant 18.25*** 104.0*** 29.65*** 157.1*** 46.15***
(0.814) (8.519) (3.251) (8.469) (3.882)

Observations 1401 1401 1401 1401 1401

Standard errors in parentheses; **p < 0.05, ***p < 0.01

Table 6. Time spent in micro-environments (hrs/day) and exposure

Mean

Child Adult

Male Female p-values Male Female p-values

Indoor 14.65 15.10 0.285 13.10 15.23 0.00 ∗∗∗
(3.50) (3.55) (2.99) (3.62)

Outdoor 8.43 7.65 0.037∗∗ 8.38 4.54 0.00∗∗∗
(3.29) (3.02) (4.08) (3.18)

Kitchen 0.27 0.63 0.01∗∗ 0.27 3.38 0.00∗∗∗
(0.978) (1.44) (1.01) (2.08)

At work − − − 0.99 0.38 0.00∗∗∗
(2.78) (1.78)

Average 24-hr 264 300 0.007∗∗∗ 280 277 0.673
exposure (110.13) (140.48) (107.08) (121.00)

N 152 132 559 562 1405

Standard deviation in parentheses; ∗∗ p < 0.05, ∗∗∗ p < 0.01.

no mining activity), with Cluster 4 (the mining corridor) recording the highest outdoor
exposure. On the other hand, Cluster 3 and the Corridor have lower cooking exposure
(column (3)) compared to the control region, due to a higher proportion of LPG usage.
The average 24-hr exposure in column (4) is a weightedmeasure of exposure to different
micro-environments and is higher for all four clusters compared to the control.

Table 6 reports the time spent in micro-environments as elicited in the individual
recall survey. The field assistants were able to verify the reported time spent during the
household air quality measurements, but this would not completely address the issues
with recall methods. In the empirical results section, we discuss how we try to address
this concern.

Men (adult males) spend 8.4 hours outdoors on average, and women (adult females)
about half of that. Time spent by women in the kitchen on average is about 3.4 hours,
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while men on average spend less than half an hour. And yet, on average, the 24 hour
average exposure is 280 micrograms per cubic metre for males and 277 for females, so
total exposure balances out on average, in line with this paper’s argument that we need
to consider micro-environments together rather than separately.

3. The model
We now discuss how we conceptualize our theoretical model that accounts for expo-
sure to air pollution across micro-environments. Jeuland et al. (2015b) use a conceptual
model to help explain and think about issues in their excellent review of global HAP.We
develop a model drawing on health production models (Harrington and Portney, 1987),
agricultural householdmodels (Singh et al., 1986), and a branch of environmental health
sciences, Total Exposure Assessment (TEA) (Smith, 1993). In health production mod-
els, health is an outcome of a production function. Agricultural household models try to
model consumption and production activities of rural households in developing coun-
tries in the same model. TEA in the context of air pollution examines pathways from all
sources of air pollution to exposure by humans.

We view the household model as an abstraction that captures key elements of HAP
in Goa.5 There is an obvious element of simplification and we note caveats at different
points.

3.1. Theoretical model
We examine a household which consists of a child, an adult male and an adult female.
We assume that a household aims to maximize its utility (U) which is a function of
sickness (S) experienced by the child (indexed by C), the adult male (indexed by AM)
and the adult female (indexed by AF), and non-food consumption (CNF), so U =
U(SC, SAM , SAF , CNF).

We assume that sickness is a function of total exposure to air pollution (E ), con-
sumption of cooked food (CF), doctor-visits (D) and individual characteristics (Z), so
Si = Si(Ei, CFi, Di;Zi), where i = C, AM, and AF.

The kinds of sickness that result from poor nutrition and from household pollution
are different. The knowledge of or beliefs in causes of sickness of different sorts is a key
variable that influences the household’s actions (Jeuland et al., 2015b).

Total exposure is aweighted sumof exposure in differentmicro-environments, which
in turn, are equal to the product of time spent in these micro-environments (t) and
the concentrations of air pollution in these micro-environments (e). We consider four
micro-environments on which we have data: outdoors, indexed by o; cooking, indexed
by c; work, indexed by w; and indoors, indexed by i,

Ei = tioeo + ticec + tiwew + tiinein.
While the time spent in different micro-environments is person specific, the con-

centrations are not. To simplify, we assume that the time spent by the child in the four
different micro-environments is the same as that of the adult female.

In our sample, almost all households cook with LPG or biomass. We take tic, the time
in the cooking micro-environment, to be the sum of tlpgc and tbc , the time cooking with
LPG and biomass, respectively. This is an approximation, since it is possible that LPG

5For an excellent review of studies on HAP, see Jeuland et al. (2015b) who use a conceptual model to
help explain and think about the issue.
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may be used with biomass at the same time. The key point though is that greater use of
LPG is likely to reduce the amount of biomass burnt.

In our sample, cooking is mainly done by women, and so we assume that the adult
female does the cooking. The concentration of air pollution in the cooking environ-
ment (ec) is a function of the concentration outdoors (or ambient concentration) and
the length and type of cooking, so

ec = ec(t
lpg
c , tbc , eo).

We note that the concentration outdoors will be influenced by the total cooking
pattern in a village; most notably the contrast will be between a village where every
household uses LPG only and a village where every household uses biomass only.

Similar to the concentration of air pollution in the cooking environment, the con-
centration indoors will depend on time cooking and the concentration outdoors, such
that

ein = ein(t
lpg
c , tbc , eo).

The total amount of food cooked in the household is a function of the time spent
cooking:

CF = CF(t
lpg
c , tbc ). (1)

Equation (1) may give the impression that more cooked food requires more cooking
time irrespective of fuel, but LPG cooking can reduce cooking time compared to biomass
cooking.

Ci
F , the amount of food consumed by each family member, is assumed to be some

norm-based share (θ i ∈ [0, 1]) of the total amount of food cooked in the household.
The amount of raw food consumed (RF) is assumed to be a linear function of the food
cooked, RF = η1CF , where η1 is a constant; this is an approximation. With LPG we can
quickly vary the intensity, from off to medium and high, but with biomass burning, it is
more like a batch process. Similarly, the amount of fuel used (q) is assumed to be a linear
function of the time spent cooking:

qLPG = η2t
lpg
c , and qB = η3tbc .

We also assume that a certain proportion (η4 ∈ [0, 1]) of the biomass fuel is gathered
and we assume that it is the adult female who gathers biomass fuel, qBG = η4η3tbc .

The time spent in gathering this fuel (tgc ) is proportional to the quantity to be gathered.
This is an approximation; for example, the same person may gather the same amount of
fuel from different locations at different times, taking different time to gather the same
amount of fuel, because the gathering of fuel may be combined with some other activity,
(tgc ) = η5η4η3tbc .

We assume, based on examining our data (see table 6 and associated discussion) that
the amount an individual works is predetermined by the occupation of the person. In
other words, the amount an individual works is not influenced bymarginal cost and ben-
efit considerations, and for this model, is predetermined. We assume that after cooking,
working and gathering biomass, the adult female divides her remaining time in some
given proportion (αAF) between the indoor (tAFin ) and outdoor micro-environments.
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Total time outside (tAFo ) is equal to remaining time spent outside and time gathering
biomass,

tAFin = αAF(TAF − tAFc − tAFw − tAFg ),

tAFo = TAF − tAFin .

Since the adultmale does not cook or gather biomass, the expressions for time indoors
and time outdoors are different in the case of the adult male,

tAMin = αAM(TAM − tAMw ),

tAMo = TAM − tAMin .

The household maximizes utility subject to the following budget constraint:

tAMw Pw + tAFw Pw = PNFCNF + PrRF + PD
∑

Di + qBPPB + qLPGPLPG,

by choosing CNF , t
lpg
c , tbc and Di.

The first-order conditions are (denoting the Lagrange by L):

∂L
∂CNF

= ∂U
∂CNF

+ λ[−PNF] = 0. (2)

Equation (2) is the usual consumer theory condition for consumption and says that the
marginal utility from an additional unit of consumption should equal the marginal cost
in utility terms, which is the product of the multiplier and the price.

∂L
∂Di = ∂U

∂Si
∂Si

∂Di + λ[−PD] = 0. (3)

In equation (3) the marginal benefit of spending a unit of money on doctor visits of the
ith person in the household is themarginal utility of lower sickness of the ith person times
the marginal product (in terms of lower sickness) from an additional doctor visit. The
marginal cost is the price of a doctor visit multiplied by the multiplier, so that

∂L

∂tlpgc
=

∑ ∂U
∂Si

[
∂Si

∂Ei
∂Ei

∂tlpgc
+ ∂Si

∂Ci
F
θ i

∂CF

∂tlpgc

]
− λ

[
η2PLPG + η1

∂CF

∂tlpgc
Pr

]
.

A change in time spent cooking with LPG or biomass is associated with higher emis-
sions and therefore higher exposure and sickness (of all members), and higher cooked
food and therefore lower sickness. It will also entail greater cost concerning the gath-
ering of biomass or expenditure on purchase of fuel and raw food. The household will
have imperfect information about the effects of cooking on exposure. Moreover, cook-
ing affects women and children more than adult males since they stay in the cooking
micro-environment:

∂L
∂tbc

=
∑ ∂U

∂Si

[
∂Si

∂Ei
∂Ei

∂tbc
+ ∂Si

∂Ci
F
θ i

∂CF

∂tbc

]
− λ

[
(1 − η4)η3PB + η1

∂CF

∂tbc
Pr

]
.
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Achange in time cooking has several effects on exposure, since it affects the time spent
in different micro-environments (in the case of the adult female and the child) and the
concentration in the indoor and cooking micro-environment. So, for example,

∂EAF

∂tlpgc
= −eo + ec + ∂ec

∂tlpgc
tc − ein + ∂ein

∂tlpgc
tAFin .

Our model is static for simplicity. However, in reality, what we witness today is the
outcome of the past. Mining tends to follow a life-cycle, with the initial expansion of
mining and economic activity in an area finally leading to a slowing down of mining as
new areas are found and exploited. During this mining life-cycle, the economic context
and the environment (of which air pollution is one indicator) of the households change.
Moreover, human health is affected by cumulative exposure, especially in the case of
chronic air pollution-related ailments. In ourmain estimations, we study the association
between cumulative exposure and health.

4. Empirical analysis and results
Following from the theoretical model, our primary objective is to estimate the rela-
tionship between cumulative exposure to air pollution and measures of respiratory
health. Secondly, we characterize the socio-economic associations of time spent in
micro-environments with different pollutant concentrations, and of fuel-choice. We
also estimate the relationship between fuel usage and concentrations in the micro-
environments. We model our primary relationship between cumulative exposure to air
pollution and respiratory health using the following regression equation:

Yihc = β × Cumulative Exposureihc + �′ × Iihc + 	′ × Hhc + λc + εihc, (4)

where the dependent variable is the outcome of interest for individual i, in household h,
located in cluster c. The parameter of interest β is the coefficient on cumulative exposure
levels. In equation (4), Iihc refers to the individual level attributes including age, gender
and education;Hhc refers to household characteristics like income. Theλc represent clus-
ter fixed effects. The dependent variables are either reported health measures or clinical
health measures. Respiratory sick days (upper respiratory illness) and chronic respira-
tory sick days (lower respiratory illness) are the reported measures of respiratory health,
while the specialist’s diagnosis of respiratory issues based on the X-ray report and the
lung function tests are our measures of observed clinical health. We use a reduced form
estimation approach where the choice of control variables is guided by the theoretical
model. We cluster standard errors in our estimates at the household level.

4.1. Time in micro-environments
We begin by estimating the associations of time spent in micro-environments (reported
in table 7), where we include biomass fuel usage and interact its usage with the female
dummy along with the individual and household characteristics, as we discussed in
theory (where we assumed that only females gathered biomass). The individual level
attributes are age, age-squared, gender and never-smoker (dummy), and the household
characteristics include the number of adults and children by gender and whether or not
the house was pucca (constructed with solid materials as a permanent dwelling).
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Table 7. Time spent in micro-environments

(1) (2) (3) (4)
Indoor Outdoor Kitchen Work

Age −0.207*** −0.020 0.137*** 0.029**
(0.0251) (0.0247) (0.0103) (0.0119)

Age-squared 0.003*** −0.000 −0.002*** −0.000
(0.000) (0.000) (0.000) (0.000)

Male (dummy) −2.175*** 3.955*** −3.053*** 0.615***
(0.222) (0.251) (0.0994) (0.140)

Education (years) −0.001 0.049 −0.034*** 0.079***
(0.0275) (0.0304) (0.0121) (0.0191)

Biomass fuels only 0.278 −0.626 0.608*** −0.643***
(0.338) (0.442) (0.168) (0.216)

Biomass× female −1.273*** 2.363*** −1.297*** 0.832***
(0.479) (0.549) (0.350) (0.281)

Pucca house (dummy) −0.137 0.133 −0.114 0.086
(0.211) (0.244) (0.0764) (0.150)

Cluster 1 −0.224 1.795*** −0.121 −1.005***
(0.610) (0.469) (0.209) (0.319)

Cluster 2 −0.265 1.469*** 0.111 −1.034***
(0.529) (0.439) (0.175) (0.315)

Cluster 3 0.242 0.971** −0.225 −0.591*
(0.500) (0.446) (0.170) (0.336)

Corridor 0.776 0.714 −0.105 −0.508
(0.531) (0.528) (0.185) (0.402)

Constant 17.71*** 3.884*** 1.283*** 0.306
(0.718) (0.646) (0.240) (0.466)

Observations 1169 1169 1169 1169

OLS estimations at individual level; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Standard errors in parentheses and clustered at household level.
Other controls: number of adults and children (by gender).

Table 7 presents the results of regressions on the dependent variables of time spent:
indoors, outdoors, in the kitchen and at work.We control for cluster level differences by
including cluster dummies in our estimation. For time spent in the kitchen, we examine
mean time spent in the kitchen by adults in the household. The time adults spend in
the kitchen is expected to depend on the composition of adults and children, since one
person can cook for several members. We therefore include the number of adults and
children in the household by gender in these regressions.

Table 7 shows that age and gender are statistically significant regressors. Age is related
negatively to time spent indoors, shown in column (1), but positively with time in the
kitchen, shown in column (3). Males spent less time indoors and in the kitchen and
more time outside the house or working. Age and education have a positive relationship
with time spent working (column (4)). We call the reader’s attention to the positive rela-
tionship between biomass fuel usage and time spent in the kitchen (column (3)). Also
noteworthy is the positive relationship between biomass usage × female (dummy) on
time spent outdoors (which is consistent with the assumption in our model that females
spent time gathering biomass fuels).
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Table 8. Household fuel choice: biomass and LPG

Biomass only LPG only

(1) (2) (3) (4)
OLS Probit OLS Probit

Pucca house (dummy) −0.166** −0.182*** 0.267** 0.225***
(0.0521) (0.206) (0.054) (0.039)

Cluster 1 −0.411** −0.313*** 0.110 0.207
(0.0909) (0.078) (0.0865) (0.129)

Cluster 2 −0.503** −0.388*** 0.159* 0.289***
(0.0726) (0.058) (0.0690) (0.109)

Cluster 3 −0.550** −0.433*** 0.378** 0.458***
(0.0751) (0.059) (0.0714) (0.104)

Corridor −0.654** −0.590*** 0.587** 0.599***
(0.0895) (0.088) (0.0851) (0.106)

Constant 0.885** 1.141** −0.00103 −2.166**
(0.0753) (0.264) (0.0716) (0.449)

Observations 308 308 308 308

Estimations at household level; probit marginal effects reported in columns (2) & (4).
Standard errors in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Other controls: number of adults and children in the household (by gender).

4.2. Choice of fuel
In table 8, we present the relationship between household characteristics and their choice
of fuel, biomass or LPG. The unit of observation here is the household (N = 308) and
we estimate a linear probability model.6 As a robustness check, we estimated the models
with a binary dependent variable using a maximum likelihood method and find similar
results (see columns (2) and (4) in table 8).

The dependent variables in table 8 are householdswho used biomass or LPG for cook-
ing. We include the cluster dummies in the specifications. The regressor pucca house
(dummy) is negatively associated with biomass only used for cooking – columns (1) and
(2) – and positively for LPGonly – columns (3) and (4), as pucca house proxies for higher
income households. As expected, all four (mining-related) clusters are negatively asso-
ciated with biomass only used for cooking compared to the control cluster. Except for
Cluster 1, the other three mining clusters are more likely to be using LPG for cooking.

4.3. Health indicators
We now examine the association between cumulative exposure and health. In table 9,
we present the results for both reported health indicators (respiratory and chronic
respiratory sick days) and clinically-diagnosed respiratory health (expert’s diagnosis
of the X-ray and lung function test (PFT)). The respiratory sick days (e.g., laryngitis,
sinusitis, pharyngitis) and chronic respiratory sick days (e.g., asthma, bronchitis, wheez-
ing, emphysema) were self-reported by the participants. According to clinical experts,

6In doing so, we have followed Angrist and Pischke (2008) recommendation of using the Linear Proba-
bility Model as they argue it does a good job of estimating the marginal effects even when the conditional
expectation function is non-linear.
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Table 9. Cumulative exposure and health indicators

Reported health (sickdays) Clinical health issues (diagnosed)

Respiratory Chronic respiratory X-ray PFT
(1) (2) (3) (4)

Cumulative exposure 0.0529* 0.0378* 0.0012*** 0.0003
(0.0306) (0.0210) (0.0004) (0.0004)

Non-smoker −0.8810 −0.7070 0.0268 0.0057
(1.519) (1.301) (0.0231) (0.0169)

Age −0.7900* −0.2940 −0.0078 −0.0036
(0.454) (0.270) (0.00541) (0.00391)

Age-squared 0.0106* 0.0038 0.0001 0.0000
(0.00633) (0.0039) (0.0000) (0.0000)

Education −0.3470 −0.3427* −0.0084** −0.0034
(0.2340) (0.1942) (0.0036) (0.0026)

Cluster dummies YES YES YES YES

Constant 20.15** 14.72** 0.200** 0.0560
(8.090) (5.851) (0.0983) (0.0706)

Observations 833 833 611 531

Standard errors (clustered at household level) in parentheses.
*p < 0.10, **p < 0.05, ***p < 0.01. Other controls: male and pucca (dummies).
Estimated only for adults (so numbers lower than table 2).

respiratory health (measured by X-ray reports) is a function of cumulative exposure
rather than immediate exposure (Cooper et al., 2006). As our key variable of interest
is cumulative exposure to air pollution, the cardio-respiratory expert’s diagnosis of X-
rays provides the best measure of respiratory health for our purposes.7 The pulmonary
function test (as clinically measured with the peak flow meter instrument) indicates
age-specific lung capacity and can be influenced by immediate 24-hr exposure.

Table 9 presents the main results of the paper, the association of health measures
and cumulative exposure to air pollution for adults. In addition to the detailed survey
questionnaire administered by local enumerators, sampled households were provided
with individual health diaries to record the type of ailment, date, number of days sick,
number of visits to the doctor, doctor’s fees and any additional comments. We chose the
self-reported sick days for respiratory and chronic respiratory illness as the dependent
variables for the results presented in columns (1) and (2). The key variable of interest,
cumulative exposure, is statistically significant and positive, indicating a positive asso-
ciation between exposure and respiratory sick days. In all the estimates in table 9, we
control for individual (age, age-squared, education,male dummy), household level pucca
dummy and cluster dummies to account for fixed effects at the regional level. A one-unit
change in cumulative exposure is associatedwith a 0.0529-unit change in respiratory sick
days, shown in column (1), and a 0.0378-unit change in chronic respiratory sick days,
shown in column (2). In terms of elasticity, a 1 per cent change in cumulative exposure

7TheX-rayswere conducted and first interpreted by the local hospital clinical staff and later by the cardio-
respiratory expert on the research team.
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(at the mean) is associated with a 0.79 per cent increase in respiratory sick days and a
0.86 per cent increase in chronic respiratory sick days.

Lastly, a crucial concern in the literature when using self-reported measures of health
as the dependent variable are issues of under- (or over-) reporting (Short et al., 2009;
Vaillant and Wolff, 2012). The use of health diaries may mitigate the concerns with
self-reported health based on recall methods but does not completely address issues of
the heterogeneity problem in reporting, since different populations may use different
threshold levels when asked about their health (Shmueli, 2003; Lindeboom and Van
Doorslaer, 2004). Studies find correlations between attributes such as education and
self-reported health which may arise from measurement errors in self-assessment. We
ameliorate some of these concerns by controlling for education and income. Further-
more, the results in columns (3) and (4) in table 9, where the dependent variables are
diagnosed clinical measures of health, are consistent with our findings with self-reported
health.

As noted, we were advised by the cardio-respiratory specialist that respiratory health
(indicated by X-ray reports) is a function of cumulative exposure. Therefore we argue
that a diagnosed respiratory issue with the X-ray reports is the key health indicator in
our study (column (3) in table 9). The pulmonary function test (as clinically measured
with the peak flow meter instrument) indicates age-specific lung capacity and can be
influenced by immediate 24-hr exposure, so it will be more responsive to 24-hr average
exposure as a determinant.

Columns (3) and (4) in table 9 present the results for the relationship between cumu-
lative exposure and clinically-diagnosed respiratory health status. A sub-sample (about
50 per cent of the total) of individuals volunteered for these medical tests that were
offered for free and these observations are therefore lower than previous individual level
regressions. In column (3) we use the X-ray diagnosis by the respiratory health expert
and find a positive relationship between cumulative exposure to air pollution and an
X-ray report diagnosed with respiratory problems. In terms of elasticity, a 1 per cent
change in cumulative exposure is associated with a 0.90 per cent change in the likeli-
hood of an X-ray report diagnosing a respiratory issue. Column (4) reports a positive
association between cumulative exposure and the lung function test (i.e., ‘PFT not okay’)
although not statistically significant. A 1 per cent change in exposure is associated with
a 0.75 per cent change in the PFT measure recording an abnormality. As we noted, PFT
is responsive to recent exposure and therefore noisily captures long-run effects.

The finding in our study that the relationship between cumulative exposure and
health indicators is similar (in terms of sign and significance for X-ray measure) for
both self-reported measures as well as clinical assessments is useful to related studies.
The detailed clinical assessment and medical expert diagnosis, as in our study, may be
infeasible to collect or the data and resources may not be available. The positive correla-
tion we find between clinical and self-reported health illustrates the value of other field
studies even if they only use self-reported health.

4.4. Study limitations
Our study has some limitations. Firstly, part of the study uses survey data and the recall
method for self-reported health, which is open to measurement errors and biases. Self-
reports are amenable to social desirability biases when responding to questions about
health (Ezzati et al., 2006), for example, when responding to questions about smoking
habits in our survey. Our provision of health diaries at the start of the study to all sampled
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households could have potentially improved participant’s recording and recall during
the health survey. We find consistent results with the clinical measures of health. Par-
ticipants’ reports of time spent in micro-environments can be affected by such biases as
well, but the presence of field assistants in the households during the indoor and kitchen
concentration measurements and their independent verification of time spent should
constrain the bias.

Although we cannot make causal claims in the paper about the effect of mining or
traditional fuel usage on health, our elaborate data collection allows us to make careful
inferences about source apportionment for pollution.We treat the assignment ofmining
activity as exogenous to households in our computation of cumulative exposure, but
selective in- or out-migration could bias our estimates. Even if we do not deal with the
out-migration issue, the fact that 77 per cent of our sampled households were originally
from the cluster (the main results are qualitatively similar when restricting the analysis
to this sub-sample) allows us to have confidence in the results.

Despite our attempts to tie the theory closely to the data collection process that
allowed us to apportion exposure to pollution sources, we were still limited in our empir-
ical strategy by the data. Our measure of cumulative exposure assumes that the current
24-hr exposure is indicative of exposure across the years for the individuals living in
the location. But pollution levels could have varied considerably over the years in the
locations which we do not account for in our exposure construction. Similarly, we do
not measure cumulative smoking years of individuals. Moreover, we measured PM10
rather than PM2.5, which could arguably be a better indicator of respirable pollutants.
We only measured particulate matter concentrations while health is also impacted by
other noxious matter (e.g., sulphur oxides).

Sophisticated treatments of costs and benefits have been published since the data col-
lection for this study (Jeuland et al., 2015a, 2018). Our particular contribution is the
incorporation of total exposure andmicro-environments. Air pollution valuation studies
may to some extent abstract from that or, at times, simply ignore HAP.

5. Conclusions
Our study develops an integrated empirical model to study the association between res-
piratory health and total air pollution (household and outdoor). The two distinct features
of this paper are: (1) proposing an integrated empirical model of health effects of air pol-
lution, and (2) using dis-aggregate data on exposure in different environments to test
the empirical implications from the model. The delineation of exposure levels from dif-
ferent micro-environments offers insights into the comparative magnitude of impacts
from both household and outdoor pollution. This approach has allowed us to examine
the relationship between respiratory health and household and outdoor air pollution
together.

In our empirical analysis, we examine: (a) the association between individual char-
acteristics and time spent in different micro-environments, (b) the distribution of
concentrations in the micro-environments among clusters, (c) the relationship between
clusters and household fuel usage, and (d) the relationship between cumulative expo-
sure to air pollution and health outcomes. To highlight, we found that: (a) biomass use
was positively associated with time spent in the kitchen, which may be due to the lower
efficiency and higher cooking time associated with biomass fuels; (b) there is a positive
association between outdoor air pollution andLPGusage (negative between outdoor and
biomass use) which, along with associated results on the cluster dummies, implies that
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regions with mining activity had a higher likelihood of LPG usage; (c) cumulative expo-
sure is positively related to biomass fuel usage, time spent in the kitchen where biomass
fuels were used, household and outdoor air quality; and (d) cumulative exposure to air
pollution is positively associated with self-reported and clinically-diagnosed respiratory
issues.

Our results emphasize the findings in several studies that HAP from traditional cook-
ing technologies adversely affects respiratory health (Duflo et al., 2008; Langbein, 2017;
Jeuland et al., 2018; Pattanayak et al., 2019). We find that switching from traditional
biomass cooking to LPG stoves is associated with a substantial reduction in cumulative
exposure, which is similar to findings in the literature on fuel switching (Shupler et al.,
2018).

Findings from such a cross-disciplinary team can offer several direct implications
for policy making. We chose a setting with a recognized outdoor air quality problem – a
heavily-mined region in India – to study the relationship of both outdoor and household
air pollution with health. Our design and data allowed us to compute total exposure to
air pollution as an outcome of air quality and time spent in themicro-environment. Thus
policies should not just focus on improving cooking technology and fuel choice, but also
provide information that improves time allocations in polluted environments, including
household kitchens.

In rural areas of developing countries – particularly in households using biomass fuels
and poor kitchen ventilation – HAP is a relatively more significant health hazard. In our
study, clusters withmining activity had a higher proportion of cleaner cooking fuel usage
(LPG) than the control cluster, which relied on biomass fuels. Correspondingly, clus-
ters with mining activity experienced an increase in outdoor air pollution and reduced
HAP as they switched away from biomass fuels. The findings suggest that there may be
trade-offs between indoor and outdoor air pollution: mining activity – while adversely
impacting outdoor air pollution – may simultaneously increase income and reduce the
costs of accessing cleaner stoves and fuels (LPG, electricity), therefore reducing HAP.
The findings from this study can be treated as a proof of concept that economists can use-
fully borrow from the environmental health sciences (TEA). Further research is required
to comprehensively identify and evaluate these trade-offs on health and other welfare
outcomes.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/S1355770X21000152.
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