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Abstract
We prove that if G is a finite flat group scheme of p-power rank over a perfect field of characteristic p, then the
second crystalline cohomology of its classifying stack 𝐻2

crys (𝐵𝐺) recovers the Dieudonné module of G. We also
provide a calculation of the crystalline cohomology of the classifying stack of an abelian variety. We use this to
prove that the crystalline cohomology of the classifying stack of a p-divisible group is a symmetric algebra (in
degree 2) on its Dieudonné module. We also prove mixed-characteristic analogues of some of these results using
prismatic cohomology.
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1. Introduction

Let p be a prime which will be fixed throughout. Our beginning point is the classification of finite
commutative group schemes of p-power rank over a perfect field k of characteristic p in terms of
contravariant Dieudonné theory. This is achieved by defining an algebraic invariant associated to any
given finite group scheme G (assumed to be commutative and of p-power rank, unless otherwise
mentioned), which is called the Dieudonné module of G and will be denoted by 𝑀 (𝐺). We will recall
the classical construction of 𝑀 (𝐺) in Section 3. The basic object of interest is the Dieudonné ring 𝒟𝑘 ,
which is an associative algebra over the ring of Witt vectors 𝑊 (𝑘). The Dieudonné functor M which
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2 S. Mondal

takes G to 𝑀 (𝐺) transforms the study of finite group schemes over k to the study of semilinear algebraic
objects. More precisely, we have the following:

Theorem 1.1 (Dieudonné). The Dieudonné functor M induces an antiequivalence between the category
of finite commutative group schemes over k of p-power rank and left𝒟𝑘 -modules with finite𝑊 (𝑘) length.

Our primary goal in this paper is to provide a geometric construction of 𝑀 (𝐺). In particular, we
attempt to understand whether 𝑀 (𝐺) can be constructed in terms of some cohomology theory associated
to some ‘space’. Since 𝑀 (𝐺) is a module over 𝑊 (𝑘), it could be natural to take the naïve candidate,
which is the ith crystalline cohomology of G for some i, denoted as 𝐻𝑖

crys (𝐺). However, one can see that
this cannot not work for any i simply by taking discrete group schemes as input for 𝑀 (.). Moreover,
any reasonable cohomology theory will suffer from exactly the same problems. The issue is that a
cohomology theory will view any discrete group scheme just as a discrete space, and will be unable to
detect its group structure. This suggests that we look for other spaces naturally associated to G instead
of just G itself. In topology, one can get around this issue by considering the classifying space 𝐵𝐺, as
explained in Example 1.3. In category theory, the analogue of this would be to simply view a group G
as a groupoid with one object and morphism set isomorphic to G. In algebraic geometry, for a group
scheme G, a model of these constructions would be to consider the classifying stack 𝐵𝐺. Our main goal
is to prove the following:

Theorem 1.2. For a finite commutative group scheme G over k which is of p-power rank, the Dieudonné
module 𝑀 (𝐺) is naturally isomorphic (up to a Frobenius twist) to 𝐻2

crys(𝐵𝐺), where 𝐵𝐺 denotes the
classifying stack of G (compare Section 3.1).

Example 1.3. We explain the topological analogue of Theorems 1.1 and 1.2. In the case where G
is a finite abelian group, one can consider the classifying space 𝐵𝐺 of G, which has the property
that 𝜋1 (𝐵𝐺) � 𝐺 and 𝜋𝑖 (𝐵𝐺) = 0 for 𝑖 > 1. In this case, 𝐻2

singular(𝐵𝐺) � Ext1(𝐺,Z), which is
noncanonically isomorphic to the group G. By using the short exact sequence 0→ Z→ Q→ Q/Z→ 0,
we obtain that Ext1(𝐺,Z) � Hom(𝐺,Q/Z) � lim

−−→
Hom(𝐺,Z/𝑛Z) � Hom

(
𝐺, S1) . By Pontryagin

duality, one obtains that sending 𝐺 → 𝐻2
singular(𝐵𝐺) gives an antiequivalence from the category of

finite abelian groups to itself.
We also define the classifying stack 𝐵𝐺 of a p-divisible group G and prove the following:

Theorem 1.4. Let G be a p-divisible group over k. Then 𝐻∗crys(𝐵𝐺) � Sym∗(𝑀 (𝐺) [−2]), where
𝑀 (𝐺) denotes the Dieudonné module of G. Here 𝑀 (𝐺) is considered to be in degree 2. In particular,
𝐻2

crys(𝐵𝐺) recovers the Dieudonné module 𝑀 (𝐺) and 𝐻𝑖
crys(𝐵𝐺) = 0 for odd i (compare Section 3.4).

In [SW14], Scholze and Weinstein defined a mixed-characteristic analogue of (covariant) Dieudonné
modules for p-divisible groups over a perfectoid ring. More recently, in [ALB19], Anschütz and Le Bras
defined a mixed-characteristic analogue of contravariant Dieudonné modules over more general base
rings. In Section 4.2 we briefly recall their work and the definition of the filtered prismatic Dieudonné
module 𝑀Δ(𝐺) =

(
𝑀Δ (𝐺), Fil 𝑀Δ (𝐺), 𝜑𝑀Δ (𝐺)

)
associated to a p-divisible group G as defined by them.

Their main theorem is the following classification result:

Theorem 1.5 ([ALB19]). Let R be a quasiregular semiperfectoid ring. The filtered prismatic Dieudonné
module functor

𝐺 → 𝑀Δ(𝐺)

defines an antiequivalence between the category of p-divisible groups over R and the category of filtered
prismatic Dieudonné modules over R.

Using the classifying stack 𝐵𝐺 of a p-divisible group G, we prove the following:

Theorem 1.6. Let G be a p-divisible group over a quasiregular semiperfectoid ring R. Then the
prismatic cohomology 𝐻2

Δ(𝐵𝐺) is naturally isomorphic to the prismatic Dieudonné module 𝑀Δ (𝐺).
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This isomorphism identifies the natural Frobenius on 𝐻2
Δ(𝐵𝐺) with the endomorphism 𝜑𝑀Δ (𝐺) on

𝑀Δ (𝐺). Further, the Nygaard filtration N≥1𝐻2
Δ(𝐵𝐺) on the prismatic cohomology of the stack 𝐵𝐺 is

isomorphic to Fil𝑀Δ (𝐺) (compare Section 4.2).

On the other hand, there has been some recent work involving computation of p-adic cohomology
theories associated to the classifying stack of group schemes over p-adic base rings. For example, we
refer to the work of Totaro [Tot18] and the work of Antieau, Bhatt and Mathew [ABM19]. Our results
can also be viewed as some computations in this direction.

Outline of the paper

The statement of Theorem 1.2 presents the need for a theory of crystalline cohomology for stacks.
This theory has already been developed by Olsson in [Ol07] using the lisse-étale crystalline site of
an algebraic stack. In Section 2, we provide another definition of crystalline cohomology of algebraic
stacks through syntomic descent, relying on the work of Fontaine and Messing [FM87]. In Proposition
2.16 we prove that the definition via syntomic descent and the definition via the lisse-étale crystalline
site are equivalent.

In Section 3.1, we provide a brief review of crystalline Dieudonné theory and prove Theorem 1.2.
Our proof uses a description of 𝑀 (𝐺) obtained in the work of Berthelot, Breen and Messing [BBM82],
which expresses 𝑀 (𝐺) as a certain Ext group in the crystalline topos which is recalled in Theorem 3.8.
The main ingredient of our proof of Theorem 1.2 is to obtain a suitable spectral sequence computing
𝐻∗crys (𝐵𝐺), which is done in Proposition 3.13. In order to obtain the spectral sequence in Proposition
3.13, we use Čech descent along the syntomic map ∗ → 𝐵𝐺. In Section 3.2, we deduce the analogue of
Theorem 1.2 for p-divisible groups. In Section 3.3, we provide a complete calculation of the crystalline
cohomology of the classifying stack 𝐵𝐴 of an abelian variety A. This is done in Proposition 3.28, where
we prove that 𝐻2∗

crys (𝐵𝐴) � Sym∗
(
𝐻1

crys (𝐴)
)

and 𝐻𝑖
crys (𝐵𝐴) = 0 for odd i. An analogue of this result in

ℓ-adic cohomology was proved by Behrend [Beh03, Theorem 6.1.6]. Our proof of Proposition 3.28 uses
different techniques. We rely on some explicit simplicial constructions and some computations from the
theory of nonabelian derived functors. Using these calculations, in Section 3.4 we completely calculate
the crystalline cohomology of 𝐵𝐺 for a p-disivible group G.

In Section 4, we enter the mixed-characteristic situation. We begin by recalling the work of Anschütz
and Le Bras and define the contravariant prismatic Dieudonné module 𝑀Δ (𝐺) for a p-divisible group G
over a quasiregular semiperfectoid base ring R as an Ext1 group in the prismatic topos. This definition is
compatible with the definition in [SW14] as proven in [ALB19, Proposition 4.3.7]. We will then define
quasisyntomic stacks and define the classifying stack 𝐵𝐺 of G as a quasisyntomic stack in Definition
4.27. In Definition 4.13, we extend the notion of prismatic cohomology developed by Bhatt and Scholze
[BS19] to quasisyntomic stacks via quasisyntomic descent. Then analogous to Proposition 3.16, in
Proposition 4.33 we prove that 𝑀Δ(𝐺) � 𝐻

2
Δ(𝐵𝐺), where the latter denotes the prismatic cohomology

of 𝐵𝐺. Similar to the crystalline case, in Proposition 4.40 we obtain a complete calculation of the
prismatic cohomology of the classifying stack 𝐵𝐴, where 𝐴 is the p-adic completion of an abelian
scheme A.

2. Crystalline cohomology

2.1. Crystalline cohomology for stacks

We gather some notation for this section. We fix a prime p. Let k be a perfect field of characteristic 𝑝 > 0
and let𝑊 (𝑘) be the ring of Witt vectors of k. Let SYNSch𝑘 denote the big Grothendieck site of schemes
over k with the syntomic topology. Let 𝐷 (SYNSch𝑘 ,𝑊 (𝑘)) denote the unbounded derived category of
sheaves of 𝑊 (𝑘)-modules and let 𝐷 (𝑊 (𝑘)) denote the unbounded derived category of 𝑊 (𝑘)-modules
(both can be equipped with natural ∞-categorical enhancements). For a given scheme 𝑋 ∈ SYNSch𝑘 ,
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there is a functor 𝑅Γ(𝑋, ·) : 𝐷 (SYNSch𝑘 ,𝑊 (𝑘)) → 𝐷 (𝑊 (𝑘)). Let 𝑅Γcrys(𝑋) ∈ 𝐷 (𝑊 (𝑘)) denote the
crystalline cohomology of X.

Proposition 2.1. There is an object 𝑅Ocrys ∈ 𝐷 (SYNSch𝑘 ,𝑊 (𝑘)) such that 𝑅Γ(𝑋, 𝑅Ocrys) �
𝑅Γcrys(𝑋).

Proof. This is a formal corollary of a result of Fontaine and Messing. Using [FM87, Proposition 1.3],
we get that for any n, there is a sheaf Ocrys/𝑊𝑛 on SYNSch𝑘 such that the n-truncated crystalline
cohomology

(
𝑅Γcrys/𝑊𝑛

)
(𝑋) � 𝑅Γ(𝑋,Ocrys/𝑊𝑛). Now we define 𝑅Ocrys := 𝑅 lim

←−−𝑛
Ocrys/𝑊𝑛. Then

it follows that 𝑅Γ(𝑋, 𝑅Ocrys) � lim
←−−𝑛

(
𝑅Γcrys/𝑊𝑛

)
(𝑋) � 𝑅Γcrys(𝑋). �

Definition 2.2. Let 𝒳 be an algebraic stack over k. Let 𝐶𝒳 denote the category of schemes X over 𝒳.
We define the crystalline cohomology of the algebraic stack 𝒳 as

𝑅Γcrys(𝒳) := 𝑅 lim
←−−

𝑋 ∈𝐶𝒳

𝑅Γcrys(𝑋) ∈ 𝐷 (𝑊 (𝑘)).

Remark 2.3. Alternatively, given an algebraic stack 𝒳 one can consider the slice site 𝒳syn :=
SYNSch𝑘/𝒳 . Then the object 𝑅Ocrys induces an object in the derived category of sheaves of 𝑊 (𝑘)-
modules on 𝒳syn, which by abuse of notation we again write as 𝑅Ocrys. Then 𝑅Γcrys(𝒳) �
𝑅Γ

(
𝒳syn, 𝑅Ocrys) .

Remark 2.4. By Definition 2.2 and Zariski descent, we observe that 𝑅Γcrys(𝒳) �

𝑅 lim
←−−𝑋 ∈𝐶aff

𝒳

𝑅Γcrys(𝑋), where 𝐶aff
𝒳

denotes the category of affine schemes over 𝒳.

Remark 2.5. Let 𝑋 → 𝒳 be a syntomic cover of the algebraic stack 𝒳 by a scheme X. Let 𝑋• be the
simplicial algebraic space given by the Čech nerve of 𝑋 → 𝒳 (so that 𝑋𝑛 is the n-fold fibre product of X
over 𝒳, which is, in general, only an algebraic space). Then we have that 𝑅Γcrys(𝒳) � 𝑅 lim

←−−
𝑅Γcrys(𝑋•).

2.2. The crystalline site

In this section, we provide a brief reminder of definitions of the (big) crystalline site and the associated
topos. We prefer to work with the big site because it is functorial and still computes the same cohomology
groups. Our exposition roughly follows [BBM82].

We fix a prime p as before. Let k be a fixed field of characteristic p and let 𝑊 (𝑘) be the ring of Witt
vectors. Let (𝑊 (𝑘), 𝑝, 𝛾) be the usual divided power structure on 𝑊 (𝑘).

Definition 2.6. We denote by Crys(𝑘/𝑊 (𝑘)) a category whose objects are given by the data of a k-
scheme U; a 𝑊 (𝑘)-scheme T on which p is locally nilpotent; a closed 𝑊 (𝑘)-immerison 𝑖 : 𝑈 → 𝑇 ;
and a divided power structure 𝛿 on the ideal sheaf corresponding to the closed immersion 𝑖, which we
require to be compatible with the divided power structure 𝛾. We will denote an object of Crys(𝑘/𝑊 (𝑘))
by (𝑈,𝑇, 𝛿), or simply by (𝑈,𝑇) when no confusion is likely to arise. A morphism in this category
is given by a pair of morphisms 𝑢 : 𝑈 ′ → 𝑈 and 𝑣 : 𝑇 ′ → 𝑇 , where u is a k-morphism and v is a
𝑊 (𝑘)-morphism compatible with divided powers such that 𝑣 ◦ 𝑖′ = 𝑖 ◦ 𝑢.

Definition 2.7. A family (𝑈𝑖 , 𝑇𝑖) → (𝑈,𝑇) of maps in Crys(𝑘/𝑊 (𝑘)) is a 𝜏-covering if 𝑈𝑖 = 𝑈 ×𝑇 𝑇𝑖
for all i and {𝑇𝑖 → 𝑇} is a 𝜏-covering. Here 𝜏 could be Zariski, étale, smooth, syntomic or fppf. This
equips the category Crys(𝑘/𝑊 (𝑘)) with a Grothendieck topology, and we denote the site we obtain
this way by Crys(𝑘/𝑊 (𝑘))𝜏 . We let (𝑘/𝑊 (𝑘))Crys,𝜏 denote the associated topos. We define a presheaf
Ocrys(𝑈,𝑇) := Γ(𝑇,O𝑇 ). This is a sheaf of rings on the site Crys(𝑘/𝑊 (𝑘))𝜏 .

Definition 2.8. Let X be a scheme over k. By 𝑋 we denote a sheaf on Crys(𝑘/𝑊 (𝑘))𝜏 defined by
𝑋 (𝑈,𝑇) := 𝑋 (𝑈) = Hom𝑘 (𝑈, 𝑋) (compare [BBM82, Section 1.1.4.5]). This is a sheaf for any 𝜏, where
𝜏 is from the list mentioned in Definition 2.7.

Remark 2.9. We will write 𝜏 ≤ 𝜏′ when comparing different topologies to mean that 𝜏′ is finer than 𝜏.
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Proposition 2.10. Let G be an abelian sheaf on Crys(𝑘/𝑊 (𝑘))𝜏′ . Then

RHomCrys(𝑘/𝑊 (𝑘))𝜏 (𝐺,Ocrys) � RHomCrys(𝑘/𝑊 (𝑘))𝜏′ (𝐺,Ocrys)

for 𝜏 ≤ 𝜏′.

Proof. This is [BBM82, Proposition 1.3.6]. The proof relies on [BBM82, Proposition 1.1.19]. �

Proposition 2.11. Let X be a scheme over k. Then

𝑅Γcrys(𝑋) � RHomCrys(𝑘/𝑊 (𝑘))𝜏
(
Z

[
𝑋
]
,Ocrys) ,

where one can choose any topology 𝜏 from the list mentioned in Definition 2.7. Here Z
[
𝑋
]

denotes the
‘free abelian group’ on 𝑋 in the topos (𝑘/𝑊 (𝑘))Crys,𝜏 .

Proof. When 𝜏 is a Zariski topology, this follows from [BBM82, Proposition 1.3.4] and the definition
of crystalline cohomology. The rest follows from Proposition 2.10. �

Remark 2.12. Therefore, we see that it does not matter which topology 𝜏 we choose while computing
crystalline cohomology. We will often choose 𝜏 = Zariski, and in this case we will omit 𝜏 from the
notation and write the relevant site as Crys(𝑘/𝑊 (𝑘)) and the topos as (𝑘/𝑊 (𝑘))Crys.

Remark 2.13. One can also define ‘truncated crystalline sites’ by replacing 𝑊 (𝑘) by 𝑊𝑛 (𝑘) in Defini-
tions 2.6 and 2.7 for each 𝑛 ≥ 1. We denote the corresponding site (equipped with the Zariski topology
for simplicity) by Crys(𝑘/𝑊𝑛 (𝑘)) and the associated topos by (𝑘/𝑊𝑛 (𝑘))Crys. This has a sheaf of rings
Ocrys defined in a way similar to Definition 2.7. Analogous to Proposition 2.11, one has that for a scheme
X over k, 𝑅Γcrys(𝑋/𝑊𝑛) � 𝑅HomCrys(𝑘/𝑊𝑛 (𝑘))

(
Z

[
𝑋
]
,Ocrys) , where 𝑋 is the sheaf on Crys(𝑘/𝑊𝑛 (𝑘))

defined in a way similar to Definition 2.8.

Now we provide a different definition of the crystalline cohomology of an algebraic stack, following
[Ol07, Section 2.7.1]. Then we will prove that this definition is equivalent to Definition 2.2.

Definition 2.14. Let 𝒳 be an algebraic stack over k. We define the lisse-étale crystalline site of 𝒳 first
as the category Crys(𝒳)lis-ét whose objects are the data of a k-scheme U with a smooth map 𝑈 → 𝒳

over k; a 𝑊 (𝑘)-scheme T on which p is locally nilpotent; a closed 𝑊 (𝑘)-immersion 𝑖 : 𝑈 → 𝑇 ; and a
divided power structure 𝛿 on the ideal sheaf corresponding to the closed immersion i, which we require
to be compatible with (𝑊 (𝑘), 𝑝, 𝛾). We will denote an object of Crys(𝒳)lis-ét by (𝑈,𝑇, 𝛿), or simply by
(𝑈,𝑇) when no confusion is likely to arise. The morphisms of this category is defined in the obvious way.
A family (𝑈𝑖 , 𝑇𝑖) → (𝑈,𝑇) of maps in Crys(𝒳)lis-ét is a covering if𝑈𝑖 = 𝑈 ×𝑇 𝑇𝑖 for all i and {𝑇𝑖 → 𝑇}
is an étale covering. This equips Crys(𝒳)lis-ét with a Grothendieck topology, and the resulting site is
called the lisse étale crystalline site. Let Ocrys(𝑈,𝑇) := Γ(𝑇,O𝑇 ) be a sheaf of rings on Crys(𝒳)lis-ét.

Definition 2.15. We define 𝑅Γlis-ét-crys(𝒳) := 𝑅Γ(Crys(𝒳)lis-ét,Ocrys).

Proposition 2.16. 𝑅Γlis-ét-crys(𝒳) � 𝑅Γcrys(𝒳) – that is, Definition 2.15 – is consistent with
Definition 2.2.

Proof. We break down the proof into a few steps.
Step 1. First we fix some notations for the proof. We let Crys(𝒳)ét denote the big variant of the site

in Definition 2.14, where we remove the hypothesis that for a pair (𝑈,𝑇) the map 𝑈 → 𝒳 must be
smooth, and the covers are still given by étale covers. Sending (𝑈,𝑇) → Γ(𝑇,O𝑇 ) defines a sheaf of
rings on both of these sites, which we will denote by Ocrys in both cases when no confusion is likely to
occur. Let Crys(𝒳)syn denote the variant of Crys(𝒳)ét with the same underlying category, but now the
covers are given by syntomic covers. Lastly, we denote the big syntomic site of 𝒳 by 𝒳syn, which is the
full subcategory of schemes over 𝒳, and the topology is given by syntomic coverings.
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Step 2. In this step, we show that crystalline cohomology can be computed in the big site Crys(𝒳)ét.
We have an inclusion functor

Crys(𝒳)lis-ét → Crys(𝒳)ét,

which is continuous and cocontinuous and therefore gives a map of topoi

𝑖 : ShvCrys(𝒳)lis-ét → ShvCrys(𝒳)ét.

We want to prove that there is a natural isomorphism 𝑅Γlis-ét
(
𝒳, 𝑖−1Ocrys) � 𝑅Γét(𝒳,Ocrys). Thus, it

is enough to prove that 𝑖−1 has a left adjoint 𝑖! which is exact. Following the method of proof in [SP,
Tag 07IJ], it is enough to show that 𝑖!∗ = ∗, where ∗ denotes the final object.

Let 𝑌 → 𝒳 be a smooth cover of 𝒳 by a scheme Y. First we prove that for any given object
(𝑈,𝑇) ∈ Crys(𝒳)ét, there exists a cover {(𝑈𝑖 , 𝑇𝑖) → (𝑈,𝑇)} in Crys(𝒳)ét such that for all i there are
maps 𝑈𝑖 → 𝑌 over 𝒳. In order to show this, first we change base to get a smooth map 𝑈 ×𝒳 𝑌 → 𝑈
which admits a projection map𝑈 ×𝒳 𝑌 → 𝑌 . Now we pick an étale cover𝑈 ′ → 𝑈 ×𝒳 𝑌 , where𝑈 ′ is a
scheme, and thus we get a smooth map𝑈 ′ → 𝑈. This can be refined further to obtain maps𝑈𝑖 → 𝑈 ′ such
that the composition {𝑈𝑖 → 𝑈 ′ → 𝑈} is an étale cover. Now 𝑖 : 𝑈 → 𝑇 is a divided-power thickening
of U with p being locally nilpotent on T. Therefore 𝑖 : 𝑈 → 𝑇 is a universal homeomorphism. By the
invariance of étale sites [SP, Tag 04DY] for universal homeomorphisms, we get étale maps 𝑇𝑖 → 𝑇
such that 𝑇𝑖 ×𝑇 𝑈 � 𝑈𝑖 . This gives a thickening 𝑈𝑖 → 𝑇𝑖 . Since the map 𝑇𝑖 → 𝑇 is étale, by [SP,
Tag 07H1], the ideal of the thickening 𝑈𝑖 → 𝑇𝑖 has divided powers. Further, since {𝑈𝑖 → 𝑈} was an
étale cover, {𝑇𝑖 → 𝑇} is also an étale cover by construction. Thus we have constructed a refinement
{(𝑈𝑖 , 𝑇𝑖) → (𝑈,𝑇)} in the site Crys(𝒳)ét. For all i, we have also constructed maps 𝑈𝑖 → 𝑌 over 𝒳.

Now by using the proof in [SP, Tag 07IJ], we fix a set of divided-power thickenings (𝑈𝑠 , 𝑇𝑠)𝑠∈𝑆 by
picking (𝑈𝑠)𝑠∈𝑆 = (Spec𝐶𝑠)𝑠∈𝑆 to be an affine Zariski open cover of the scheme Y and, for each 𝑠 ∈ 𝑆,
building 𝑇𝑠 by using the algebra 𝐶𝑠 as in [SP, Tag 07HP]. Since the map 𝑌 → 𝒳 was smooth, it follows
that (𝑈𝑠 , 𝑇𝑠) ∈ Crys(𝒳)lis-ét. Using the discussion from the previous paragraph and the construction
of (𝑈𝑠 , 𝑇𝑠)𝑠∈𝑆 , we get an epimorphism

∐
𝑠∈𝑆 ℎ (𝑈𝑠 ,𝑇𝑠) → ∗ in ShvCrys(𝒳)ét, which implies 𝑖!∗ = ∗,

proving our main claim in step 2.
Step 3. In this step, we show that crystalline cohomology can also be computed in the finer site

Crys(𝒳)syn. We have a map of topoi

𝑣 : ShvCrys(𝒳)syn → ShvCrys(𝒳)ét.

Let 𝑣∗ denote the corresponding right adjoint. The left adjoint 𝑣−1 is given by sheafification. Thus
we obtain a natural isomorphism 𝑅Γsyn(𝒳,Ocrys) � 𝑅Γét(𝒳, 𝑅𝑣∗Ocrys). We claim that 𝑅𝑣∗Ocrys �
𝑣∗Ocrys = Ocrys. This statement can be checked locally and thus follows from the scheme case, where it
is already known. We refer to [BBM82, Proposition 1.1.19] for a proof in the case of schemes.

Step 4. In this step, we show that crystalline cohomology can be computed in 𝒳syn as well and
conclude the proof. We have a functor

ℎ : Crys(𝒳)syn → 𝒳syn

which sends (𝑉,𝑇) → 𝑉 . By the proof of [FM87, Proposition 1.3], this functor is cocontinuous. By
[SP, Tag 00XI], there is a morphism of topoi

𝑢 : ShvCrys(𝒳)syn → Shv𝒳syn,

where 𝑢∗(F) (𝑈) := lim
←−−(𝑉 ,𝑇 )/𝑈

F(𝑉,𝑇). We write the left adjoint by 𝑢−1, which is exact by [SP, Tag
00XL]. By adjunction, it follows that 𝑢∗ commutes with the global section functor: Indeed, we obtain

https://doi.org/10.1017/fms.2021.77 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.77


Forum of Mathematics, Sigma 7

Hom(∗, 𝑢∗F) � Hom(∗,F). Therefore it follows that 𝑅Γsyn(𝒳,Ocrys) � 𝑅Γ𝑅𝑢∗Ocrys. Now the right-
hand side is equivalent to Definition 2.2. Therefore we are done. �

3. Application to crystalline Dieudonné theory

In this section, we apply the notion of the crystalline cohomology of stacks to describe the Dieudonné
module of a finite group scheme of p-power order or a p-divisible group as the crystalline cohomology
of the classifying stack. Before we do that, we briefly remind the reader of the main theorem of
contravariant Dieudonné theory and the related definitions.

Definition 3.1. Let k be a perfect field and 𝑊 (𝑘) the ring of Witt vectors of k. Let 𝜎 denote the
Witt vector Frobenius which is induced from the Frobenius in k. The Dieudonné ring 𝒟𝑘 is defined
to be the free noncommutative polynomial ring in two generators 𝐹,𝑉 over 𝑊 (𝑘) subjected to the
relations 𝐹𝑉 = 𝑉𝐹 = 𝑝, 𝐹𝑐 = 𝜎(𝑐)𝐹 for 𝑐 ∈ 𝑊 (𝑘) and 𝑐𝑉 = 𝑉𝜎(𝑐) for 𝑐 ∈ 𝑊 (𝑘). The ring 𝒟𝑘 is
noncommutative when 𝑘 ≠ F𝑝 and is Z𝑝 [𝑥, 𝑦]/(𝑥𝑦 − 𝑝) when 𝑘 = F𝑝 .

Definition 3.2. We let𝑊𝑛 denote the group scheme that corepresents the functor that sends a k-algebra A
to the ring of length n Witt vectors𝑊𝑛 (𝐴). These group schemes are naturally induced with a Frobenius
endomorphism F on them, and we define𝑊𝑚

𝑛 to be the group scheme which is the kernel of 𝐹𝑚 on𝑊𝑛.
We also have a map 𝑉 : 𝑊𝑛 → 𝑊𝑛+1 induced by the Witt vector Verschiebung which turns {𝑊𝑛}𝑛≥1
into a directed system of group schemes. We define 𝐶𝑊𝑢 := lim

−−→
𝑊𝑛. One defines the formal p-group

𝐶𝑊 of Witt covectors as a completion of 𝐶𝑊𝑢 in a suitable sense. We refer to [Fo77] for details.

Example 3.3. By definition, 𝑊1 is the additive group scheme G𝑎. Also, 𝑊1
1 is the finite additive group

scheme with the underlying scheme given by Spec𝑘 [𝑥]/𝑥𝑝 , which is usually denoted as 𝛼𝑝 . Similarly,
𝑊𝑛

1 is the finite additive group scheme with the underlying scheme given by Spec𝑘 [𝑥]/𝑥𝑝𝑛
, which is

denoted as 𝛼𝑝𝑛 . The Cartier dual of 𝛼𝑝𝑛 is given by the group scheme 𝑊1
𝑛 . More generally, the Cartier

dual of 𝑊𝑚
𝑛 is isomorphic to 𝑊𝑛

𝑚 [Dem72, Chapter III, Section 4].

Definition 3.4. For a finite group scheme G over k, we define the Dieudonné module of G to be

𝑀 (𝐺) := Hom(𝐺,𝐶𝑊),

where the Hom is being taken in the category of formal groups.

Now we are ready the state the classical theorem of contravariant Dieudonné theory, which can be
found in [Fo77, Chapitre III, Section 1, Theorem 1]:

Theorem 3.5. The functor𝐺 → 𝑀 (𝐺) induces an antiequivalence between the category of finite group
schemes over k and left 𝒟𝑘 -modules with finite 𝑊 (𝑘) length.

Example 3.6. Let us give some examples of Dieudonné modules associated to certain finite flat group
schemes. For the group schemes 𝑊𝑚

𝑛 from Example 3.3, we have 𝑀
(
𝑊𝑚

𝑛

)
� 𝒟𝑘/𝒟𝑘 · (𝐹

𝑚, 𝑉𝑛)

[Oor66, Section 15.4]. In particular, 𝑀
(
𝛼𝑝𝑛

)
� 𝒟𝑘/𝒟𝑘 · (𝐹

𝑛, 𝑉). For the multiplicative group scheme
underlying 𝑝𝑛th roots of unity denoted as 𝜇𝑝𝑛 , we have 𝑀

(
𝜇𝑝𝑛

)
� 𝒟𝑘/𝒟𝑘 · (𝐹

𝑛, (𝑉 − 1)). For the
constant group scheme Z/𝑝𝑛Z, we have 𝑀 (Z/𝑝𝑛Z) � 𝒟𝑘/𝒟𝑘 · ((𝐹 − 1), 𝑉𝑛).

Example 3.7. Let 𝐸 [𝑝] denote the p-torsion group scheme of a supersingular elliptic curve E over k.
Then 𝑀 (𝐸 [𝑝]) � 𝒟𝑘/𝒟𝑘 ·

(
𝐹2, 𝐹 −𝑉,𝑉2) . We refer to [Oor66, Section 15.5] for more details.

In [BBM82], Berthelot, Breen and Messing obtained an alternative description of 𝑀 (𝐺). Given
a finite group scheme G, using Definition 2.8 we obtain an abelian group object 𝐺 of the topos
(𝑘/𝑊 (𝑘))Crys. It proves the following theorem, which expresses 𝑀 (𝐺) as a certain Ext group in the
crystalline topos.
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Theorem 3.8 ([BBM82, Theorem 4.2.14]). For a finite group scheme G for p-power rank, we have
𝜎∗𝑀 (𝐺) � Ext1

(𝑘/𝑊 (𝑘))Crys

(
𝐺,Ocrys) , where 𝜎∗𝑀 (𝐺) denotes the extension of scalars along the Witt

vector Frobenius 𝜎 – that is, 𝜎∗𝑀 (𝐺) := 𝑀 (𝐺) ⊗𝑊 (𝑘) ,𝜎 𝑊 (𝑘).

3.1. Dieudonné module of finite group schemes

In this subsection, we work with finite group schemes G of p-power rank over a perfect field k. Let
𝐵𝐺 := [Spec𝑘/𝐺] be the classifying stack of G [SP, Tag 044O]. Any such group scheme is a local
complete intersection and therefore it follows that the map Spec𝑘 → 𝐵𝐺 is a syntomic cover. Its Čech
nerve is given by the following simplicial scheme:

· · ·𝐺 × 𝐺 × 𝐺
����
���� 𝐺 × 𝐺

�� ���� 𝐺 �� �� Spec𝑘.

As in Definition 2.8, we can attach a sheaf 𝐺 on Crys(𝑘/𝑊 (𝑘)) which can be viewed as an object of the
topos (𝑘/𝑊 (𝑘))Crys. Corresponding to this Čech nerve, we obtain by functoriality a simplicial object of
the topos:

𝐵𝐺 := · · ·𝐺 × 𝐺 × 𝐺
����
���� 𝐺 × 𝐺

������ 𝐺 ���� ∗,

where ∗ is the final object. With this simplicial object, we can attach the free simplicial abelian group
object

· · ·Z
[
𝐺 × 𝐺 × 𝐺

] ����
���� Z

[
𝐺 × 𝐺

] ������ Z
[
𝐺

] ���� Z.

The alternating face map complex associated to this simplical object is as an object in the category
of complexes of abelian objects of the topos (𝑘/𝑊 (𝑘))Crys, which can also be viewed as an object in
the derived category of abelian objects of (𝑘/𝑊 (𝑘))Crys, denoted as 𝐷 (𝑘/𝑊 (𝑘)). This object living in
𝐷 (𝑘/𝑊 (𝑘)) is also isomorphic to the homotopy colimit of

· · ·Z
[
𝐺 × 𝐺

] ������ Z
[
𝐺

] ���� Z,

viewed as a functor from Δ𝑜𝑝 to 𝐷 (𝑘/𝑊 (𝑘)). We denote this object by Z
[
𝐵𝐺

]
∈ 𝐷 (𝑘/𝑊 (𝑘)). If we

work with the truncated crystalline site Crys(𝑘/𝑊𝑛 (𝑘)), all of these constructions remain valid, and one
can associate Z

[
𝐵𝐺

]
∈ 𝐷 (𝑘/𝑊𝑛 (𝑘)) as well.

Lemma 3.9. 𝐻0 (
Z

[
𝐵𝐺

] )
� Z and 𝐻−1 (

Z
[
𝐵𝐺

] )
� 𝐺.

Proof. First we work with the presheaf simplicial abelian group object

· · ·Zpre [
𝐺 × 𝐺

] ������ Zpre [
𝐺

] ���� Z,

which is obtained by applying the free abelian presheaf functor to 𝐵𝐺 [SP, Tag 03CP]. Let Zpre [
𝐵𝐺

]
be the associated complex: 𝐾• := · · ·Zpre [

𝐺 × 𝐺
]
→ Zpre [

𝐺
]
→ Z → 0. We see that 𝐻0 of this

complex is Z, since the last differential is zero. One also notes that 𝐾• computes the (presheaf) group
cohomology of the (presheaf) abelian group𝐺 with constant coefficients in Z, and hence 𝐻−1 (𝐾•) � 𝐺.
Now since sheafification is exact, we obtain the required statements. �

Lemma 3.10. Let G be a group scheme of order 𝑝𝑚. Then 𝐻−𝑖
(
Z

[
𝐵𝐺

] )
is killed by 𝑝𝑚 for 𝑖 > 0.
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Proof. We start by recalling some definitions for this proof. Let A be an ordinary n-torsion abelian
group. Let us define Z[𝐵𝐴] to be the alternating face complex associated to the simplicial abelian
group

· · ·Z[𝐴 × 𝐴]
������ Z[𝐴] �� �� Z.

Then, as noted previously, 𝐻−𝑖 (Z[𝐵𝐴]) � 𝐻𝑖 (𝐴), where the latter denotes group cohomology with
coefficients in Z. This is also the homology of the Eilenberg–MacLane space 𝐾 (𝐴, 1). We will show
that 𝐻𝑖 (𝐴) is n-torsion (*). First, from the complex Z[𝐵𝐴], one notes that 𝐻𝑖 (𝐴) commutes with filtered
colimits as a functor defined on abelian groups. Since A is an n-torsion abelian group, it can be expressed
as a filtered colimit of finite n-torsion abelian groups. Therefore, it is enough to check the statement
for an n-torsion finite abelian group A. Further, one notes that 𝐾 (𝐴1, 1) × 𝐾 (𝐴2, 1) � 𝐾 (𝐴1 × 𝐴2, 1);
therefore, by using the Künneth formula, we are reduced to checking this for n-torsion cyclic groups,
where it follows from the well-known computation of group homology of finite cyclic groups using the
Tate complex. The statement in the lemma now follows from applying (*) to Zpre [

𝐵𝐺
]

and noting that
since G has order 𝑝𝑚, one has 𝑝𝑚 · 𝐺 = 0. �

Remark 3.11. These lemmas clearly remain valid even if we were working with the truncated crystalline
sites Crys(𝑘/𝑊𝑛 (𝑘)) mentioned in Remark 2.13.
Proposition 3.12. 𝑅Γcrys(𝐵𝐺) � 𝑅Hom𝐷 (𝑘/𝑊 (𝑘))

(
Z

[
𝐵𝐺

]
,Ocrys) .

Proof. Since Spec𝑘 → 𝐵𝐺 is a syntomic map, we can apply Remark 2.5, which gives that

𝑅Γcrys(𝐵𝐺) � 𝑅 lim
←−−

(
𝑅Γcrys(Spec𝑘) �� �� 𝑅Γcrys(𝐺)

������ 𝑅Γcrys(𝐺 × 𝐺) · · ·
)
.

By Proposition 2.11, this is

� 𝑅 lim
←−−

(
𝑅Hom𝐷 (𝑘/𝑊 (𝑘)) (Z,Ocrys) ���� 𝑅Hom𝐷 (𝑘/𝑊 (𝑘))

(
Z

[
𝐺

]
,Ocrys) �� ����

𝑅Hom𝐷 (𝑘/𝑊 (𝑘))

(
Z

[
𝐺 × 𝐺

]
,Ocrys) · · · ) .

We can take the 𝑅 lim
←−−

inside as a homotopy colimit, which gives us that this is �
𝑅Hom𝐷 (𝑘/𝑊 (𝑘))

(
Z

[
𝐵𝐺

]
,Ocrys) , as desired. �

Proposition 3.13. There is a spectral sequence with 𝐸2-page

𝐸
𝑖, 𝑗
2 = Ext𝑖(𝑘/𝑊 (𝑘))Crys

(
𝐻− 𝑗

(
Z

[
𝐵𝐺

] )
,Ocrys) =⇒ 𝐻

𝑖+ 𝑗
crys(𝐵𝐺)

and another spectral sequence with 𝐸1-page

𝐸
𝑖, 𝑗
1 = 𝐻

𝑗
crys

(
𝐺𝑖 ) =⇒ 𝐻

𝑖+ 𝑗
crys(𝐵𝐺),

where 𝐺𝑖 denotes the i-fold fibre product of G with itself. By convention, 𝐺0 = ∗.

Proof. This is a consequence of [SP, Tag 07A9] and Propositions 2.11 and 3.12. �

Proposition 3.14. 𝐻1
crys(𝐵𝐺) = 0.

Proof. We can use the 𝐸2 spectral sequence from Proposition 3.13 to compute 𝐻𝑖
crys (𝐵𝐺). We note that

Ext𝑖 (Z,Ocrys) = 0 for 𝑖 > 0, as it computes the cohomology of Spec𝑘 for a perfect field k, by Proposition
2.11. Also, by [BBM82, Proposition 4.2.6], we have Hom

(
𝐺,Ocrys) = 0. These calculations, along with

the spectral sequence and Lemma 3.9, imply 𝐻1
crys (𝐵𝐺) = 0. �

Proposition 3.15. If G is a finite group scheme of p-power order, then for any 𝑖 > 0, 𝐻𝑖
crys(𝐵𝐺) is killed

by a power of p as an abelian group.
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Proof. This follows from the spectral sequence in Proposition 3.13. Indeed, already in the 𝐸2-page of
the spectral sequence, all but 𝐸0,0

2 is p-power torsion by Lemma 3.10. Hence, all but 𝐸0,0
∞ is p-power

torsion as well. Therefore, for any 𝑖 > 0, 𝐻𝑖
crys (𝐵𝐺) has a finite filtration whose successive quotients are

p-power torsion, and hence is p-power torsion itself. �

Proposition 3.16. If G is a finite group scheme of p-power order, then 𝐻2
crys(𝐵𝐺) �

Ext1
(𝑘/𝑊 (𝑘))Crys

(
𝐺,Ocrys) .

Proof. First we note that there is a natural map Ext1
(𝑘/𝑊 (𝑘))Crys

(
𝐺,Ocrys) → 𝐻2

crys (𝐵𝐺), which is in-
jective. Indeed, from the 𝐸2-spectral sequence (which is natural in G), we note that Fil0𝐻2

crys (𝐵𝐺) =

𝐻2
crys (𝐵𝐺), Fil𝑖𝐻2

crys (𝐵𝐺) = 0 for 𝑖 ≥ 2, and therefore Fil1𝐻2
crys (𝐵𝐺) = Ext1

(𝑘/𝑊 (𝑘))Crys

(
𝐺,Ocrys) ,

which gives the required injective map. We proceed to proving that this natural map is an
isomorphism.

Set 𝑅Γcrys(𝐵𝐺/𝑊𝑛) := 𝑅Γcrys(𝐵𝐺) ⊗
𝐿
𝑊 (𝑘)

𝑊𝑛 (𝑘) and 𝐻𝑖
crys (𝐵𝐺/𝑊𝑛) := 𝐻𝑖

(
𝑅Γcrys(𝐵𝐺/𝑊𝑛)

)
.

Then we have the exact sequence

0→ 𝐻1
crys (𝐵𝐺)/𝑝

𝑛 → 𝐻1
crys (𝐵𝐺/𝑊𝑛) → 𝐻2

crys(𝐵𝐺) [𝑝
𝑛] → 0.

Now we choose n large enough that 𝑝𝑛𝐺 = 0 and 𝐻2
crys (𝐵𝐺) is 𝑝𝑛-torsion. This is

possible by Proposition 3.15. Then the exact sequence, along with Proposition 3.14, gives
𝐻1

crys (𝐵𝐺/𝑊𝑛) � 𝐻2
crys (𝐵𝐺) for such an n. By [BBM82, Proposition 4.2.17], we have

Ext1
(𝑘/𝑊 (𝑘))Crys

(
𝐺,Ocrys) � Hom(𝑘/𝑊𝑛 (𝑘))Crys

(
𝐺,Ocrys) . Therefore, it is enough to show that

𝐻1
crys (𝐵𝐺/𝑊𝑛) � Hom(𝑘/𝑊𝑛 (𝑘))Crys

(
𝐺,Ocrys) .

Since

𝑅Γcrys(𝐵𝐺) � 𝑅 lim
←−−

(
𝑅Γcrys(Spec𝑘) �� �� 𝑅Γcrys(𝐺)

������ 𝑅Γcrys(𝐺 × 𝐺) · · ·
)
,

we obtain

𝑅Γcrys(𝐵𝐺/𝑊𝑛) � 𝑅 lim
←−−

(
𝑅Γcrys(Spec𝑘/𝑊𝑛)

���� 𝑅Γcrys(𝐺/𝑊𝑛)
������ 𝑅Γcrys(𝐺 × 𝐺/𝑊𝑛) · · ·

)
.

In order to justify the last step, we note that𝑊𝑛 (𝑘) is quasi-isomorphic to the complex𝑊 (𝑘)
𝑝𝑛

−−→ 𝑊 (𝑘);
thus the functor ( · ) ⊗𝐿

𝑊 (𝑘)
𝑊𝑛 (𝑘) commutes with the 𝑅 lim

←−−
as required.

Therefore, by Remark 3.11 and the proof of Proposition 3.12, one obtains

𝑅Γcrys(𝐵𝐺/𝑊𝑛) � 𝑅Hom𝐷 (𝑘/𝑊𝑛 (𝑘))

(
Z

[
𝐵𝐺

]
,Ocrys) ,

and, analogously to Proposition 3.13, a spectral sequence with 𝐸2-page

𝐸
𝑖, 𝑗
2 = Ext𝑖(𝑘/𝑊𝑛 (𝑘))Crys

(
𝐻− 𝑗

(
Z

[
𝐵𝐺

] )
,Ocrys) =⇒ 𝐻

𝑖+ 𝑗
crys(𝐵𝐺/𝑊𝑛).

Now applying Lemma 3.9 yields the desired isomorphism. To check this, we see that 𝐸1,0
2 = 0 and

𝐸0,1
2 = Hom(𝑘/𝑊𝑛 (𝑘))Crys

(
𝐺,Ocrys) . Also, we have 𝐸2,0

2 = 0. Since 𝐸
𝑖, 𝑗
2 = 0 for 𝑖 < 0 or 𝑗 < 0,

we obtain 𝐸0,1
∞ = Hom(𝑘/𝑊𝑛 (𝑘))Crys

(
𝐺,Ocrys) . Therefore, we indeed obtain the required isomorphism

𝐻1
crys (𝐵𝐺/𝑊𝑛) � Hom(𝑘/𝑊𝑛 (𝑘))Crys

(
𝐺,Ocrys) . The relevant part of the 𝐸2 page of the spectral sequence

is depicted in the following diagram:
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0 𝐸0,2
2 𝐸1,2

2 𝐸2,2
2

0 Hom
(
𝐺,Ocrys) 𝐸1,1

2 𝐸2,1
2

0 𝐸0,0
2 = 𝑊𝑛 (𝑘) 𝐸1,0

2 = 0 𝐸2,0
2 = 0

0 0 0 0

�

Proof of Theorem 1.2. This follows from Proposition 3.16 and Theorem 3.8. �

Remark 3.17. One can develop the theory of crystalline cohomology for higher stacks and study the
cohomology of the n-stack 𝐾 (𝐺, 𝑛) [To06]. For a group scheme G, the n-stack 𝐾 (𝐺, 𝑛) is supposed to
be an analogue of the Eilenberg–MacLane space 𝐾 (𝐺, 𝑛) for any discrete abelian group G which has
the property that 𝜋𝑖 (𝐾 (𝐺, 𝑛)) = 𝐺 for 𝑖 = 𝑛 and 𝜋𝑖 (𝐾 (𝐺, 𝑛)) = 0 for 𝑖 ≠ {𝑛, 0}. In the topological
case, there exists a chain complex of abelian groups Z[𝐵𝑛𝐺] such that 𝐻𝑖 (Z[𝐵

𝑛𝐺]) computes the
singular homology of the CW complex 𝐾 (𝐺, 𝑛). Here we do not define crystalline cohomology for
higher stacks in general, but for a finite group scheme G, we can work with an ad hoc definition
generalising Proposition 3.12. Similar to the definition of Z

[
𝐵𝐺

]
as an object of the crystalline topos,

one can also define Z
[
𝐵𝑛𝐺

]
. Then we define 𝑅Γcrys(𝐾 (𝐺, 𝑛)) := 𝑅Hom(𝑘/𝑊 (𝑘)) (Z[𝐵𝑛𝐺],Ocrys).

Then from the analogue of the spectral sequence in Proposition 3.13, we obtain that 𝐻𝑖
crys (𝐾 (𝐺, 𝑛)) = 0

for 0 < 𝑖 < 𝑛 + 1 and 𝐻𝑛+1
crys (𝐾 (𝐺, 𝑛)) = 𝑀 (𝐺). In order to prove this for 𝑛 ≥ 2, the computation with

the spectral sequence relies on the fact that for an abelian group A, 𝐻𝑖 (𝐾 (𝐴, 𝑛),Z) = 0 for 0 < 𝑖 < 𝑛,
𝐻𝑛 (𝐾 (𝐴, 𝑛),Z) = 𝐴 and 𝐻𝑛+1(𝐾 (𝐴, 𝑛),Z) = 0. The first two of these computations follow from the
Hurewicz theorem, and the last one follows from applying the Serre fibration spectral sequence for the
homotopy fibration sequence 𝐾 (𝐴, 𝑛) → ∗ → 𝐾 (𝐴, 𝑛 + 1).

3.2. Dieudonné theory of p-divisible groups

First, we recall the definition of a p-divisible group:

Definition 3.18. Let p be a prime and ℎ > 0 an integer. A p-divisible group (or Barsotti–Tate group) of
height h over a scheme S is a directed system𝐺 = {𝐺𝑛} of finite flat group schemes over S such that each
𝐺𝑛 is 𝑝𝑛-torsion of order 𝑝𝑛ℎ and the transition map 𝑖𝑛 : 𝐺𝑛 → 𝐺𝑛+1 is an isomorphism of 𝐺𝑛 onto
𝐺𝑛+1 [𝑝

𝑛] for all 𝑛 ≥ 1. A morphism 𝑓 : 𝐺 → 𝐻 between p-divisible groups is a compatible system of
S-group maps 𝑓𝑛 : 𝐺𝑛 → 𝐻𝑛 for all 𝑛 ≥ 1. If 𝑆′ → 𝑆 is a map of schemes, then 𝐺 ×𝑆 𝑆′ := 𝐺𝑛 ×𝑆 𝑆

′

is the p-divisible group of height h over 𝑆′ obtained by base change.

Example 3.19. If 𝐴→ 𝑆 is an abelian scheme with fibres of constant dimension 𝑔 > 0 and p is a prime,
then 𝐺𝑛 := 𝐴[𝑝𝑛] is a finite flat 𝑝𝑛-torsion group scheme of order 𝑝2𝑔𝑛 for all 𝑛 ≥ 1 and {𝐺𝑛} is a
directed system via isomorphisms 𝐺𝑛 � 𝐺𝑛+1 [𝑝

𝑛] for all 𝑛 ≥ 1. For an abelian variety A, we denote
this p-divisible group by 𝐴[𝑝∞]. It has height 2𝑔, where 𝑔 = dim 𝐴.

We also recall the following theorem on the Dieudonné theory of p-divisible groups, which can be
found in [Fo77, Chapitre III, Section 6, Proposition 6.1]:
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Theorem 3.20. The functor 𝐺 → 𝑀 (𝐺) := lim
←−−

𝑀 (𝐺𝑛) is an antiequivalence of categories between
the category of p-divisible groups over k and the category of finite free𝑊 (𝑘)-modules D equipped with
a Frobenius semilinear endomorphism 𝐹 : 𝐷 → 𝐷 such that 𝑝𝐷 ⊆ 𝐹 (𝐷). The height of G is the
𝑊 (𝑘)-rank of 𝑀 (𝐺).

Now in order to formulate the analogue of Theorem 1.2 for p-divisible groups, we begin by making
a definition:

Definition 3.21. Let G be a p-divisible group over k. We define the classifying stack of G to be
𝐵𝐺 := lim

−−→
𝐵𝐺𝑛, where the colimit is being taken in the category of stacks.

Proposition 3.22. For a p-divisible group 𝐺 = {𝐺𝑛}, we have 𝑅Γcrys(𝐵𝐺) � 𝑅 lim
←−−

𝑅Γcrys𝐵𝐺𝑛.

Proof. We write F𝑛 := 𝐵𝐺𝑛 and F := 𝐵𝐺 for this proof. Using Remark 2.4, we see that the crystalline
cohomology of a stack Y depends only on Y viewed as a presheaf of groupoids on the category of
affine k-schemes Aff𝑘 . If Y := colimY𝛼 as presheaves of groupoids, then by the alternative definition in
Remark 2.4 it follows that 𝑅Γcrys(Y) � 𝑅lim𝛼𝑅Γcrys(Y𝛼). Therefore, in order to show that 𝑅Γcrys(F) �
𝑅 lim
←−−𝑛

𝑅Γcrys(F𝑛), it is enough to prove that F is the colimit of F𝑛 in the category of presheaves of
groupoids on Aff𝑘 . This follows because affine schemes in the fpqc site of all schemes satisfy the property
that any fpqc covering of an affine scheme has a finite subcovering by affine schemes. Indeed, by the
property we mentioned, checking descent over an affine scheme is essentially a finite limit condition.
Thus our claim follows, since filtered colimits commute with finite limits. �

Proposition 3.23. We have a natural isomorphism 𝐻2
crys(𝐵𝐺) � 𝑀 (𝐺).

Proof. We are interested in computing 𝐻2
crys(𝐵𝐺), which is 𝐻2

(
𝑅 lim
←−−

𝑅Γcrys𝐵𝐺𝑛

)
by Proposition 3.22.

We compute the cohomology of this N-indexed derived limit by using [SP, Tag 07KY], which gives us
the short exact sequence

0→ 𝑅1 lim
←−−

𝐻1
crys(𝐵𝐺𝑛) → 𝐻2

crys (𝐵𝐺) → lim
←−−

𝐻2
crys(𝐵𝐺𝑛) → 0.

Therefore, our claim follows from Propositions 3.14 and 3.16 and Theorem 3.20. �

3.3. Cohomology of the classifying stack of an abelian variety

Now we consider an abelian variety A over the field k. Let 𝐵𝐴 denote the classifying stack of A. In this
section, in Proposition 3.28, we prove that 𝐻2∗

crys (𝐵𝐴) � Sym∗
(
𝐻1

crys (𝐴)
)
, and 𝐻𝑖

crys (𝐵𝐴) = 0 for odd

i. In other words, 𝐻∗crys (𝐵𝐴) � Sym∗
(
𝐻1

crys (𝐴)
)
, where 𝐻1

crys (𝐴) is considered to be in degree 2.

Remark 3.24. An analogue of this proposition was proved by Borel in topology [Bo53] and by Behrend
in ℓ-adic cohomology using fibration spectral sequences [Beh03, Theorem 6.1.6]. Here we take a different
approach, based on descent theory. One knows that there is a functorial isomorphism 𝐻∗crys (𝐴) �∧∗ 𝐻1

crys (𝐴). We show that Proposition 3.28 is a formal consequence of this isomorphism and the
Künneth formula.

In this section, we will crucially use the theory of derived functors of nonadditive functors, which
appears in [DP61, Il71]. Note that, analogously to Proposition 3.13, there is an 𝐸1 spectral sequence
with 𝐸 𝑖, 𝑗

1 = 𝐻
𝑗
crys

(
𝐴𝑖

)
=⇒ 𝐻

𝑖+ 𝑗
crys(𝐵𝐴), where 𝐴𝑖 denotes the i-fold fibre product of A with itself. We

note that by definition, for 𝑗 ≥ 1, 𝐸•, 𝑗1 is the alternating face complex associated to the cosimplicial
object given by (

𝐻
𝑗
crys(∗)

�� �� 𝐻 𝑗
crys (𝐴)

������ 𝐻
𝑗
crys (𝐴 × 𝐴) · · ·

)
,
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which is naturally isomorphic to the cosimplicial object

𝑗∧ (
𝐻1

crys (∗)
�� �� 𝐻1

crys (𝐴)
������ 𝐻1

crys(𝐴 × 𝐴) · · ·
)
.

Lemma 3.25. The complex 𝐸•,11 is homotopy-equivalent to 𝐻1
crys(𝐴) [−1].

Proof. As already noted, 𝐸•,11 is the alternating face complex associated to(
𝐻1

crys (∗)
�� �� 𝐻1

crys (𝐴)
������ 𝐻1

crys(𝐴 × 𝐴) · · ·
)
.

By the Künneth formula, one has a natural isomorphism 𝐻1
crys

(
𝐴𝑖

)
�

⊕𝑖
𝑠=1 𝐻

1
crys (𝐴), and 𝐻1 (∗) = 0.

Writing 𝐻1
crys(𝐴) = 𝑉 , we note that 𝐸•,11 is naturally isomoprphic to the following explicit complex

(where V sits in cohomological degree 1):

𝐾•1 : · · · → 0→ 𝑉 → 𝑉 ⊕2 → 𝑉 ⊕3 → · · · .

Here the first differential 𝑑1 : 𝑉 → 𝑉 ⊕2 is zero. In general, for 𝑛 ≥ 2, the differential 𝑑𝑛 : 𝑉 ⊕𝑛 → 𝑉 ⊕𝑛+1

is given by

𝑑𝑛 (𝑣1, 𝑣2, . . . , 𝑣𝑛) = (−𝑣1, 0, 𝑣2 − 𝑣3, 0, 𝑣4 − 𝑣5, 0, . . . , 𝑣𝑛) for even 𝑛

and

𝑑𝑛 (𝑣1, 𝑣2, . . . , 𝑣𝑛) = (0, 𝑣2, 𝑣2, 𝑣4, 𝑣4, . . . , 0) for odd 𝑛.

One can check this by induction. Now we consider the complex 𝐾•2 : · · · → 0 → 𝑉 → 0 → 0 · · · ,
where V sits in cohomological degree 1. There are obvious maps 𝐾•1 → 𝐾•2 and 𝐾•2 → 𝐾•1 (induced
by id𝑉 on cohomological degree 1), and we prove that they induce the desired homotopy equivalence.
There is nothing to prove for the composite map 𝐾•2 → 𝐾•2 . For the other composite map, 𝐾•1 → 𝐾•1 ,
our task is to prove that it is homotopic to id𝐾 •1 . We construct the required homotopy ℎ𝑖 . We set
ℎ𝑖 = 0 for 𝑖 ≤ 2. For 𝑖 ≥ 3, now we define ℎ𝑖 : 𝑉 ⊕𝑖 → 𝑉 ⊕𝑖−1. We let ℎ3 (𝑣1, 𝑣2, 𝑣3) = (−𝑣1, 𝑣3) and
ℎ4 (𝑣1, . . . , 𝑣4) = (0, 𝑣2, 0). In general, we set

ℎ𝑖 (𝑣1, . . . , 𝑣𝑖) = (0, 𝑣2, 0, . . . , 0, 𝑣𝑖−2, 0) for even 𝑖 ≥ 6

and

ℎ𝑖 (𝑣1, . . . , 𝑣𝑖) = (−𝑣1, 0,−𝑣3, 0, . . . , 0,−𝑣𝑖−2, 𝑣𝑖) for odd 𝑖 ≥ 5.

One easily checks that this gives the required homotopy. �

Remark 3.26. For the cohomology of the complex 𝐾•1 , one can also use a less explicit argument. If
we write 𝑉 = 𝐻1

crys (𝐴) as before, the addition 𝐴 × 𝐴 → 𝐴 induces a map 𝑉 → 𝑉 ⊕ 𝑉 which is
dual to addition on 𝑉∨. Therefore, one sees that the complex 𝐾•1 is the dual complex to 𝐵𝑉∨ (whose
cohomology is concentrated in cohomological degree −1 and is equal to 𝑉∨). Applying duals back,
one sees that cohomology of 𝐾•1 is concentrated in cohomological degree 1 and is equal to V. In fact,
one can also prove that 𝐾•1 is homotopy-equivalent to 𝑉 [−1] in this manner by noting that 𝐵𝑉∨ is
homotopy-equivalent to 𝑉∨[1]. We thank the referee for pointing this out.

Lemma 3.27. The complex 𝐸•,𝑛1 is homotopy-equivalent to Sym𝑛
(
𝐻1

crys(𝐴)
)
[−𝑛].
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Proof. Writing 𝐻1
crys (𝐴) = 𝑉 again, we note that by Lemma 3.25, 𝐸•,11 is homotopy-equivalent to

𝑉 [−1]. Therefore, the (derived) nth exterior power ∧𝑛 (𝑉 [−1]) is homotopy-equivalent to ∧𝑛
(
𝐸•,11

)
by

[Il71, Definition 4.1.3.2, Lemma 4.1.3.5]. It also follows from [Il71, Definition 4.1.3.2, Section 1.3.4]
that ∧𝑛

(
𝐸•,11

)
is homotopy-equivalent to the alternating face complex associated to

𝑛∧ (
𝐻1

crys (∗)
�� �� 𝐻1

crys (𝐴)
������ 𝐻1

crys(𝐴 × 𝐴) · · ·
)
,

which is isomorphic to 𝐸•,𝑛1 . Now one also notes that ∧𝑛 (𝑉 [−1]) is homotopy-equivalent to
Sym𝑛 (𝑉) [−𝑛], by the formula of décalage [Il71, Proposition 4.3.2.1(i)]. This proves the lemma. �

Proposition 3.28. We have a natural isomorphism 𝐻2∗
crys(𝐵𝐴) � Sym∗

(
𝐻1

crys(𝐴)
)
, and 𝐻𝑖

crys(𝐵𝐴) = 0
for odd i.

Proof. This follows from the existence of the 𝐸1 spectral sequence analogous to Proposition 3.13
(which degenerates at the 𝐸2 page by Lemma 3.27) and the calculations from Lemmas 3.25 and 3.27.
The spectral sequence also guarantees the naturality of the isomorphisms. �

Corollary 3.29. For an abelian variety A over k, 𝐻2
crys(𝐵𝐴) is naturally isomorphic to the Dieudonné

module associated to the p-divisible group 𝐴[𝑝∞].

Proof. This follows from Proposition 3.28 and the fact that 𝐻1
crys(𝐴) is isomorphic to the Dieudonné

module associated to the p-divisible group 𝐴[𝑝∞]. �

3.4. Cohomology of the classifying stack of a p-divisible group

Let G be a p-disivisible group over a perfect field k. Using the calculation in Section 3.3, we are
able to fully compute the cohomology ring 𝐻∗crys (𝐵𝐺). In this section, we prove that 𝐻∗crys(𝐵𝐺) �
Sym∗(𝑀 (𝐺)), where 𝑀 (𝐺) is the Dieudonné module of G and is considered to be in degree 2. Our
strategy is to relate the p-divisible group to a suitable abelian variety and deduce the result from
Proposition 3.28. First, we will record two lemmas:

Lemma 3.30. Let G be a uniquely p-divisible abelian group. Then 𝐻𝑖 (𝐺, 𝑘) = 0 for 𝑖 > 0, where
𝐻𝑖 (𝐺, 𝑘) denotes the group homology with coefficients in the field k equipped with trivial G action.

Proof. Since G is an abelian group, there is an exact sequence 0→ Z⊕𝐼 → Z⊕𝐽 → 𝐺 → 0. By taking
colimits over multiplication by p, we obtain an exact sequence 0→ Z[1/𝑝] ⊕𝐼 → Z[1/𝑝] ⊕𝐽 → 𝐺 → 0.
Using the Hochschild–Serre spectral sequence, we are reduced to checking the claim for𝐺 = Z[1/𝑝] ⊕𝐼 .
By taking filtered colimits, we can assume that I is finite. Then by the Künneth formula it is enough to
check the claim for Z[1/𝑝]. Taking filtered colimits over multiplication by p, it follows from the fact
that 𝐻1(Z, 𝑘) = 𝑘 and 𝐻𝑖 (Z, 𝑘) = 0 for 𝑖 > 0. �

Lemma 3.31. Let G be an abelian group such that multiplication by p is surjective on G. Then it
follows that 𝑊𝑛 (𝑘) [𝐵𝐺 [𝑝

∞]] → 𝑊𝑛 (𝑘) [𝐵𝐺] is an isomorphism in the derived category 𝐷 (𝑊𝑛 (𝑘)) of
𝑊𝑛 (𝑘)-modules. Here 𝐺 [𝑝∞] := lim

−−→
𝐺 [𝑝𝑛].

Proof. Going modulo p, it would be enough to show that 𝑘 [𝐵𝐺 [𝑝∞]] → 𝑘 [𝐵𝐺] is a quasi-isomorphism.
For that, it would be enough to prove that the map induced on group homology 𝐻𝑖 (𝐺 [𝑝

∞], 𝑘) →
𝐻𝑖 (𝐺, 𝑘) is an isomorphism. Here in both cases, group cohomology is taken with constant coefficients
in k. We have the exact sequence

0→ 𝐺 [𝑝∞] → 𝐺 → lim
−−→
𝑝

𝐺 → 0.
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We will write 𝑄 := lim
−−→𝑝

𝐺. By the Hochschild–Serre spectral sequence, we have a spectral sequence

𝐸2 = 𝐻𝑝
(
𝑄, 𝐻𝑞 (𝐺 [𝑝

∞], 𝑘)
)
=⇒ 𝐻𝑝+𝑞 (𝐺, 𝑘).

Since G is abelian and G acts trivially on k, it follows that Q acts trivially on 𝐻𝑞 (𝐺 [𝑝
∞], 𝑘). Since k is

a field, 𝐻𝑞 (𝐺 [𝑝
∞], 𝑘) is a direct sum of copies of k, and therefore we are done, by Lemma 3.30. �

Proposition 3.32. Let A be an abelian variety over k. Let 𝐴[𝑝∞] be the associated p-divisible group.
Then 𝐻∗crys(𝐵(𝐴[𝑝

∞])) � Sym∗
(
𝐻2

crys(𝐵𝐴[𝑝
∞])

)
, where 𝐻2

crys(𝐵𝐴[𝑝
∞])) is considered to be in

degree 2.

Proof. We letX denote the topos Shv(SYNSch𝑘 ). Given the abelian variety A, we can associate an object
in X (by considering functors of points), which will also be denoted by A. Similarly, by taking direct
limits, we can associate an object in X corresponding to 𝐴[𝑝∞], which will again be denoted by 𝐴[𝑝∞].
Since they both are group objects, we can consider the associated classifying objects as simplicial objects
in X, denoted respectively by 𝐵𝐴 and 𝐵𝐴[𝑝∞]. One can also consider the free 𝑊𝑛 (𝑘)-module on these
objects and take the associated alternating face complex, which will be denoted by 𝑊𝑛 (𝑘) [𝐵𝐴] and
𝑊𝑛 (𝑘) [𝐵𝐴[𝑝

∞]], respectively, and can both be viewed as objects in𝐷 (𝑊𝑛 (𝑘))X; the derived category of
𝑊𝑛 (𝑘)-modules in X. We set 𝑅Γcrys(𝐵𝐴[𝑝

∞]/𝑊𝑛) := 𝑅Hom𝐷 (𝑊𝑛 (𝑘))X (𝑊𝑛 (𝑘) [𝐵𝐴[𝑝
∞]],Ocrys/𝑊𝑛)

and 𝑅Γcrys(𝐵𝐴/𝑊𝑛) := 𝑅Hom𝐷 (𝑊𝑛 (𝑘))X (𝑊𝑛 (𝑘) [𝐵𝐴],Ocrys/𝑊𝑛).

Lemma 3.33. There is a natural isomorphism 𝑊𝑛 (𝑘) [𝐵𝐴[𝑝
∞]] � 𝑊𝑛 (𝑘) [𝐵𝐴] in 𝐷 (𝑊𝑛 (𝑘))X. Thus

𝑅Γcrys(𝐵𝐴[𝑝
∞]/𝑊𝑛) � 𝑅Γcrys(𝐵𝐴/𝑊𝑛).

Proof. Since the multiplication-by-p map on the abelian variety A is a syntomic cover, it follows that
as an abelian group object of X, multiplication by p is surjective on A. Using the map 𝐴[𝑝∞] → 𝐴, we
obtain a natural map 𝑊𝑛 (𝑘) [𝐵𝐴[𝑝

∞]] → 𝑊𝑛 (𝑘) [𝐵𝐴], and in order to prove that this map is a quasi-
isomorphism, we need to check that 𝐻𝑖 (𝑊𝑛 (𝑘) [𝐵𝐴[𝑝

∞]]) → 𝐻𝑖 (𝑊𝑛 (𝑘) [𝐵𝐴]) is an isomorphism.
Note that since the topos X can be generated by affine schemes, it is (locally) coherent, and by Deligne’s
theorem [AGV72, Exposé VI, p. 336] it has enough points. Therefore, in order to check that the map
𝐻𝑖 (𝑊𝑛 (𝑘) [𝐵𝐴[𝑝

∞]]) → 𝐻𝑖 (𝑊𝑛 (𝑘) [𝐵𝐴]) is an isomorphism, it is enough to check it by taking stalks
at a (geometric) point 𝑥 : Sets→ X. But since taking stalks is an exact functor, it commutes with taking
cohomology. Therefore, we can take stalks levelwise on the complexes associated to 𝑊𝑛 (𝑘) [𝐵𝐴[𝑝

∞]]

and 𝑊𝑛 (𝑘) [𝐵𝐴] and then check that the map is a quasi-isomorphism. Again, noting that taking stalks
commutes with the free 𝑊𝑛 (𝑘)-module object construction, we are reduced to proving that there is a
natural quasi-isomorphism 𝑊𝑛 (𝑘) [𝐵𝐴𝑥 [𝑝

∞]] → 𝑊𝑛 (𝑘) [𝐵𝐴𝑥] of complexes of 𝑊𝑛 (𝑘)-modules. This
follows from Lemma 3.31. �

By taking inverse limits over n, we obtain 𝑅Γcrys(𝐵𝐴[𝑝
∞]) � 𝑅Γcrys(𝐵𝐴). Now Proposition 3.32

follows from the fact that 𝐻∗crys (𝐵𝐴) is a symmetric algebra in 𝐻2
crys(𝐵𝐴) by Proposition 3.28. �

Proposition 3.34. Let G be any p-divisible group over k. Then 𝐻∗crys(𝐵𝐺) = Sym∗
(
𝐻2

crys(𝐵𝐺)
)
, where

𝐻2
crys(𝐵𝐺) is considered to be in degree 2.

Proof. At first we assume that the field k is algebraically closed. By the results proven in [Oor00], it
follows that there exists a p-divisible group 𝐺 ′ such that there is an isomorphism 𝐺 × 𝐺 ′ � 𝐴[𝑝∞] for
some abelian variety A. Indeed, by taking 𝐺 ′ to be the dual of G, we get a p-divisible group 𝐺 × 𝐺 ′
which has a symmetric Newton polygon; therefore, by [Oor00, Section 5] there exists some abelian
variety 𝐴′ such that 𝐴′[𝑝∞] and 𝐺 × 𝐺 ′ have the same Newton polygon. By the Dieudonné–Manin
classification, 𝐴′ is isogenous to 𝐺 ×𝐺 ′. Quotienting 𝐴′ by a finite flat group scheme if necessary, one
obtains an abelian variety A as desired.
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Using the zero section of 𝐺 ′ we have a map 𝐺 → 𝐺 × 𝐺 ′ which when composed with projection
to G gives the identity map. Thus 𝐵𝐺 is a retract of 𝐵𝐴[𝑝∞]. Since 𝐻∗crys (𝐵𝐴[𝑝

∞]) is generated as a
(commutative) symmetric algebra in degree 2 classes, it follows that 𝐻∗crys𝐵𝐺 is generated by degree
2 classes – that is, there is a surjection Sym∗

(
𝐻2

crys(𝐵𝐺)
)
→ 𝐻∗crys (𝐵𝐺). Doing the same for 𝐺 ′, we

arrive at the following commutative diagram:

Sym∗𝐻2
crys(𝐵𝐺) ⊗ Sym∗𝐻2

crys(𝐵𝐺
′) Sym∗

(
𝐻2

crys (𝐵𝐺 × 𝐵𝐺
′)
)

𝐻∗crys(𝐵𝐺) ⊗ 𝐻
∗
crys(𝐵𝐺

′) 𝐻∗crys (𝐵𝐺 × 𝐵𝐺
′)

�

�

The upper horizontal map is an isomorphism, since 𝐻2
crys (𝐵𝐺) is isomorphic to the Dieudonné module

(Proposition 3.23), and therefore 𝐻2
crys (𝐵𝐺 × 𝐵𝐺

′) � 𝐻2
crys (𝐵𝐺) ⊕ 𝐻

2
crys(𝐵𝐺

′). By Proposition 3.32,
the right vertical map is an isomorphism, since 𝐵𝐺 × 𝐵𝐺 ′ � 𝐵𝐴[𝑝∞]. This shows that the surjection
Sym∗

(
𝐻2

crys(𝐵𝐺)
)
→ 𝐻∗crys(𝐵𝐺) must be an isomorphism, yielding the assertion of the proposition

when k is algebraically closed.
We will now remove the assumption that k is algebraically closed. Let k be any perfect field and 𝑘

denote the algebraic closure of k. Let 𝐺𝑘 denote the base change of G to Spec𝑘 . Our goal is to show
that the natural map Sym∗

(
𝐻2

crys(𝐵𝐺)
)
→ 𝐻∗crys (𝐵𝐺) is an isomorphism. By Proposition 3.23 and

taking inverse limits over n, it would be enough to show that 𝐻∗crys(𝐵𝐺/𝑊𝑛) = Sym∗
(
𝐻2

crys (𝐵𝐺/𝑊𝑛)
)
.

Since we already know that 𝐻∗crys
(
𝐵𝐺𝑘/𝑊𝑛

)
= Sym∗

(
𝐻2

crys
(
𝐵𝐺𝑘/𝑊𝑛

) )
, it would be enough to prove

that 𝑅Γcrys
(
𝐵𝐺𝑘/𝑊𝑛

)
� 𝑅Γcrys(𝐵𝐺/𝑊𝑛) ⊗𝑊𝑛 (𝑘) 𝑊𝑛

(
𝑘
)
. This reduces to the case when 𝑛 = 1, so it is

enough to show that 𝐻𝑖
crys

(
𝐵𝐺𝑘/𝑊1

)
= 𝐻𝑖

crys (𝐵𝐺/𝑊1) ⊗𝑘 𝑘 . We note the following lemma:

Lemma 3.35. Let M be a finite group scheme over a perfect field k. Then 𝐻𝑖
crys(𝐵𝑀/𝑊1) is a finite-

dimensional vector space.

Proof. By using descent along the syntomic map Spec𝑘 → 𝐵𝑀 and [ABM19, Remark 2.4], it follows
that 𝐻𝑖

crys (𝐵𝑀/𝑊1) � 𝐻𝑖
dR (𝐵𝑀). Here 𝐻𝑖

dR(𝐵𝑀) denotes the de Rham cohomology of the smooth
stack 𝐵𝑀 as in [ABM19, Construction 2.4]. In order to show the finiteness of 𝐻𝑖

dR(𝐵𝑀), since 𝐵𝑀 is
smooth, using the Hodge–de Rham spectral sequence from [ABM19, Definition 3.1(b)] it is enough to
show the finiteness of the Hodge cohomology groups of 𝐵𝑀 . But this finiteness follows because the
cotangent complex of 𝐵𝑀 and its exterior powers are perfect complexes on 𝐵𝑀 , and M is a finite group
scheme (compare [Tot18, Theorem 3.1]). �

Let us write G as the directed system {𝐺𝑛} of finite group schemes 𝐺𝑛 over k. For a fixed 𝑛, we have
𝐻𝑖

crys
(
𝐵(𝐺𝑛)𝑘/𝑊1

)
= 𝐻𝑖

crys (𝐵𝐺𝑛/𝑊1) ⊗𝑘 𝑘 . By the previous lemma, we have

𝐻𝑖
crys

(
𝐵𝐺𝑘/𝑊1

)
= lim
←−−
𝑛

𝐻𝑖
crys

(
𝐵(𝐺𝑛)𝑘/𝑊1

)
= lim
←−−
𝑛

(
𝐻𝑖

crys (𝐵𝐺𝑛/𝑊1) ⊗𝑘 𝑘
)
.

We note that the prosystem
{
𝐻𝑖

crys(𝐵𝐺𝑛/𝑊1)
}

is essentially constant [SP, Tag 05PT]. Indeed, this can
be seen by changing base to 𝑘 and noting that the prosystem {𝑉𝑛} :=

{
𝐻𝑖

crys (𝐵𝐺𝑛/𝑊1) ⊗𝑘 𝑘
}

consists

of finite-dimensional 𝑘-vector spaces, and lim
←−−𝑛

𝑉𝑛 is finite-dimensional as well. The first assertion
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follows from Lemma 3.35, and the second one follows from the statement of Proposition 3.34 for the
algebraically closed field 𝑘 . Therefore,

𝐻𝑖
crys

(
𝐵(𝐺𝑛)𝑘/𝑊1

)
= lim
←−−
𝑛

(
𝐻𝑖

crys(𝐵𝐺𝑛/𝑊1) ⊗𝑘 𝑘
)
= lim
←−−
𝑛

𝐻𝑖
crys(𝐵𝐺𝑛/𝑊1) ⊗𝑘 𝑘 = 𝐻𝑖

crys(𝐵𝐺/𝑊1) ⊗𝑘 𝑘,

which finishes the proof. �

Proof of Theorem 1.4. This follows from Propositions 3.23 and 3.34. �

4. Prismatic cohomology

4.1. Prismatic cohomology for stacks

In this section, we start by recalling the notion of prismatic cohomology and then extend it to stacks. The
main references for this section are [BS19]. We will freely use the definitions and notations from those
papers. Our somewhat terse exposition here is also loosely based on [ALB19]. We will sometimes use
the notion of derived p-completion in the proofs; for its basic properties, we refer to [SP, Tag 091N].
More details on notions such as p-complete flatness can be found in [BMS19, Section 4].

Definition 4.1 ([BMS19, Definition 4.1]). Let 𝐴 → 𝐵 be a map of commutative rings. We will call
this map p-completely (faithfully) flat if 𝐵 ⊗𝐿𝐴 𝐴/𝑝 ∈ 𝐷 (𝐴/𝑝) is concentrated in degree 0, and is a
(faithfully) flat 𝐴/𝑝-algebra.

Definition 4.2 ([BMS19, Definition 4.1]). Let A be a commutative ring and M be an object in the
derived category 𝐷 (𝐴). Set 𝑎, 𝑏 ∈ Z � {±∞}. We will say that M has p-complete Tor-amplitude in
[𝑎, 𝑏] if 𝑀 ⊗𝐿𝐴 𝐴/𝑝 ∈ 𝐷 (𝐴/𝑝) has Tor-amplitude in [𝑎, 𝑏]. The latter condition means that if we set
𝑀 ′ := 𝑀 ⊗𝐿𝐴 𝐴/𝑝, then 𝑀 ′ ⊗𝐿

𝐴/𝑝
𝑁 ∈ 𝐷 [𝑎,𝑏] (𝐴/𝑝) for any 𝐴/𝑝-module N.

Definition 4.3 ([BMS19, Definition 4.10]). A ring S is called quasisyntomic if it is p-complete with
bounded 𝑝∞-torsion and the cotangent complex L𝑆/Z𝑝 has p-complete Tor-amplitude in [−1, 0]. The
category of all quasisyntomic rings is denoted by QSyn. A map 𝑆 → 𝑆′ of p-complete rings with bounded
𝑝∞-torsion is a quasisyntomic morphism if 𝑆′ is p-completely flat over S and the cotangent complex
L𝑆′/𝑆 has p-complete Tor-amplitutde in [−1, 0]. A quasisyntomic morphism is called a quasisyntomic
cover if the map 𝑆 → 𝑆′ is p-completely faithfully flat.

Remark 4.4. Note that since a quasisyntomic ring S is assumed to have bounded 𝑝∞-torsion, the notion
of derived p-completeness is equivalent to classical p-completeness in this case (compare [SP, Tag
0923]).

Definition 4.5 ([BMS19, Definition 4.18]). A ring S is called an integral perfectoid if it is p-complete,
such that 𝜋𝑝 = 𝑝𝑢 for some 𝜋 ∈ 𝑆, 𝑢 ∈ 𝑆×, the Frobenius is surjective on 𝑆/𝑝 and the kernel of the map
𝜃 : 𝐴inf(𝑆) := 𝑊

(
𝑆♭

)
→ 𝑆 is principal.

Definition 4.6 ([BMS19, Definition 4.20]). A ring S is called a quasiregular semiperfectoid (QRSP) if
𝑆 ∈ QSyn and there exists a perfectoid ring R mapping surjectively onto S.

Definition 4.7. If R is any p-complete ring, we will let (𝑅)qsyn denote the (opposite) category of all
p-complete rings over R which are quasisyntomic. This category can be equipped with a Grothendieck
topology generated by quasisyntomic covers, which turns this into a site.

Remark 4.8. By the results in [BMS19, Section 4.4], QRSP rings form a basis for the site (𝑅)qsyn.
Therefore, specifying a sheaf on (𝑅)qsyn amounts to assigning values to the QRSP rings satisfying the
descent condition.
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In [BS19] the authors defined prismatic cohomology first for p-complete smooth algebras and
then extended it to all p-complete algebras [BS19, Construction 7.6], calling it the derived prismatic
cohomology. An important fact [BS19, Proposition 7.10] about this construction is that for every QRSP
ring S, the derived prismatic cohomology, denoted as Δ𝑆 , lives only in degree 0 – that is, is discrete.
Also, the functor 𝑆 → Δ𝑆 forms a quasisyntomic sheaf [BS19, Construction 7.6(3)]. Using these facts,
the authors in [ALB19] construct a sheaf of rings Opris on (𝑅)qsyn such that for any QRSP ring S over
R, one has

Δ𝑆 � 𝑅Γ
(
𝑆,Opris) .

Further, we note that for any prism (𝐴, 𝐼), there is a decreasing filtration N≥•𝐴, called the Nygaard
filtration, which is defined as

N≥𝑖 (𝐴) := 𝜑−1 (
𝐼 𝑖
)
.

This equips the sheaf of rings Opris with a decreasing filtration N≥•Opris of sheaves.

Remark 4.9. We explain the construction of the Nygaard filtration in detail. Using [ALB19, Corollary
3.3.10], we have a morphism of topoi

𝑣 : Shv ((𝑅)Δ) → Shv
(
(𝑅)qsyn

)
,

where (𝑅)Δ denotes the absolute prismatic site as in [ALB19, Definition 3.1.4]. On (𝑅)Δ one defines
a sheaf of rings OΔ by sending a prism (𝐴, 𝐼) → 𝐴. Using the notion of Nygaard filtration on a
prism, one can equip this sheaf of rings OΔ with the Nygaard filtration N≥•OΔ, which sends a prism
(𝐴, 𝐼) → N≥•𝐴 ⊆ 𝐴. In order to prove that the presheaf (𝐴, 𝐼) → N≥•𝐴 is indeed a sheaf, we note
that N≥𝑖 (𝐴) is the kernel of a map of a presheaf of rings ((𝐴, 𝐼) → 𝐴) →

(
(𝐴, 𝐼) → 𝐴/𝐼 𝑖

)
obtained

by composing 𝜑 : 𝐴→ 𝐴 with the projection map 𝐴→ 𝐴/𝐼 𝑖 . Therefore it will be enough to show that
the presheaf (𝐴, 𝐼) → 𝐴/𝐼 𝑖 is a sheaf. This follows from the proof of [BS19, Corollary 3.12] by noting
that for a map (𝐴, 𝐼) → (𝐵, 𝐽) of prisms, one has 𝐼 𝑖𝐵 = 𝐽𝑖 by [BS19, Lemma 3.5]. One defines

N≥•Opris := 𝑣∗N≥•OΔ.

By this definition and [BS19, Proposition 7.2], it follows that N≥•Opris (𝑆) � N≥•Δ𝑆 for a QRSP ring
𝑆 ∈ (𝑅)qsyn. In fact, by Remark 4.8 this description can be used to define the sheaves N≥•Opris after one
proves that it forms a sheaf on the basis objects. However, although a priori it is not obvious, actually
more is true: The functor that sends a QRSP algebra 𝑆 → N≥•Δ𝑆 forms a sheaf with vanishing higher
cohomology – that is, 𝐻𝑖

(
𝑆,N≥•Opris) = 0 for 𝑖 ≥ 1 and a QRSP algebra S. This fact follows from

[BS19, Theorem 12.2] and [BMS19, Theorem 3.1].

Definition 4.10. We call Y a quasisyntomic stack over R if it is a stack with respect to the site (𝑅)qsyn.

Remark 4.11. If 𝐴 ∈ (𝑅)qsyn, then by p-completely faithfully flat descent it follows that ℎ𝐴 is a sheaf
with respect to (𝑅)qsyn. If Y is a quasisyntomic stack, an arrow ℎ𝐴→ Y will be denoted as Spf𝐴→ Y.

Remark 4.12. Let X be a p-adic formal scheme over R. Then setting 𝑋 (𝐴) := Homformal sch(Spf𝐴, 𝑋)
defines a quasisyntomic sheaf on (𝑅)qsyn, which we will denote by 𝑋 .

Definition 4.13. Let Y be a quasisyntomic stack. We define the prismatic cohomology of Y to be

𝑅ΓΔ(Y) := 𝑅 lim
←−−

Spf𝐴→Y
Δ𝐴,

where 𝐴 ∈ (𝑅)qsyn and the derived limit is taken in the derived category of abelian groups.
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Remark 4.14. Let Y be a quasisyntomic stack. We give an alternative description of 𝑅ΓΔ(Y). One can
define the quasisyntomic site of Y, denoted as (Y)qsyn, to be the category whose objects are Spf𝐴→ Y
for 𝐴 ∈ (𝑅)qsyn equipped with the quasisyntomic covers – that is, we let (Y)qsyn := (𝑅)qsyn/Y . Then by
the discussion preceding Definition 4.10, we obtain a sheaf of rings Opris on (Y)qsyn. Then it follows
that 𝑅ΓΔ(Y) � 𝑅Γ

(
Y,Opris) .

Definition 4.15. Let Y be a quasisyntomic stack. The Nygaard filtration on the prismatic cohomology
𝑅ΓΔ(Y) is defined to be

N≥•𝑅ΓΔ(Y) := 𝑅Γ
(
Y,N≥•Opris) .

Definition 4.16. Now we consider an algebraic stack X over R. We will define the p-adic completion of
X as a quasisyntomic stack, which will be denoted as X̂. We define

X̂(𝐴) := lim
←−−

X(𝐴/𝑝𝑛),

where 𝐴 ∈ (𝑅)qsyn. This defines a sheaf of groupoids in the site (𝑅)qsyn. Indeed, X̂ by definition is an
inverse limit of the sheaves on (𝑅)qsyn which sends 𝐴→ X(𝐴/𝑝𝑛) and therefore has to be a sheaf.

Definition 4.17. We define the prismatic cohomology of a stack X to be

𝑅ΓΔ(X) := 𝑅ΓΔ

(
X̂
)
.

Proposition 4.18. If X is a p-adic formal scheme over R, then 𝑅ΓΔ(𝑋) �

𝑅Hom𝐷( (𝑅)qsyn)

(
Z

[
𝑋
]
,Opris

)
, where 𝑋 is the quasisyntomic sheaf associated to X on (𝑅)qsyn.

Proof. This follows from Remarks 4.12 and 4.14 by adjunction. �

Remark 4.19. Instead of considering quasisyntomic stacks, one could also work with ‘p-adic formal
stacks’, which can be defined to be stacks with respect to the Grothendieck site on the category of p-
complete and bounded 𝑝∞-torsion rings equipped with p-completely faithfully flat covers. Any p-adic
formal stack can also be regarded as a quasisyntomic stack. The reason we work with the notion of
quasisyntomic stacks is that the notion of prismatic cohomology in Definition 4.13 would ultimately
regard a p-adic formal stack as a quasisyntomic stack. Hence one might as well define prismatic
cohomology for quasisyntomic stacks.

4.2. Application to prismatic Dieudonné theory

From now we will assume that the ring R is a QRSP ring. Let (Δ𝑅, 𝐼) be the prism associated to R
by taking prismatic cohomology. We briefly recall some definitions from [ALB19] and review their
theorem on classification of p-divisible groups in terms of filtered prismatic Dieudonné modules.

Definition 4.20 ([ALB19, Definition 4.1.10]). A filtered prismatic Dieudonné module over R is a
collection (𝑀, Fil𝑀, 𝜑𝑀 ) consisting of a finite locally free Δ𝑅-module M, a Δ𝑅-submodule Fil𝑀 and
𝜑 a linear map 𝜑𝑀 : 𝑀 → 𝑀 satisfying the following:

(1) 𝜑𝑀 (Fil𝑀) ⊂ 𝐼𝑀 and 𝜑𝑀 (Fil𝑀) generates 𝐼𝑀 as a Δ𝑅-module.
(2)

(
N≥1Δ𝑅

)
𝑀 ⊂ Fil𝑀 and 𝑀/Fil𝑀 is a finite locally free R-module.

Now let G be a p-divisible group. One makes the following definition:

Definition 4.21. The quasisyntomic sheaf 𝐺 ∈ (𝑅)qsyn associated to a p-divisible group G is defined to
be lim
−−→

𝐺𝑛, where 𝐺𝑛 ∈ (𝑅)qsyn is the quasisyntomic sheaf associated to Spf𝐺𝑛.
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The authors in [ALB19] make the following definition, which can be seen as a generalisation of
Theorem 3.8:

Definition 4.22 ([ALB19, Definition 4.2.8]). Let G be a p-divisible group over R. We define

𝑀Δ (𝐺) := Ext1(𝑅)qsyn

(
𝐺,Opris) ,

Fil𝑀Δ (𝐺) := Ext1(𝑅)qsyn

(
𝐺,N≥1Opris

)
and 𝜑𝑀Δ (𝐺) as the endomorphism induced by 𝜑 on Opris. Then

𝑀Δ(𝐺) :=
(
𝑀Δ (𝐺), Fil𝑀Δ (𝐺), 𝜑𝑀Δ (𝐺)

)
is called the filtered prismatic Dieudonné module of G.

In this case, the main theorem of [ALB19] says the following:

Theorem 4.23. The filtered prismatic Dieudonné module functor

𝐺 → 𝑀Δ(𝐺)

defines an antiequivalence between the category of p-divisible groups over R and the category of filtered
prismatic Dieudonné modules over R.

Example 4.24. For the étale p-divisible groupQ𝑝/Z𝑝 over R, we have𝑀Δ

(
Q𝑝/Z𝑝

)
�

(
Δ𝑅,N≥1Δ𝑅, 𝜑

)
.

We refer to [ALB19, Section 4.7, Remark 4.9.6] for more discussions.

Example 4.25. Let 𝐴 denote the p-adic completion of an abelian scheme A over R. Let us denote the
p-divisible group associated to 𝐴 by 𝐴[𝑝∞] for simplicity. In this case, the prismatic Dieudonné module
𝑀Δ (𝐴[𝑝

∞]) is locally free of rank 2 · dim𝐴 and is isomorphic to 𝐻1
Δ

(
𝐴
)
, which identifies the natural

Frobenius on both of these modules as well [ALB19, Theorem 4.5.6]. Further, by using the proof of
[ALB19, Proposition 4.5.9], one obtains that Fil𝑀Δ (𝐴[𝑝

∞]) � N≥1𝐻1
Δ

(
𝐴
)
, where N≥1𝐻1

Δ

(
𝐴
)

:=

𝐻1
(
N≥1𝑅ΓΔ

(
𝐴
))

(compare Proposition 4.39).

Now we proceed toward proving Theorem 1.6. Let 𝐺 = Spec𝐵 be a finite flat group scheme over R.
Since G is syntomic, it follows that Spf(𝐵) is quasisyntomic. If 𝐵𝐺 denotes the associated quasisyntomic
stack, then ∗ → 𝐵𝐺 is a 𝐺-torsor and is a quasisyntomic cover. The Čech nerve of the map ∗ → 𝐵𝐺 is
given by the simplicial quasi-syntomic sheaf

· · ·𝐺 × 𝐺 × 𝐺
����
���� 𝐺 × 𝐺

������ 𝐺 ���� ∗.

The associated simplicial abelian group object is

· · ·Z
[
𝐺 × 𝐺 × 𝐺

] ����
���� Z

[
𝐺 × 𝐺

] ������ Z
[
𝐺

] ���� Z.

With this simplicial object we can associate an object of 𝐷
(
(𝑅)qsyn

)
, which we will denote simply by

Z[𝐵𝐺].

Proposition 4.26. Let G be a finite flat group scheme over R. Then 𝑅ΓΔ(𝐵𝐺) �

𝑅Hom𝐷( (𝑅)qsyn)

(
Z[𝐵𝐺],Opris

)
.

Proof. By Čech descent along the quasisyntomic cover ∗ → 𝐵𝐺, we obtain

𝑅ΓΔ(𝐵𝐺) � 𝑅 lim
←−−

(
𝑅ΓΔ(∗)

�� �� 𝑅ΓΔ(𝐺)
������ 𝑅ΓΔ(𝐺 × 𝐺) · · ·

)
.
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By Proposition 4.18, this is

� 𝑅 lim
←−−

(
𝑅Hom𝐷 (𝑅)

(
Z,Opris) �� �� 𝑅Hom𝐷 (𝑅)

(
Z

[
𝐺

]
,Opris) �� ����

𝑅Hom𝐷 (𝑅)

(
Z

[
𝐺 × 𝐺

]
,Opris) · · · ) .

We can take the 𝑅 lim
←−−

inside as a homotopy colimit, which gives us that this is
� 𝑅Hom𝐷( (𝑅)qsyn)

(
Z[𝐵𝐺],Opris) , as desired. �

Definition 4.27. The classifying stack of a p-divisible group𝐺 = {𝐺𝑛} is defined to be 𝐵𝐺 := lim
−−→

𝐵𝐺𝑛,
where the filtered colimit is taken in the category of quasisyntomic stacks with respect to the site (𝑅)qsyn.

Proposition 4.28. For a p-divisible group 𝐺 = {𝐺𝑛}, we have 𝑅ΓΔ(𝐵𝐺) � 𝑅 lim
←−−

𝑅ΓΔ(𝐵𝐺𝑛).

Proof. This follows because 𝐵𝐺 is defined to be the filtered colimit of the quasisyntomic stacks 𝐵𝐺𝑛. �

Since filtered colimits commute with finite limits, the Čech nerve of ∗ → 𝐵𝐺 is given by the
simplicial quasisyntomic sheaf

· · ·𝐺 × 𝐺 × 𝐺
����
���� 𝐺 × 𝐺

������ 𝐺 ���� ∗.

The associated simplicial abelian group object is

· · ·Z
[
𝐺 × 𝐺 × 𝐺

] ����
���� Z

[
𝐺 × 𝐺

] ������ Z
[
𝐺

] ���� Z.

With this simplicial object, we can associate an object of 𝐷
(
(𝑅)qsyn

)
, which will be denoted by

Z[𝐵𝐺]. Since filtered colimits are exact in the category of abelian sheaves on (𝑅)qsyn, we have that
lim
−−→

Z[𝐵𝐺𝑛] � Z[𝐵𝐺].

Proposition 4.29. Let G be a p-divisible group over R. Then 𝑅ΓΔ(𝐵𝐺) �

𝑅Hom𝐷( (𝑅)qsyn)

(
Z

[
𝐵𝐺

]
,Opris

)
.

Proof. By Propositions 4.26 and 4.28, we have

𝑅ΓΔ(𝐵𝐺) � 𝑅 lim
←−−

𝑅ΓΔ(𝐵𝐺𝑛) � 𝑅 lim
←−−

𝑅Hom𝐷( (𝑅)qsyn)
(
Z[𝐵𝐺𝑛],Opris) .

Now

𝑅 lim
←−−

𝑅Hom𝐷( (𝑅)qsyn)
(
Z[𝐵𝐺𝑛],Opris) � 𝑅Hom𝐷( (𝑅)qsyn)

(
lim
−−→

Z[𝐵𝐺𝑛],Opris
)
.

Since lim
−−→

Z[𝐵𝐺𝑛] � Z[𝐵𝐺], we obtain the required statement. �

Remark 4.30. Alternatively, one could descend along the effective epimorphism ∗ → 𝐵𝐺.

Proposition 4.31. There is a spectral sequence with 𝐸2-page

𝐸
𝑖, 𝑗
2 = Ext𝑖(𝑅)qsyn

(
𝐻− 𝑗 (Z[𝐵𝐺]),Opris

)
=⇒ 𝐻

𝑖+ 𝑗
Δ (𝐵𝐺),

and another spectral sequence with 𝐸1-page

𝐸
𝑖, 𝑗
1 = 𝐻

𝑗
Δ

(
𝐺𝑖 ) =⇒ 𝐻

𝑖+ 𝑗
Δ (𝐵𝐺),

where 𝐺𝑖 denotes the i-fold fibre product of Spf𝐺 with itself. By convention, 𝐺0 = ∗.

Proof. This follows in a way similar to Proposition 3.13. �
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Lemma 4.32. 𝐻0(Z[𝐵𝐺]) � Z, 𝐻−1(Z[𝐵𝐺]) � 𝐺 and 𝐻−2(Z[𝐵𝐺]) � 𝐺 ∧ 𝐺.

Proof. This follows exactly in the same ways as in the proof of Lemma 3.9, after further noting that
for an abelian group G, the second group homology with integral coefficients 𝐻2(𝐺,Z) � 𝐺 ∧𝐺. This
isomorphism can be found in [CM52, Theorem 3]. �

Proposition 4.33. There is a natural isomorphism 𝐻2
Δ(𝐵𝐺) � Ext1

(𝑅)qsyn

(
𝐺,Opris

)
.

Proof. By the 𝐸2 spectral sequence from Proposition 4.31 and Lemma 4.32, this will follow once we
prove that Hom(𝑅)qsyn

(
𝐺 ∧ 𝐺,Opris) = 0 and Ext𝑖

(𝑅)qsyn

(
Z,Opris) = 0 for 𝑖 ≥ 1. We begin by proving

the first vanishing. We have a surjection 𝐺 ⊗ 𝐺 → 𝐺 ∧ 𝐺 → 0, which gives us an injection

0→ Hom(𝑅)qsyn

(
𝐺 ∧ 𝐺,Opris) → Hom(𝑅)qsyn

(
𝐺 ⊗ 𝐺,Opris) .

Thus it is enough to show that Hom(𝑅)qsyn

(
𝐺 ⊗ 𝐺,Opris) = 0. Indeed,

Hom(𝑅)qsyn

(
𝐺 ⊗ 𝐺,Opris) � Hom(𝑅)qsyn

(
𝐺,ℋ𝑜𝑚 (𝑅)qsyn

(
𝐺,Opris) ) ,

and ℋ𝑜𝑚 (𝑅)qsyn

(
𝐺,Opris) = 0, since G is p-divisible and Opris is derived p-complete. Therefore, we

obtain the required statement. Now the second vanishing follows from the fact that for a QRSP ring S,
its prismatic cohomology Δ𝑆 is discrete – that is, lives only in degree 0. This finishes the proof. �

Proposition 4.34. In the foregoing situation, N≥1𝐻2
Δ(𝐵𝐺) := 𝐻2

(
N≥1𝑅ΓΔ(𝐵𝐺)

)
⊂ 𝐻2

Δ(𝐵𝐺) and

N≥1𝐻2
Δ(𝐵𝐺) � Ext1

(𝑅)qsyn

(
𝐺,N≥1Opris

)
.

Proof. By Definition 4.15, we have N≥1𝑅ΓΔ(𝐵𝐺) = 𝑅Γ
(
𝐵𝐺,N≥1Opris

)
. Hence, analogous to Propo-

sition 4.26, by descent along the effective epimorphism ∗ → 𝐵𝐺 we obtain

N≥1𝑅ΓΔ(𝐵𝐺) � 𝑅Hom𝐷( (𝑅)qsyn)

(
Z[𝐵𝐺],N≥1Opris

)
.

By the spectral sequence, analogous to Proposition 4.31 we obtain that in order to prove N≥1𝐻2
Δ(𝐵𝐺) �

Ext1
(𝑅)qsyn

(
𝐺,N≥1Opris

)
, by Lemma 4.32 it is enough to prove that Hom(𝑅)qsyn

(
𝐺 ∧ 𝐺,N≥1Opris

)
= 0

and Ext𝑖
(𝑅)qsyn

(
Z,N≥1Opris

)
= 0 for 𝑖 ≥ 2. By the proof of Proposition 4.33, in order to prove the first

vanishing it is enough to prove that ℋ𝑜𝑚 (𝑅)qsyn

(
𝐺,N≥1Opris

)
= 0. By the injection 0→ N≥1Opris →

Opris of sheaves, the required vanishing follows from the fact that ℋ𝑜𝑚 (𝑅)qsyn

(
𝐺,Opris) = 0, which was

noted in the proof of Proposition 4.33. Now for proving Ext𝑖
(𝑅)qsyn

(
Z,N≥1Opris

)
= 0 for 𝑖 ≥ 2, using

the exact sequence

0→ N≥1Opris → Opris → O→ 0

from [ALB19, Proposition 4.1.2], where O denotes the structure sheaf on (𝑅)qsyn, it is enough to show
that Ext𝑖

(𝑅)qsyn
(Z,O) = 0 for 𝑖 ≥ 1, which follows from p-completely faithfully flat descent for bounded

𝑝∞-torsion rings [BMS19, Remark 4.9]. The inclusion N≥1𝐻2
Δ(𝐵𝐺) ⊂ 𝐻

2
Δ(𝐵𝐺) now follows from the

exact sequence and the fact that Hom
(
𝐺,O

)
= 0, since G is p-divisible andO is derived p-complete. �

Proof of Theorem 1.6. This follows from Proposition 4.33 and Proposition 4.34. �

https://doi.org/10.1017/fms.2021.77 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.77


Forum of Mathematics, Sigma 23

Remark 4.35. We note that Ext1
(
Z,N≥1Opris

)
= 0 as well. This follows from the foregoing exact

sequence and [ALB19, Theorem 3.4.6].

Remark 4.36. Similar to Proposition 3.14, it follows that for a p-divisible group G over R, we have
𝐻1

Δ(𝐵𝐺) � 0.

Remark 4.37. One can define prismatic cohomology for higher quasisyntomic stacks as well. In par-
ticular, one can talk about prismatic cohomology of the n-stacks 𝐾 (𝐺, 𝑛) for a p-divisible group
G. Similar to Remark 3.17, one can prove that 𝐻𝑛+1

Δ (𝐵𝐺) � 𝑀Δ (𝐺) and 𝐻𝑛
Δ (𝐵𝐺) = 0 for

1 ≤ 𝑖 ≤ 𝑛.

Now we look at the case where 𝐴 is the p-adic completion of an abelian scheme A over R. In this
situation one can consider the p-divisible group associated to 𝐴, which will be written as 𝐴[𝑝∞] .
We let 𝐵𝐴 denote the classifying stack of 𝐴, which we define to be the p-adic completion of the
stack 𝐵𝐴. The quasisyntomic sheaf represented by 𝐴 will simply be written as 𝐴. Then we have the
following:

Proposition 4.38. We have 𝐻2
Δ

(
𝐵𝐴

)
� Ext1

(𝑅)qsyn

(
𝐴,Opris

)
and N≥1𝐻2

Δ

(
𝐵𝐴

)
�

Ext1
(𝑅)qsyn

(
𝐴,N≥1Opris

)
.

Proof. This follows exactly in the same way as the proof of Proposition 4.33, after noting that
Ext𝑖
(𝑅)qsyn

(
Z,Opris) = 0 for 𝑖 ≥ 1, as before, and ℋ𝑜𝑚 (𝑅)qsyn

(
𝐴,Opris) = 0 by [ALB19, Theorem

4.5.6]. The second part follows. �

Proposition 4.39. 𝐻2
Δ

(
𝐵𝐴

)
is naturally isomorphic to the prismatic Dieudonné module associated to

the p-divisible group 𝐴[𝑝∞]. Further, N≥1𝐻2
Δ

(
𝐵𝐴

)
� Fil𝑀Δ(𝐴[𝑝

∞]).

Proof. Using Proposition 4.38, it is enough to prove that Ext1
(𝑅)qsyn

(
𝐴,Opris) is isomorphic to

Ext1
(𝑅)qsyn

(
𝐴[𝑝∞],Opris

)
. Note that we have

ℰ𝑥𝑡1(𝑅)qsyn

(
𝐴[𝑝∞],Opris

)
�ℰ𝑥𝑡1(𝑅)qsyn

(
𝐴,Opris)

and

ℰ𝑥𝑡1(𝑅)qsyn

(
𝐴[𝑝∞],N≥1Opris

)
�ℰ𝑥𝑡1(𝑅)qsyn

(
𝐴,N≥1Opris

)
.

Indeed, to see these isomorphisms, we note that 𝐴/𝐴[𝑝∞] = lim
−−→𝑝

𝐴, and for any sheaf ℱ, we
have

𝑅ℋ𝑜𝑚

(
lim
−−→
𝑝

𝐴,ℱ

)
� 𝑅 lim
←−−
𝑝

𝑅ℋ𝑜𝑚
(
𝐴,ℱ

)
� 𝑅ℋ𝑜𝑚

(
𝐴, 𝑅 lim
←−−
𝑝

ℱ

)
.

Now if ℱ is further assumed to be a sheaf of derived p-complete abelian groups with vanishing higher
cohomology on a collection of basis objects, then 𝑅 lim

←−−𝑝
ℱ � 0. To see this, it is enough to prove that

for any such basis object 𝑉, one has 𝑅Γ
(
𝑉, 𝑅 lim
←−−𝑝

ℱ
)
� 𝑅 lim
←−−𝑝

𝑅Γ(𝑉,ℱ) � 0. But this follows from
our assumptions, since 𝑅Γ(𝑉,ℱ) � ℱ(𝑉) and ℱ(𝑉) is derived p-complete [SP, Tag 091N]. Finally,
by taking ℱ to be Opris or N≥1Opris and using Remark 4.9, we obtain the required vanishings to yield
the desired isomorphisms of ℰ𝑥𝑡-groups.
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The proposition now follows by applying the global section functor and noting that
ℋ𝑜𝑚 (𝑅)qsyn

(
𝐴[𝑝∞],Opris

)
� 0,ℋ𝑜𝑚 (𝑅)qsyn

(
𝐴,Opris) � 0 and ℋ𝑜𝑚 (𝑅)qsyn

(
𝐴[𝑝∞],N≥1Opris

)
�

0,ℋ𝑜𝑚 (𝑅)qsyn

(
𝐴,N≥1Opris

)
� 0. These vanishings have been noted before in the proofs of Propo-

sitions 4.33, 4.34 and 4.38. This ends the proof. �

As in Section 3.3, if 𝐴 is the p-adic completion of an abelian scheme A over R, we can explicitly
compute 𝐻∗Δ

(
𝐵

(
𝐴
))

.

Proposition 4.40. We have a natural isomorphism 𝐻2∗
Δ

(
𝐵𝐴

)
� Sym∗

(
𝐻1

Δ

(
𝐴
))

, and 𝐻𝑖
Δ

(
𝐵

(
𝐴
))

= 0
for odd i.

Proof. This follows exactly in the same way as in the proof in the crystalline case in Section 3.3 from
the 𝐸1 spectral sequence in Proposition 4.31, the Künneth formula in prismatic cohomology [ALB19,
Corollary 3.5.2] and the calculations of the prismatic cohomology of abelian varieties in [ALB19,
Corollary 4.5.8]. �
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