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ABSTRACT
Emergency physicians use diagnostic tests extensively, and the ability to order and interpret test
results appropriately is a critical skill. An understanding of sensitivity, specificity, predictive values
and likelihood ratios, as well as an awareness of the importance of pre-test probability, is essen-
tial. The purpose of this article is to explain, in a straightforward and clinically applicable manner,
the core concepts related to diagnostic testing. 

RÉSUMÉ
Les médecins d’urgence utilisent beaucoup les épreuves diagnostiques et il est essentiel qu’ils
sachent interpréter correctement les résultats. Une compréhension de la sensibilité, de la spéci-
ficité, des valeurs prédictives et des rapports de probabilité, ainsi qu’une conscience de l’impor-
tance des probabilités pré-tests, est primordiale. Le présent article a pour but d’expliquer, de façon
claire et applicable en pratique clinique, les concepts de base liés aux épreuves diagnostiques.
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Introduction

Diagnostic tests are used to categorize patients, to ascertain
disease severity, to prognosticate, to assess response to
treatments and, most importantly, to help establish diag-
noses. Unfortunately, most tests don’t “make” diagnoses;
they supplement clinical judgement and reduce the level of
diagnostic uncertainty. Unless applied and interpreted care-
fully, tests can be misleading.

The basic premise of diagnostic testing is that there are
2 populations of people — those with the disease in ques-
tion and those without — who differ on at least one
testable parameter. For example, patients with pneumonia
have infiltrates on x-ray, while those without pneumonia
do not. The real world, however, is not so simple. Not
everyone with pneumonia has an infiltrate and not every-
one with an infiltrate has pneumonia. Patient variability

and test variability result in an overlap between the re-
sults for diseased and normal populations for virtually all
tests (Fig. 1).

Test variability may be related to the test, the interpreter,
or both. Test results may vary depending on the duration of
symptoms (e.g., troponin level in myocardial infarction) or
the stage of the illness (e.g., lipase levels in acute and
chronic pancreatitis). Test results may differ because of lab
equipment, reagents, procedure, or even lab error. Many
tests, like ECGs and imaging studies, require interpretation
that is subject to variability. The interpretation of tests may
be biased by prior test results (e.g., awareness of abnormal
cardiac marker levels may modify the interpretation of an
ECG) or by clinical information (e.g., knowledge that a pa-
tient has fever, dyspnea and rust-coloured sputum may in-
fluence the interpretation of a borderline chest x-ray). For
all these reasons, test results cannot always be accepted at
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face value, and tests cannot be interpreted without consid-
ering pretest (clinical) probability of disease.

Measures of test efficacy

Most objective tests assess a measurable parameter and
classify the patient as “normal” or “abnormal.” “Normal”
is typically established by determining test values in dis-
ease-free people and identifying the range in which 95%
(2 standard deviations) of this population lies. Using this
definition, it is apparent that 5% of disease-free people
will have values outside the normal range; in fact, for vir-
tually all tests, abnormal values occur in patients without
disease and normal values occur in patients with disease.
In addition, because physiologic parameters vary from
patient to patient (just like weight and height), it is some-
times more useful to know normal values for a patient
than to know normal values for the general population.
Occasionally a changing value, which is abnormal for the
individual but still within the normal range, may signify
disease.

Test results can be categorized as true-positive, false-
positive, false-negative or true-negative, relative to a refer-
ence (gold) standard that correctly identifies patients with
and without disease. Unfortunately, we have few good gold
standards and often use surrogates (e.g., laparotomy is the
real gold standard for gallstones, and ultrasound is the sur-
rogate we generally use). For many conditions there is no
true gold standard test, and clinical outcome may be the
best standard available. Table 1, a standard 2 × 2 table, re-
lates true disease status to diagnostic test result and allows
us to calculate all of the important test parameters. Under-
standing the 2 × 2 table is key to understanding the various

terms discussed below, which quantify the performance of
diagnostic tests.

Sensitivity, specificity and accuracy
Sensitivity, or true-positive rate, refers to the probability
that a test will be positive in patients known to have the
disease.1 Highly sensitive tests have few false-negative re-
sults and are most useful to rule out disease. If a test is
96% sensitive, this means 96% of patients with the target
disorder will have a true-positive result and 4% will have a
false-negative result.2 We use highly sensitive tests when
we need to rule out dangerous conditions (e.g., lumbar
puncture for subarachnoid hemorrhage).

Specificity, or true-negative rate, refers to the probability
that a test will be negative in patients known to be disease
free. Highly specific tests have few false-positive results
and are most useful to rule in disease.1 If a test is 96% spe-
cific, this means 96% of patients without the target disor-
der will have a true-negative result and 4% will have a
false-positive result.2 Specific tests are important in situa-
tions where a false-positive test could lead to harm, for ex-
ample when the therapy is potentially dangerous (e.g.,
long-term anticoagulation).

Accuracy describes the overall test performance in pa-
tients with and without disease, and is calculated by deter-
mining the total number of true-positive and true-negative
results, then dividing by the total number of tests done. Al-
though this term is often used, it has little clinical rele-
vance because the more important question is how the test
performs for the clinical “mode” a physician is in. When
physicians order a test, they are usually in either a “rule-
in” or a “rule-out” mode (and only occasionally in both). A
mnemonic that is helpful in selecting tests appropriate for
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Table 1. Diagnostic test parameters summarized by a 2 ×××× 2 table

Actual patient status (truth)

Disease present Disease absent Total no. of patients

Positive True positive
(A)

False positive
(B)

With positive test
(A+B)

Negative False negative
(C)

True negative
(D)

With negative test
(C+D)

Total no.
of patients

With disorder
(A+C)

Without disorder
(B+D) (A+B+C+D)

Positive predictive
value = A / A+B

Test
result

Negative predictive
value = D / C+D

Sensitivity
 = A / A+C

Specificity
= D / B+D

Accuracy =
A+D / A+B+C+D
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the clinical mode is the rule of “spin and snout.” Highly
specific tests rule in disease (Sp-In), while highly sensitive
tests rule out disease (Sn-Out).1

Unfortunately, diagnostic tests rarely provide binary
(positive vs. negative) results. Most, such as white blood
count, creatinine, and troponin, are reported as continuous
values. Even pregnancy testing, which we think of as posi-
tive or negative, is actually based on a β-hCG (beta-human
chorionic gonadotropin) threshold chosen to best distin-
guish pregnant from nonpregnant populations. When the
test result is a numeric value, changing the “cut-off”
threshold will change sensitivity and specificity, thus
changing the ability of the test to rule in or rule out dis-
ease. If the cut-off is lowered, the test will become more
sensitive and less specific (fewer false negatives, more
false positives, so better at ruling out disease). If the cut-off
is raised, the test will become less sensitive and more spe-
cific (more false negatives, fewer false positives, so better
at ruling in disease). This trade-off between sensitivity and
specificity exists for virtually all tests, and manipulating
the cut-off level can usually only improve one parameter at
the expense of the other.2,3 Receiver operating characteristic
(ROC) curves can be used to select optimal cut-off values
and determine the diagnostic performance of a test across a
range of values. A detailed discussion of ROC curves is be-
yond the scope of this article, however these are described
elsewhere in the emergency medicine literature.4

Positive and negative predictive values
Sensitivity and specificity describe how tests perform in
people who are known to have or not have the disease in
question. But if we knew the patient’s true disease status
before testing, we wouldn’t need to do a test!5 In clinical
medicine, it is more common to have a patient with an un-
known disease status, and then to be faced with interpret-
ing a test result. Given the test result, we need to know
how likely it is that the patient has or does not have the dis-
ease in question. Predictive values provide this informa-
tion. Positive predictive value (PPV) tells us the probability
of disease if the patient’s test is positive, while negative
predictive value (NPV) tells us the probability that the pa-
tient is disease-free if the test is negative.6

Unlike sensitivity and specificity, which are generally
considered stable characteristics of a diagnostic test, the
predictive value of a test may vary dramatically depending
on the pretest probability of disease in the patient being
tested. Pretest probability, also known as prevalence, de-
scribes the clinical likelihood — before doing a test — that
the patient has the target disease.

When interpreting test results, it is important to remem-

ber that a test’s PPV is better in high prevalence popula-
tions, while NPV is better in low prevalence populations.
For example, highly sensitive rapid HIV tests have very
good PPV when used on a population of patients with HIV
risk factors and opportunistic infections, but the same tests
have much lower PPV when used indiscriminately for the
approval of life insurance coverage. In this latter situation,
the majority of positive tests will be false-positive. It is
clear that, while predictive values are more clinically rele-
vant than sensitivity and specificity because they help us
interpret test results in patients with differing pretest prob-
ability of disease, tests must be used selectively on appro-
priate patient populations and interpreted differently de-
pending on disease prevalence (pretest likelihood).

Predictive values taken in isolation can be misleading;
they do not tell us everything we need to know about the
diagnostic utility of a test. To illustrate, studies of diagnos-
tic tests often report excellent NPV, without similarly high-
lighting PPV. Many physicians believe that if a test has
good NPV it can be trusted to rule out disease, but as the
following scenario illustrates, this assumption can be
wrong.

Scenario: A colleague tells you that that he no longer uses cardiac
marker assays because the NPV of a coin toss is just as good. In-
trigued, you apply a coin toss (heads = positive; tails = negative) to
your next 100 emergency department (ED) patients presenting with
chest pain. Table 2 shows that, in the group of 50 patients whose toss
came up tails, there were only 3 patients with myocardial infarction
(MI) (NPV = 94%), and in the group of 50 patients whose toss came
up heads, there were 3 patients with MI (PPV = 6%). You conclude
that the coin toss is a poor positive predictor but an excellent nega-
tive predictor, and you present this information at cardiac care unit
(CCU) rounds the following week. To your dismay, the cardiologists
have conducted a similar experiment in the CCU and derived con-
flicting results. Table 3 shows that, in the group of 50 CCU patients
whose coin toss came up tails, there were 45 patients with MI (NPV
= 5%), and in the group of 50 patients whose coin toss came up
heads, there were 45 patients with MI (PPV = 90%). The cardiolo-
gists concluded that the coin toss has poor NPV and excellent PPV,
and intend to publish their results.

Worster et al

350 CJEM • JCMU September • septembre 2002; 4 (5)

Table 2. Predictive value of the coin
toss scenario in ED patients with chest
pain (MI prevalence = 6%)

AMI No AMI

Heads (+) 3 47 50

Tails (–) 3 47 50

6 94 100

Sensitivity = A / A+C = 3 / (3 + 3) = 50%
Specificity = D / B+D = 47 / (47 + 47) = 50%
Positive predictive value = A / A+B = 3 / 3 + 47) = 6%
Negative predictive value = D / C+D = 47 / (3 + 47) = 94%
AMI = acute myocardial infarction
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Clearly both conclusions are wrong. This scenario
demonstrates that the coin toss is a useless test, that sensi-
tivity (50%) and specificity (50%) remain constant regard-
less of pretest probability, and that the predictive value of a
test may differ dramatically depending on prevalence of
disease in the population being tested. In a low prevalence
population like the ED, where 6% of patients had MI, posi-
tive tests were usually wrong (poor PPV), but in a high
prevalence population like the CCU, where 90% of pa-
tients had MI, negative tests were usually wrong (poor
NPV). This is the reason we were taught to “treat the pa-
tient, not the test,” and this is why test results must always
be interpreted in light of pretest probability. Predictive val-

ues reported in published studies can only be generalized
to our clinical practice if the disease prevalence (pretest
probability) is similar in the study setting and our clinical
practice. This scenario also illustrates why it is misleading
to publish NPV without PPV, or to report predictive values
without also reporting sensitivity and specificity.

Decision thresholds and diagnostic tests
Perhaps the most effective way to use diagnostic tests is to
visualize every patient on a clinical decision line (Fig. 2).
The left end of the line represents a pretest probability of
zero — absolute clinical certainty that the patient does not
have the disease in question — and the right end of the line
represents a probability of 100% — absolute clinical cer-
tainty that the patient has the disease in question. Most pa-
tients, based on a clinical assessment of risk factors, his-
tory and physical findings, will fall somewhere between
these 2 points.

The “negative decision threshold” (T0) is the point below
which pretest disease probability, or level of diagnostic
suspicion, is low enough to allow a negative treatment de-
cision (e.g., discharge) without further investigation. The
“positive decision threshold” (T1) is the point above which
the pretest probability, or level of diagnostic suspicion, is
high enough to justify a positive treatment decision (e.g.,
surgery) without further testing. Sometimes after clinical
assessment alone, diagnostic suspicion will be beyond a T0

or T1 point (e.g., obvious chest wall pain or strongly sus-
pected appendicitis), in which case further testing is unnec-
essary because it will not influence treatment.

Decision thresholds are not static; they vary with the dis-
ease in question. In situations where it would be disastrous
to miss the diagnosis (e.g., meningitis), a sensitive test is
necessary, so decision thresholds should be set low and test
cut-offs adjusted for maximum sensitivity. If missing the
diagnosis is unlikely to cause harm (e.g., cholelithiasis),
but treating the suspected condition could cause harm (e.g.,
laparotomy), a specific test is necessary, so decision
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Table 3. Predictive value of the coin
toss scenario in CCU patients with
chest pain (MI prevalence = 90%)

AMI No AMI

Heads (+) 45    5   50

Tails (–) 45    5   50

90 10 100

Sensitivity = A / A+C = 45 / (45 + 45) = 50%
Specificity = D / B+D = 5 / (5 + 5) = 50%
Positive predictive value = A / A+B = 45 / 45 + 5) = 90%
Negative predictive value = D / C+D = 5 / (45 + 5) = 10%
CCU = cardiac care unit

                Normal          Gout

  %

              Serum uric acid level

Fig. 1. Uric acid levels in healthy and diseased
patients. There is variability in the normal and in
the diseased population, and overlap between the
two groups. Some uric acid levels are therefore
compatible with health or disease.

Pretest probability of disease

0% 100%

T0

(–)

T1

(+)
“Grey zone”

Fig. 2.  A Clinical Decision Line. (–) T00 represents the negative decision threshold, a level of diagnostic suspicion below which
the diagnosis is “ruled out” on clinical grounds without further investigations. (+) T11 represents the positive decision threshold,
a level of diagnostic suspicion above which treatment is warranted without the need for more expensive or invasive tests.
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thresholds should be set higher and test cut-offs adjusted
for maximum specificity.

The zone between the 2 decision thresholds is the clini-
cal “gray-zone,” an area of uncertainty where further diag-
nostic testing is required. Often clinicians will find them-
selves in this zone after an initial history and physical
exam (e.g., atypical chest pain compatible with pulmonary
embolism), and sometimes they will still be in this zone af-
ter a non-definitive test results is obtained (e.g., an indeter-
minate probability VQ [ventilation perfusion] scan). The
main role of a diagnostic test is to carry us across a nega-
tive or positive decision threshold. For patients who are
close to a decision threshold, a “weak” test may suffice,
but for those who are far from a decision threshold, a
“strong” test is required.

Likelihood ratios
Likelihood ratios (LRs) are the most useful single indicator
of a test’s diagnostic strength, therefore of the degree to
which it can modify pretest probability and facilitate clini-
cal decision-making. Positive LR (LR+) is the ratio of
true-positive rate to false-positive rate, while the negative
LR (LR–) is the ratio of the false-negative rate to true-neg-
ative rate. LRs are calculated using these formulae:

Positive LR (LR+) = Sensitivity / (1 – Specificity)
Negative LR (LR–) = (1 – Sensitivity) / Specificity

As LR+ increases, the test becomes a stronger positive
predictor, and as LR– decreases, the test becomes a
stronger negative predictor. Positive LRs between 1.0 and
3.0 are very weak, and those greater than 10 generate large
and often conclusive changes in post-test probability. LRs
greater than 20 are usually diagnostic. Conversely, negative
LRs between 0.3 and 1.0 are relatively weak, and those
less than 0.1 generate large and often conclusive changes
in post-test probability. Negative LRs less than 0.05 are
usually diagnostic. To rule out disease, a sensitive test (low
LR–) is required, whereas to rule in disease, a specific test
(high LR+) is required. In the coin-toss scenario above, the
LR+ and the LR– are both 1.0, indicating that the coin toss
is a useless test.

LRs are less intuitive than other test parameters, and
physicians may erroneously believe that LRs represent the
factor by which pretest probability is multiplied to get
post-test probability. In reality, LRs are the multiplicative
factor linking pre- and post-test “odds.” But odds are a
concept that only seasoned gamblers understand (odds =
probability / 1 – probability). To illustrate, if a team has an
80% chance of winning a game, their odds of winning are
4 to 1. Because LRs are based on odds, a nomogram must
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Fig. 3. This illustrates the use of the Fagan nomogram and
likelihood ratios to determine post-test probability of dis-
ease. Patient A (– – – – – – – ) has a 5% pretest probability of
disease. If a “weak” test (LR+ = 5) comes back positive, post-
test probability increases to 21%. If a strong test (LR+ = 50)
comes back positive, it increases it to 72%.  Patient B
(...............) has a 50% pretest probability of disease. If a
weak test (LR– = 0.2) comes back negative, post-test proba-
bility decreases to 17%. If a strong test (LR– = 0.01) comes
back negative, it decreases it to 1%. Adapted with permis-
sion from Fagan TJ. Nomogram for Bayes’s theorem [letter].
NN  EEnnggll  JJ  MMeedd 1975;293(5):257.
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be utilized when converting pretest probability to post-test
probability using LRs (Fig. 3).8 Table 4 illustrates LRs for
some common diagnostic tests, and these values, in combi-
nation with the nomogram, allow determination of post-
test probability and whether a positive or negative decision
threshold has been crossed.9

Scenario: After examining a patient with vague abdominal pain and
distension, you believe there is a 20% pretest probability of bowel
obstruction. The subsequent x-ray shows definite air–fluid levels.
Knowing that abdominal x-rays have an LR+ of 10 in the setting of
bowel obstruction (Table 4), you use the Fagan nomogram (Fig. 3)
to estimate that the post-test probability of bowel obstruction is 70%.
(This is done by drawing a line linking the pretest probability, 20%,
through an LR+ of 10, to obtain post-test probability.) This probabil-
ity change, from 20% to 70% is sufficient to carry you across a posi-
tive decision threshold and arrange hospitalization.

Spectrum bias

Most diseases have a “spectrum” of possible presentations
or stages. Spectrum bias exists when test performance pa-
rameters are misrepresented for a given situation because
they were measured on a different spectrum of patients
than the test is now being applied to. It explains the fact
that tests perform better in patients with severe or ad-
vanced disease than in those with subtle or early disease.
For example, new generation CT scanners are reported to
be over 95% sensitive for detecting subarachnoid hemor-

rhage. However, if we eliminate clinically obvious cases
with massive hemorrhage, and consider only patients with
sentinel bleeds and vague findings (the spectrum of pa-
tients who most need a diagnostic test), CT sensitivity
falls substantially. Spectrum bias occurs with many diag-
nostic tests. For example the white blood cell count is
more likely to be elevated in patients with ruptured appen-
dicitis, peritonitis and fever than in those with minimal
early findings. Similarly, cardiac markers are more likely
to be elevated in hypotensive patients with obvious ST-el-
evation than in subtle patients who have nondiagnostic
ECGs. Spectrum bias explains why diagnostic tests tend
to “miss” the same patients that clinicians do, and why
tests tend to perform the worst in patients whose diagnosis
is not clinically obvious.

Summary and key points

Sensitivity and specificity are widely understood, but have
limited clinical relevance and are often inappropriately em-
phasized. Predictive values are more clinically relevant and
useful than sensitivity and specificity, because they relate
to “real world” problem of determining the probability of
disease in an individual patient, and because they reflect
the important influence of pretest probability (prevalence)
on diagnostic test performance. Predictive values can be
misleading: poor tests can appear to have excellent PPV or
NPV if they are used in high- or low-prevalence popula-
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Table 4. Positive (LR+) and negative (LR–) likelihood ratios for commonly
used tests11,12

Test Suspected diagnosis LR+ LR–

X-rays
    Abdominal Bowel obstruction   10.0 0.0
    Bone Osteomyelitis     5.6 0.55
    Chest Pulmonary embolism     1.7 0.84
Endoscopy Peptic ulcer 100 0.05
Lumbar puncture (>5 WBC) Meningitis   50 0.01
Lumbar puncture SAH     5.0 0.0
Head CT scan SAH (1 to 5 days)   17 0.16
Head CT scan SAH (>5 days)   10 0.53
ECG (single) Acute myocardial infarction   30 0.44
ECG (serial) Acute myocardial infarction   68 0.32
Compression ultrasound Proximal deep vein thrombosis   19 0.05
Ultrasound Gallbladder stones   18 0.15
Leukocyte esterase Urinary tract infection   20 0.15
Urine micro exam Urinary tract infection   90 0.10
White blood count Appendicitis     2.2 0.18
Noncontrast helical CT Acute urolithiasis   23 0.05
Urography Acute urolithiasis     9 0.33

WBC = white blood count;  SAH = subarachnoid hemorrhage;  CT = computed tomography;
ECG = electrocardiography
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tions, respectively, and reported predictive values are often
more reflective of pretest probability (disease prevalence)
than they are of intrinsic test characteristics. This is the
reason we were taught to “treat the patient, not the test,”
and the reason why test results must always be interpreted
in light of pretest probability.

LRs, while less intuitive and more poorly understood,
are the best overall indicators of the diagnostic strength
of tests and deserve greater physician awareness. Visual-
izing a clinical decision line, and consciously considering
whether one is in a rule-in or rule-out mode, can be help-
ful in test ordering and interpretation. Finally, the possi-
bility of spectrum bias should always be considered be-
fore generalizing reported test performance to the ED
population.
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