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Abstract. It is shown that a nonlinearsurface plasma wave at a plasma–vacuum
interface can propagate in the form of a dark/grey envelope soliton. The latter is
associated with a subsonic density cavity, which traps the complex surface wave
electric field.

Surface waves [1–6], which are ubiquitous wave phenomena, have been studied in
diverse areas of physics, such as acoustics, plasmas, material sciences and ocean
physics, as well as biological sciences. Surface plasmons (SPs) propagate along the
surface of a conductor [7, 8]. SPs have been explored recently in view of their
potential applications in magneto-optic data storage, microscopy and Solar cells,
as well as for constructing sensors for detecting biologically interacting molecules.
Surface wave solitons occurring at the interface between a dielectric medium (air)
and a nonlinear material are also observed in laboratory experiments [9,10].
Surface plasma waves (SPWs) [11–16] propagating at a plasma-dielectric/vacuum

interface are intriguing phenomena in plasmas. The localization of SPWs at the
plasma surface is caused by the nonlinear effects involving the ponderomotive
force of the SPW, which drives electron density perturbations at a slow time scale.
About 30 years ago, Yu and Zhelyazkov [17] considered the nonlinear coupling
between negative group dispersive SPWs and low-frequency ion-acoustic perturb-
ations, and reported the possibility of supersonic bright SPW envelope solitons.
The latter are composed of a bell-shaped electric-field envelope of the SPWs and an
associated density hump created by the ponderomotive force of the SPWs. Thus,
the features of the bright SPW envelope soliton are different (similar) from (to)
the Langmuir/electromagnetic envelope solitons [18–21] (upper-hybrid envelope
solitons [22–24]) in bulk plasmas.
Our objective here is to point out the possibility of subsonic dark and grey type

envelope solitons [25–29] of SPWs. A negative group dispersive subsonic dark/grey
surface plasma wave envelope soliton is composed of a complex SPW electric-field
envelope, which is trapped in a self-created density hole at the plasma–dielectric
interface.
Let us consider the amplitude modulation of a short wavelength (in comparison

with the electron skin depth c/ωpe, where c is the speed of light in vacuum and ωpe
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is the electron plasma frequency) SPW with the frequency [17]

ω ≈
ωpe√
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ω2
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8k2c2

)
, (1)

where k is the wave number (along the direction of the plasma–dielectric interface).
The equation governing the slowly varying envelope of short-wavelength SPWs in
the presence of low-frequency (in comparison with the ion plasma frequency) and
long wavelength (in comparison with the electron Debye length) density perturba-
tions is [17]
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where ∂Ez/∂τ � ωEz , ∂Ez/∂ξ � kEz , Ez is the wave electric field along the surface
(directed along the ξ direction), Vg ≈ ω3

p/4
√

2k3c2 is the group velocity of the SPW,
P ≈ 3ω3

p/8
√

2k4c2 represents the group dispersion, ωp = (4πn0e
2/me)1/2 is the

unperturbed plasma frequency, n0 is the equilibrium electron number density, e
is the magnitude of the electron charge and me is the electron mass. The slowly
varying time and space (along the z− direction at the plasma surface) variables
in (2) are denoted by τ and ξ, respectively. Furthermore, the electron number
density perturbation associated with the low-phase speed (in comparison with the
electron thermal speed) ion-acoustic perturbation (IAP) is denoted by ne1(�n0). It
is obtained from the inertialess electron equation of motion
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, (3)

where x is the direction normal to the surface, ϕ is the electrostatic potential
associated with the IAP, kB is the Boltzmann constant and Te is the electron
temperature. The left-hand side of (3) represents the ponderomotive force of the
SPW.
The electrons are coupled to the ions via the electrostatic potential. The equations

governing the ion dynamics supporting IAP are

∂ni1
∂τ

+ n0
∂u

∂ξ
= 0, (4)

and

mi
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∂τ
= −e

∂ϕ

∂ξ
− kBTi

n0

∂ni1
∂ξ

, (5)

where ni1 (�n0) is the ion number density perturbation, u is the ion fluid velocity,
mi is the ion mass and Ti is the ion temperature. The ponderomotive force of the
SPWs acting on the ion fluid is smaller by a factorme/mi (in comparison with that
on the electrons), and therefore ignored in (5).
We now combine (3)–(5) by using the quasi-neutrality condition ne1 = ni1, to

obtain the driven ion-acoustic wave equation(
∂2

∂τ 2 − V 2
s

∂2

∂ξ2

)
ne1
n0

=
exp(−2kx)

4πn0mi

∂2 |Ez |2
∂ξ2 , (6)

where Vs = [kB(Te + Ti)/mi]1/2 is the effective ion-sound speed. Equation (6)
generalizes (18) of [17] to include the finite ion temperature effect. The latter is
very important in a quasi-stationary limit in which the ion inertia is ignored, and
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the electric force (−e∂ϕ/∂ξ) on the ion fluid is balanced by the ion pressure gradient
along the surface. In fact, for ∂2ne1/∂τ 2 � V 2

s ∂2ne1/∂ξ2 , we have from (6)

ne1 = −exp(−2kx)|Ez |2
4πkBT

, (7)

where T = Te + Ti. The expression (7) shows how the electron density cavity is
created by the ponderomotive force of the SPW.
We can now seek stationary solutions of (2) and (6) by supposing that ne1 = n1(η)

and Ez = E(η) exp[−iθ(τ)+ iψ(ξ)), where η = ξ −Vgτ and θ(τ) and ψ(ξ) are slowly
varying functions of time and space, respectively. Hence, we have from (6)

ne1 = − exp(−2kx)|E|2
4πkBT (1 − M 2)

, (8)

where M = Vg/Vs is the Mach number. For M � 1, the expression for ne1 from (8)
can be inserted into (2) to obtain the cubic nonlinear Schrödinger equation

P
∂2E

∂η2 − λE − Q|E|2E = 0, (9)

where λ = ∂θ/∂τ is the frequency shift and Q = ωp exp(−2kx)/8
√

2πn0kBT . Since
the third term in the left-hand side of (9) is negative, (9) admits both dark and
grey type envelope surface wave solitons consisting of a density dip in which the
complex SPW envelope is trapped. Explicit analytical solutions for the dark and
grey envelope solitons are presented in, e.g., [25,27–29].
To summarize, we have pointed out the possibility of subsonic/standing dark and

grey SPW envelope solitons at a plasma-dielectric/vacuum interface. The present
envelope soliton is composed of a density cavity, which traps the modulated wave
envelope of the SPW. The nonlinear structure, as reported here, may be useful for
the transport of localized plasmonic energy along the plasma surface.
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