ON THE TIME SPENT ABOVE A LEVEL BY BROWNIAN MOTION WITH NEGATIVE DRIFT

J.-P. IMHOF,* University of Geneva

Abstract

Limit theorems of Berman involve the total time spent by Brownian motion with negative drift above a fixed or exponentially distributed negative level. We give explicitly the probability densities and distribution functions, obtained via an equivalence of laws.

LAST PASSAGE: DURATION OF POSITIVITY

1. Introduction

If B is standard Brownian motion, the total time ξ that $2^{\frac{1}{2}}B(t) - t + Y$ spends above 0, where Y is a negative exponential variable with parameter 1, independent of B, plays a substantial role in some limit theorems of Berman [1]. He has obtained the Laplace transform of ξ and shown that if $\Gamma(t) = \Pr(\xi > t)$, then $-\Gamma'(t)$ is a non-increasing function with $-\Gamma'(0) = 1$. Using an equivalence of laws which explains the squared form of Berman's result we obtain Γ explicitly, identify $1 + \Gamma'$ as a distribution function and give also the density and distribution function when y is constant.

2. Results

From now on, $\{X(t), t \ge 0\}$ is the coordinate process on the space of continuous functions. We call $W_{-\delta}$ the law under which X is Brownian motion with X(0) = 0 and constant drift $-\delta$; only values $\delta \ge 0$ are considered. Under $W = W_0$, X is standard Brownian motion. Let $\tau(y) = \inf \{t > 0 : X(t) = y\}$, $M(t) = \max \{X(s) : s \le t\}$, $\mu(t) = \inf \{s \le t : X(s) = M(t)\}$ and

$$v(y;t) = \int_0^t 1_{\{X(s) > y\}} \, ds.$$

When $\delta > 0$, $\mu = \mu(\infty)$ and $v(y) = v(y, \infty)$ are almost surely finite, and we write v = v(0). We use $\tau(-Y)$ and v(-Y) for random positive Y also. Furthermore, $p(t;x) = (2\pi t)^{-2} \exp\{-x^2/2t\}, t > 0, x \in \mathbb{R}$, and Φ is the standard normal distribution function.

Lemma 1. If $\delta > 0$, the $W_{-\delta}$ -laws of μ and ν are identical, with probability density

$$2\delta\psi(t;-\delta) = 2\delta\{p(t;\delta t) - \delta\Phi(-\delta t^{\frac{1}{2}})\}, \quad t > 0.$$

The Laplace transform is $L(\lambda; \delta) = 2/\{1 + (1 + 2\lambda/\delta^2)^{\frac{1}{2}}\}, \lambda > 0.$

Received 20 February 1986; revision received 17 July 1986.

^{*} Postal address: Section de Mathématiques, Université de Genève 2-4, rue du Lièvre, Case Postale 240, 1211 Genève 24, Switzerland.

Proof. First, let $\{X(t), 0 \le t \le s\}$ have the law of a Brownian bridge of duration s. Then $\mu(s)$ and $\nu(0, s)$ are well-known to be uniform over [0, s]. Considering the law of this Brownian bridge as weak limit, for $\varepsilon \downarrow 0$, of laws of Brownian motion conditioned to $X(s) \in [0, \varepsilon]$, one deduces the equality $W(\mu(s) \in dt, X(s) \in d0) = W(\nu(0; s) \in dt, X(s) \in d0)$, 0 < t < s. Referring to Example 6 of [2] this in turn implies, when $\delta > 0$, $W_{-\delta}(\mu \in dt, \tau'(0) \in ds) = W_{-\delta}(\nu \in dt, \tau'(0) \in ds)$, where $\tau'(0) = \sup \{t > 0: X(t) = 0\}$. Integration in s gives $W_{-\delta}(\nu \in dt) = W_{-\delta}(\mu \in dt) = 2\delta\psi(t; -\delta)$, the result for μ being known (see e.g. [2], Example 7). The Laplace transform is easily obtained.

Let Y be a negative exponential variable with parameter 2 δ , independent of X which has law $W_{-\delta}$, $\delta > 0$. It is easy to see that when $\delta = 2^{-\frac{1}{2}}$, the total time $\nu(-Y)$ during which X(t) > -Y holds has the same law as Berman's ξ .

Lemma 2. Let $\delta > 0$. The $W_{-\delta}$ -law of $\tau(-Y)$ is the same as the law of μ , and ν , and the Laplace transform of $\nu(-Y)$ is $L^2(\lambda; \delta)$, $\lambda > 0$.

Proof. For y > 0, the $W_{-\delta}$ -Laplace transform of $\tau(-y)$ is exp $\{\delta y[1 - (1 + 2\lambda/\delta^2)^{\frac{1}{2}}]\}$ ([2], Lemma 3). That of $\tau(-Y)$ is therefore, at $\lambda > 0$,

$$2\delta \int_0^\infty \exp\left(-2\delta y\right) \exp\left\{\delta y \left[1 - (1 + 2\lambda/\delta^2)^{\frac{1}{2}}\right]\right\} dy = L(\lambda; \delta).$$

Let θ be the shift operator. The total time $v(-y) \circ \theta(\tau(-y))$ spent by X above -y, from $\tau(-y)$ on, is independent of $\tau(-y)$. As Y is independent of X, $v(-Y) \circ \theta(\tau(-Y))$ and $\tau(-Y)$ are also independent. But $v(-Y) = \tau(-Y) + v(-Y) \circ \theta(\tau(-Y))$ where the second summand has, conditionally on Y and therefore also unconditionally, the same law as v. The conclusion follows.

Once it is known that the $W_{-\delta}$ -density of v(-Y) is the convolution of $2\delta\psi(t; -\delta)$ with itself, it is only a matter of lengthy computation to obtain this density, and the corresponding distribution function. The same holds true for v(-y), the density of $\tau(-y)$ being known (e.g. [2], 5.2). We record the results as follows.

Theorem. When $\delta > 0$, y > 0, one has for t > 0:

(a) $W_{-\delta}(\mu > t) = 2\Phi(-\delta t^{\frac{1}{2}}) - 2\delta t\psi(t; -\delta).$

(b) $W_{-\delta}(v(-Y) \in dt) = 2\delta^2 W_{-\delta}(\mu > t) dt$.

(c) $W_{-\delta}(v(-Y) > t) = 4\Phi(-\delta t^{\frac{1}{2}}) - (1 + \delta^{2}t)W_{-\delta}(\mu > t).$

(d) $W_{-\delta}(v(-y) \in dt) = 2\delta \exp(2\delta y) \{p(t; y + \delta t) - \delta \Phi(-t^{\frac{1}{2}}(y + \delta t))\} dt.$

(e) $W_{-\delta}(v(-y) > t) = \Phi(t^{-\frac{1}{2}}(y - \delta t)) + (1 + 2\delta y) \exp(2\delta y) \Phi(-t^{-\frac{1}{2}}(y + \delta t)) - tW_{-\delta}(v(-y) \in dt)/dt.$

As pointed out before, (c) gives for the particular value $\delta^* = 1/2^{\frac{1}{2}}$, Berman's function $\Gamma(t)$, and (b) then shows that $-\Gamma'(t) = W_{-\delta^*}(\mu > t)$.

References

[1] BERMAN, S. M. (1982) Sojourns and extremes of a diffusion process on a fixed interval. Adv. Appl. Prob. 14, 811-832.

[2] IMHOF, J. P. AND KÜMMERLING, P. (1986) Operational derivation of some Brownian motion results. *Int. Statist. Rev.* 54, to appear.