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ON THE TIME SPENT ABOVE A LEVEL BY BROWNIAN MOTION
WITH NEGATIVE DRIFf

J.-P. IMHOF,* University of Geneva

Abstract

Limit theorems of Berman involve the total time spent by
Brownian motion with negative drift above a fixed or exponentially
distributed negative level. We give explicitly the probability densities
and distribution functions, obtained via an equivalence of laws.

LAST PASSAGE: DURATION OF POSITIVITY

1. Introduction

If B is standard Brownian motion, the total time ~ that 2!B(t) - t + Y spends above
0, where Y is a negative exponential variable with parameter 1, independent of B, plays
a substantial role in some limit theorems of Berman [1]. He has
obtained the Laplace transform of ~ and shown that if I'(r) = Pr (~ > t), then - r' (t) is a
non-increasing function with - r' (0) = 1. Using an equivalence of laws which explains
the squared form of Berman's result we obtain r explicitly, identify 1 + f' as a
distribution function and give also the density and distribution function when y is
constant.

2. Results

From now on, {X(t), t ~ O} is the coordinate process on the space of continuous
functions. We call W-6 the law under which X is Brownian motion with X(O) = 0 and
constant drift - 6; only values 6 ~ 0 are considered. Under W =Wo, X is standard
Brownian motion. Let r(y)=inf{t>O:X(t)=y}, M(t)=max{X(s):s~t}, J1.(t)=
inf {s ~ t:X(s) = M(t)} and

v(y; t) = f1{X(S»Y) ds.

When 6> 0, J1. = J1.(00) and v(y) = v(y, 00) are almost surely finite, and we write
v = v(O). We use r( - Y) and v( - Y) for random positive Y also. Furthermore,
p(t; x) = (2Jrt)-! exp {-x 2/2t }, t > 0, X E IR, and <I> is the standard normal distribution
function.

Lemma 1. If 6 > 0, the W_6-laws of J1. and v are identical, with probability density

261jJ(t; -6) = 26{P(t; 6t) - 6<1>( -6t~)}, t > O.

The Laplace transform is L(A; 6) = 2/ {I + (1 + 2A/62)~}, A> O.
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Proof. First, let {X(t), °~ t ~ s} have the law of a Brownian bridge of duration s.
Then lJ(s) and v(O, s) are well-known to be uniform over [0, s]. Considering the law of
this Brownian bridge as weak limit, for E10, of laws of Brownian motion conditioned to
X(s) E [0, E], one deduces the equality W(IJ(s) Edt, X(s) E dO) = W(v(O; s) Edt, X(s) E

dO), 0 < t < s. Referring to Example 6 of [2] this in turn implies, when 6 > 0,
W -6(1J Edt, t '(O) E ds) = W -6(V Edt, r '(O) E ds), where r'(O) = sup {t > O:X(t) = O}.
Integration in s gives W -6(V Edt) = W -6(1J Edt) = 261/J(t; -6), the result for 11 being
known (see e.g. [2], Example 7). The Laplace transform is easily obtained.

Let Y be a negative exponential variable with parameter 2D, independent of X which
has law W -6, 6 > O. It is easy to see that when 6 = 2-!, the total time v( - Y) during
which X(t) > - Y holds has the same law as Berman's ;.

Lemma 2. Let 6 > 0. The W -6-law of r( - Y) is the same as the law of IJ, and v, and
the Laplace transform of v(-Y) is L 2(A; 6), A>O.

Proof. For y > 0, the W _6-Laplace transform of r( -y) is exp {6y[1 - (1 + 2A/6 2)! ] }
([2], Lemma 3). That of r( - Y) is therefore, at A> 0,

215rexp (-215y) exp {15y[1- (1 + 2M 15 2)! ]} dy = L(A; 15).

Let 8 be the shift operator. The total time v( - y ) 0 8( r( - y )) spent by X above - y,
from r( - y) on, is independent of r( -y). As Y is independent of X, v( - Y) 0 8( r( - Y))
and r( - Y) are also independent. But v( - Y) = r( - Y) + v( - Y) 0 8( r( - Y)) where the
second summand has, conditionally on Yand therefore also unconditionally, the same
law as v, The conclusion follows.

Once it is known that the W _6-density of v( - Y) is the convolution of 261/J(t; -6)
with itself, it is only a matter of lengthy computation to obtain this density, and the
corresponding distribution function. The same holds true for v( -y), the density of
r( -y) being known (e.g. [2], 5.2). We record the results as follows.

Theorem. When 6 > 0, Y > 0, one has for t > 0:
(a) W -6(11 > t) =2~( -6t!J - 26t1/J(t; -6).
(b) W -6(V( - Y) Edt) = 26 W -6(1J > t) dt.
(c) W -6( v( - Y) > t) = 4~( -6t!) - (1 + D2t)W -6(1J > t).
(d) W -6(V( -y) Edt) = 2D exp (2Dy){P(t; y + Dt) - D<I>(-t!(y + Dt))} dt.
(e) W -6(V( -y) > t) = ~(t-!(y - 6t)) + (1 + 26y) exp (26y)~(-t-~(y + 6t))

- tW -6(v( -y) E dt)/dt.
As pointed out before, (c) gives tor the particular value D* = 1/2!, Berman's function

I'(z), and (b) then shows that -f'(t) = W -6*(11 > t).
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