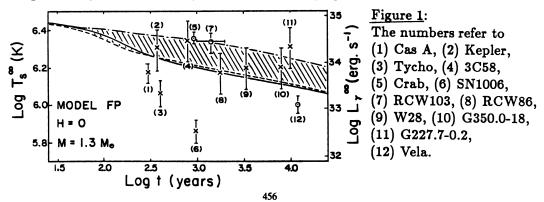
NEUTRON STAR COOLING AND THE VELA PULSAR

Ken'ichi Nomoto¹ and Sachiko Tsuruta²


¹Physics Department, Brookhaven National Laboratory; on leave from the Department of Earth Science and Astronomy, University of Tokyo ²Department of Physics, Montana State University

We have calculated cooling models of young neutron stars.³ The theoretical cooling curves for several models are compared with the Einstein X-ray observations of young supernova remnants (Figure 1).

Our most interesting new finding may be that for the Vela pulsar the observed temperature upper limit is below the *standard* cooling curve. This may raise some interesting possibilities for the Vela pulsar, i.e., greatly enhanced cooling through the presence of *exotic* particles such as charged pion condensates and quarks. This may be possible if the Vela pulsar is slightly more massive than a neutron star in, e.g., RCW103. Note that the observed temperature upper limits for point sources RCW103, 3C 58, and the Crab are consistent with the *standard* cooling.

This outcome is interesting in view of the recent report⁴ that the temperature of the internal crustal layers of the Crab and Vela pulsar independently estimated by the vortex creep theory is 3.8×10^8 K and 1.5×10^7 K, respectively. The corresponding temperatures of these pulsars obtained from the *standard* cooling model are $\sim (3 - 6) \times 10^8$ K and $(2 - 4) \times 10^8$ K, respectively. This leads to a potentially important implication that for the Crab the *standard* cooling model (i.e., no *exotic* particles included) is consistent with the vortex creep theory but it would not be so for the Vela pulsar.

³Nomoto K. and Tsuruta S. 1986, Ap. J. (Lett), 305, L19; 1987, Ap. J., Jan. 15. ⁴Alpar M.A., Nandkumar R., and Pines D. 1985, Ap. J., 288, 191.

D. J. Helfand and J.-H. Huang (eds.), The Origin and Evolution of Neutron Stars, 456. © 1987 by the IAU.