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Abstract

The purpose of this paper is to provide a detailed treatment of the behaviour of essential spectra of closed
densely defined linear operators subjected to additive perturbations not necessarily belonging to any ideal
of the algebra of bounded linear operators. If A denotes a closed densely defined linear operator on a
Banach space X, our approach consists principally in considering the class of A-closable operators which,
regarded as operators in JC(XA, X) (where XA denotes the domain of A equipped with the graph norm),
are contained in the set of A -Fredholm perturbations (see Definition 1.2). Our results are used to describe
the essential spectra of singular neutron transport equations in bounded geometries.

2000 Mathematics subject classification: primary 47A53, 47A55,47G20.

1. Introduction and preliminaries

Let X and Y be two Banach spaces. By an operator A from X into Y we mean a linear

operator with domain D(A) c X and range contained in Y. We denote by ^ ( X , Y)

(respectively j£?(X, Y)) the set of all closed, densely defined (respectively bounded)

linear operators from X into Y. The subset of all compact (respectively weakly

compact) operators of i f (X, Y) is designated by Jf(X, Y) (respectively W(X, Y)).

If A e <g{X, Y), we write N(A) c X and R(A) c Y for the null space and range

of A. We set a := dimJV(A), 0 := codimfl(A). Let A e <i?(X, Y) with a closed

range. Then A is a <J>+-operator (A e ®+(X, Y)) if a(A) < oo, and A is a <t>_-

operator (A e $_(X, Y)) if /3(A) < oo; <Z>(X, Y) = 0>+(X, Y) n <1>_(X, 10 is the

class of Fredholm operators while 4>±(X, Y) denotes the set <t>+(X, Y) U O_(X, Y).

For A e O(X, Y), the index of A is defined by i(A) = a(A) - /J(A). If X = Y, then
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74 KhalidLatrachand J. Martin Paoli [2]

Sf(X, Y), JT(X, Y), W(X, K), V(X, Y), <t>+(X, Y), *±(X, 10, and 4>(X, K) are
replaced, respectively, by _£?(X), JT(X), ^ ( X ) , <??(X), * + ( * ) . <t>±(X) and <t>(X).
Let A e "^(X). The spectrum of A will be denoted by a (A). The resolvent set of A,
p(A), is the complement of o{A) in the complex plane. A complex number A is in
<!>+„, <&-A, <£>±A or <t>A if A - A is in 4>+(X), <I>_(X), <t>±(X) or <t>(X) respectively.
For the properties of these sets we refer to [7, 12] or [24].

For self-adjoint operators in a Hilbert space, there seems to be only one reasonable
way of defining the essential spectrum: the set of all points of the spectrum that are
not isolated eigenvalues of finite algebraic multiplicity (see, for example, [22, 30]).
If X is a Banach space and A e ^ ( X ) , various notions of essential spectrum appear
in the literature, most are enlargement of the continuous spectrum. Define the sets

= (A 6 C such that X- A i O+(X)} := €\<i>+A,

= {X € C such that A - A i <i>_(X)} := C\<&-A,

= {A 6 C such that A - A i *±(X)} := C\<t>±i4,

= {A € C such that A - A g <J>(X)} := C\4>A,

= C\p5(A),

= C\p6(A),

where p5(A) := {X e $>A\i(X - A) = 0} and p6(A) := {A <E p5(A) such that all
scalars near A are in p(A)}. We call ae{(-) and ov2() the Gustafson and Weidman
essential spectra [10] and 0,3(•) the Kato essential spectrum [13]. Further, cre4(-) is
the Wolf essential spectrum [10, 23, 30], ae5(-) is the Schechter essential spectrum
[10, 23, 24], and CT^(-) is the Browder essential spectrum [10, 23]. Note that all these
sets are closed and, in general, we have

oe2(A)

0,5 04)

ael(A) Ho",2(A) =<r,3(/l) c CT<,4(A) c orrf(A) c

But if X is a Hilbert space and A is self-adjoint, then all these sets coincide.
An operator T e J$?(X, Y) is said to be strictly singular if, for every infinite

dimensional subspace M of X, the restriction of 7 to M is not a homeomorphism.
Let y(X, Y) denote the set of all strictly singular operators from X into Y. For a
detailed study of the properties of strictly singular operators we refer to [12]. Note
that J^(X, Y) is a closed subspace of .£?(X, Y). In general, strictly singular operators
are not compact (see [8]) and, if X = Y, y(X) is a closed two-sided ideal of _£?(X)
containing J^ (X) .

If /V is a closed subspace of a Banach space Z, we denote by n^ the quotient map
Z —> Z//V. The codimension of /V, codim(/V), is defined to be the dimension of the
vector space Z/N.

An operator T e J?(X, Y) is said to be strictly cosingular if there exists no closed
subspace N of Y with codim(/V) = oo such that nJ,T : X —> Y/N is surjective. Let
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, Y) denote the set of strictly cosingular operators from X into Y. This class of
operators was introduced by Pelczynski [21]. It forms a closed subspace of J£(X, Y)
and is a closed two-sided ideal of i f (X) if X - Y (see [27]).

Let 4>6(X, Y), <f>* (X, Y) and ** (X, Y) designate the sets <t>(X, Y) D Jf(X, Y),
O+(X, Y) n i f (X, Y) and 4>_(X, Y) n i f (X, K), respectively.

DEFINITION 1.1. Let F e i f (X , Y). F is called a Fredholm perturbation if
( / + F 6 < t > ' ( X J ) whenever £/ e <J>fe(X, Y). F is called an upper (respectively
/ewer) Fredholm perturbation if F + U e <$>b

+(X, Y) (respectively <$>b_(X, Y)) when-
ever U e <t>b

+ (X, Y) (respectively d>^(X, K)).

The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturba-
tions are denoted by &b(X, Y),^b(X, Y)and^b(X, Y), respectively. These classes
of operators were introduced and investigated in [8]. In particular, it is shown that
&b(X, Y) and &b(X, Y) are closed subsets of i f (X, Y), and if X = Y, then J ^ ( X )
and <!?b(X) are closed two-sided ideals of J^(X). We recall the following useful
result due to Gohberg, Markus and Fel'dman [8, pages 69-70].

PROPOSITION 1.1. Let X, Y and Z be three Banach spaces. If at least one of the
sets <f>b(X, Y) and <bb(Y,Z) is not empty, then

) {F1e^b{Y, Z), B e if(X,

imply

AFxe &b{X, Z) (F2B e 3?b(X, Z)).

For A e ^ ( X ) , the graph norm of A is defined by

where ^ (A) denotes the domain of A. It follows from the closedness of A that
endowed with the norm || • Jl̂  is a Banach space. In this new space, denoted by XA,
the operator A satisfies ||Ax|| < \\x\\A, and consequently, A e ££(XA, X). Let J be
a linear operator on X. If ^ (A) c 2(J), then J will be called A-defined. If J is
A-defined, we will denote by J its restriction to ^ (A) . Moreover, if J e ££{XA, X),
we say that J is A-bounded. One checks easily that if J is closed (or closable) (see
[13, Remark 1.5, page 191]), then J is A-bounded.

REMARK 1.1. We say that an operator J is A-closed if xn —*• x,Axn -> y,Jxn -> z
for {*„} c @(A) implies that x e 3>(J) and Jx = z. It will be called A-closable
if xn —> 0, Axn -> 0, Jxn -*• z implies z = 0. It is evident that if J is closed
(respectively closable), then J is A-closed (respectively A-closable). Note, however,
that if A is closed, by [23, Lemma 2.1], we get the equivalence between the following
three concepts: (i) J is A-closed, (ii) J is A-closable and (iii) J is A-bounded.
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DEFINITION 1.2. Let X be a Banach space, A e V{X) and let F be an A-

defined linear operator on A". We say that F is an A-Fredholm perturbation if
F e &b(XA, X). F is called an upper (respectively lower) A-semi-Fredholmpertur-
bation if F e &*(XA, X) (respectively F e

Let A&(X), A&+{X) and A&_{X) designate the sets of A-Fredholm, upper
A-semi-Fredholm and lower A-semi-Fredholm perturbations, respectively.

DEFINITION 1.3. Let A e V(X) and let J be an arbitrary A-defined linear oper-
ator on X. We say that J is A-compact (respectively A-weakly compact, A-strictly
singular, A-strictly cosingular) if J 6 Jff(XA,X) (respectively J e W(XA,X),
J 6 y{xA,x), j e cy{xA,

Let AX{X), AW(X), Ay(X) and A Cy{X) denote, respectively, the sets of A-
compact, A-weakly compact, A-strictly singular and A-strictly cosingular operators
onX.

REMARK 1.2. Clearly, if J is bounded, then J is A-bounded, J is compact (re-
spectively weakly compact, strictly singular, strictly cosingular) implies that J is
A-compact (respectively A-weakly compact, A-strictly singular, A-strictly cosingu-
lar).

REMARK 1.3. Notice that the concept of A-boundedness, A-compactness, A-strict
singularity, A-strict cosingularity and A-Fredholmness are not connected with the
operator A itself, but only with its domain. Note also that an easy consequence of
Definition 1.2 and the inclusions in [8, page 69] that

(1.1a) AJXT(X) c Ay(X) c A&+(X) c

(1.1b) AX{X) c ACy(X) c A&-(X) c

The inclusion Ay(X) c A&+(X) (respectively A Cy(X) c A^.(X)) was estab-
lished in [12] (respectively [27]).

When dealing with essential spectra of closed densely defined linear operators on
Banach spaces, one of the main problems consists in studying the invariance of the
essential spectra of these operators subjected to various kinds of perturbations. Among
the works in this direction we quote, for example, [10, 15, 16, 17, 22, 24, 30] (see
also the references therein). This work is a continuation of [17], where we can find
a detailed treatment of the behaviour of essential spectra of such operators subjected
to additive perturbations belonging to arbitrary closed two-sided ideals of -if(X)
contained in the set of Riesz operators (see [17, page 281]). It is inspired by the
work published in [15] and [16], where A-weakly compact and A-strictly singular
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perturbations (A denotes a closed densely defined linear operator) were considered
on Banach spaces which possess the Dunford-Pettis property, and on Lp spaces,
respectively. Our main objective here is to extend the results obtained in [15, Section 4]
and [16, Section 2] to arbitrary Banach spaces and to fit them into a more general
framework. The extension consists principally in the possibility of considering the
class of A-bounded operators which, regarded as operators in ̂ £{XA, X), are contained
in one of the sets A&+(X), A&AX), Ajr+(X) D A^"_(X) or A J2" (X). Accordingly,
using the same strategy as in [17], we find conditions which generalize previous ones
discussed in [15, 16]. In contrast to the proofs of the results obtained in [15] and [16],
which use the geometric properties of Banach spaces considered, our analysis applies
to all Banach spaces regardless of their specific properties and to a wide family of
operators including, in particular, the sets AX{X), AW{X), A5^{X) and A Cy{X).
Note also that our results provide a natural extension to those obtained in [17].

In the last section we consider the following singular neutron transport operator

Af(x, £) = -v — (x, v) - o(v)\jr(x, v) + K(V, v')\lr(x, v')dv'
dx y r

= Tf(x,v) + K\lr(x,v),

where (x, v) e D x R". Here D is an open bounded subset of R" and J/x() is a
positive Radon measure on U.N. This operator describes the transport of particles
(neutrons, photons, molecules of gas, etc.) in the domain D. The function \lr{x,v)
represents the number (or probability) density of gas particles having the position x
and the velocity v. The functions cr(-) and /c(-, •) are called, respectively, the collision
frequency and the scattering kernel. The operator A is supplemented with vacuum
boundary conditions that is l^r. = 0 with F_ = {(x,v) e 3D x R", v.vx < 0},
where vx stands for the outer unit normal vector at x e 3D.

Here the functions a(-) and K(-, •) will be assumed to be unbounded. More
precisely, we will assume that there exist a closed subset 6 c R" with zero d/x
measure and a constant cr0 > 0 such that

(1.2) CT(-) 6 L~(R"\^), o-(v) > ao a.e.

where q denotes the conjugate exponent of p. These assumptions were motivated
by free gas models (see [4, 25]) and were already used by Chabi and Mokhtar-
Kharroubi [2] in L, spaces and by Lods [18] in the case of Lp spaces (see also [19,
Chapter 9] or [28]). The first part of the condition (1.2) means that the singularities of
the collision frequency are contained in a set of zero d\x. measure. In fact, unbounded
and nonnegative collision frequencies act as strong absorbers which allow the un-
boundedness of the collision operator. We also deal with abstract velocity measures
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), hence our analysis works for continuous models (Lebesgue measure on open
subsets of K"), multigroup models (surface Lebesgue measures on spheres) as well as
discrete ones (finite sum of Dirac measures).

In [2, 18, 19] the authors discussed essentially the asymptotic spectrum of A.
The main goal of this paper is to apply the results of Section 2 to describe the
essential spectra of the operator A subjected to assumptions (1.2) and (1.3). The main
result of Section 4 is Theorem 4.1. It asserts that if conditions (1.2) and (1.3) are
satisfied, the hyperplanes of W have zero rf/x-measure (that is, for each e e S"~\
dfx{v e R"; v.e = 0} = 0, where S"~l denotes the unit sphere of Kn); and if further
the collision operator K is compact from LP(K", a(v)d/j.(v)) into Lp(fi&", d/j.(v)),
then aei(A) = [k e C such that Re A. < —cr0) for / = 1 , . . . , 5. Our analysis is based
essentially on Proposition 2.1, Proposition 4.1 and the knowledge of the essential
spectra of the streaming operator T.

2. Main results

Let X be a Banach space and A e ^(X). In what follows we shall be concerned
with A-bounded perturbations belonging to A^(X). It is a wide class of operators
which contains all the classical perturbation classes considered in the literature (see
Remarks 1.2-1.3). It is worth remarking that, according to Remark 1.1, operators in
A^(X) need not be closed.

We are now ready to state the main result of this paper which generalizes [17,
Theorem 3.1].

THEOREM 2.1. Let A e ^(X) and let J be an operator on X. The following
statements are satisfied.

(i) If J e A&{X), then aei(A) = aei(A + J), i = 4,5. Moreover, if Cae5(A)
(the complement of ae5{A)) is connected and neither p(A) nor p(A + J) is empty,
then CTf6(A) = CT^(A + J). Further,

(ii) ifJ € A&+(X). thenael(A) = ael(A + J);
(iii) ifJe A&_(X) or J* € A&+(X*), then ae2{A) = ae2{A + J);
(iv) if J e A3?+(X)f)A3?_(X), thenaei(A) = ae3(A + J).

Let X be a Banach space. We say that X possesses the Dunford-Pettis property
(for short, property DP) if, for each Banach space Y, every weakly compact operator
T : X -* Y takes weakly compact sets in X into norm compact sets of Y. It is well
known that any L i space has the property DP. Also, if £2 is a compact Hausdorff space
then C(£2) has the property DP. For further examples we refer to [5] or [6, pages 494,
497, 508 and 511].
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REMARK 2.1. Item (i) was first proved in the particular case when J e AJf(X)
in [23, Theorems 2.1 and 2.6]. This is due to the fact that AX(X) c A&+(X) D
A&_{X). If X is an Lp space, 1 < p < oo, and A e ^(X), then assertions (i)
and (ii) are valid for all J e Ay(X) [16, Theorem 2.1]. The same is true for the
spaces lp, 1 < p < oo, c0 and C(Q), where £2 is a compact Hausdorff space. Also,
using A-weakly compact perturbations, statements (i) and (iii) were established in
[15, Theorem 4.1] for Banach spaces which possess the property DP.

Notice that in most applications (transport operators, Schrodinger operators, opera-
tors arising in dynamic populations etc. see [3,9,17,22,24]), we deal with operators A
and B such that B = A + J, where A e ^(X) (often is the generator of a strongly
continuous semigroup) and J is, in general, a closed (or closable) A-defined operator
not necessarily bounded. The next proposition provides a practical criterion for the
invariance of essential spectra for such operators, which is useful in applications (see
Section 4).

PROPOSITION 2.1. Let A e ^(X) and let J be an A-bounded operator on X.
LetJ?{X) be any nonzero closed two-sided ideal ofJC(X) satisfying J(X) c ^(X),
where &{X) denotes the ideal ofFredholm perturbations, and assume that there is a
complex number k e p(A) such that ra(J(k — A)"1) < 1.

(i) lfJ(k - A)"1 6 J(X), then aei(A + J) = aei(A), i = 4, 5.
Moreover,

(ii) ifJ?(X) C &+(X), then ael(A + J) = aei(A);
(iii) ifS{X) C &_{X), then ae2(A) = ae2(A + J);
(iv) ifS(X) c J?+(X) fl J?-(X), then ae3(A) = ae}(A + J).

PROOF. Let k e p(A). Since J is A-bounded, according to [23, Lemma 2.1],
J(k — A)"1 is a closed linear operator defined on all X and therefore bounded by the
closed graph theorem. On the other hand, the assumption rn (J (k — A)"') < 1 implies
that A. e p(A + J) and

(k - A - . / r 1 - (k - A)"1 = £(A. - A)~l[J(k - A)"1]".
n>\

Clearly, if J(k - A)"1 e J(X), then the closedness of J(X) implies that
(k - A - • / ) " ' - ( A . - A ) " 1 6 y(X). Now items (i)—(iv) follow immediately from
[17, Theorem 3.2]. •

Let us now recall another definition of the Schechter essential spectrum (see, for
example, [23, 24]). It asserts that if A e ^(X), then ae5(A) is the largest subset
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of CT(A) which remains invariant under compact perturbations, that is,

(2.1)
KeJfT(X)

The equivalence between (2.1) and the definition of cre5 (•) given in the Introduction was
established in [24, Theorem 5.4, page 180]. In [17, Theorem 3.4], (2.1) is somewhat
relaxed. Actually, it is proved that

(2.2) oa(A)=

where J {X) is a two sided ideal of Jf(X) satisfying JXT(X) c J(X) c
Nevertheless, a careful examination of the proof of Theorem 5.4 in [24, page 180]
shows that (2.1) remains valid if we replace J(f{X) by &o(X) (the ideal of finite rank
operators). So, ^Q(X) is the minimal subset of j£?(X) (in the sense of inclusion) for
which (2.2) holds true.

In the next theorem we will give a sharper form of (2.2) which extends it to
A-bounded perturbations contained in A&(X). To do so, we will assume that

(2.3)

THEOREM 2.2. Let A e ^(X) and let J' (X) be any subset of operators satisfy-

ing (2.3). Then ae5(A) = r\jeSi*)a(-A + J)'

REMARK 2.2. This theorem may be viewed as an extension of [15, Theorem 4.2]
and [16, Theorem 2.2]. In fact, in [16] (respectively [15]) it is proved that in the case
when X is an Lp space (respectively has the property DP), the definition of ae5 (•) can be
stated in terms of A -strictly singular (respectively A-weakly compact) perturbations.
Since Ay(Lp) c A&{LP) (1 < p < oo) and AW{X) c A&{X), if X has the
property DP, then these two results are particular cases of our theorem. Their proofs
depend in a crucial way on the properties and the structure of both the families of
operators and the classes of spaces considered, and are different from the proof of the
Theorem 2.2 given below.

Finally, we have the following analogue of Proposition 3.2 in [17] which extends
it to the case of /i-Fredholm perturbations.

PROPOSITION 2.2. Let A e ^(X). Ifae6(A) = ae5(A), then, for each J 6 A&(X),
there is at most a countable set S? of complex numbers such that

=ae6(A)

for £ £ 5? • If Ccrf6(/4) consists of a finite number of components, then 5? is discrete.
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PROOF. It is verbatim the proof of [17, Proposition 3.2]. It suffices only to replace
in the text Proposition 3.1 by Lemma 3.1 below. •

REMARKS 2.3. (1) Let (£2, E, fi) be a positive measure space and let Xp denote
the spaces LP(Q, d/x) with 1 < p < oo. Recall that, if X = Xp or X = C(S) (the
Banach space of continuous scalar-valued functions on H with the supremum norm
where S is a compact Hausdorff space), then y(X) = Cy(X) = &{X) (see [16,
(2.9) and (2.10)]). So, for these spaces we have AS"{X) = A Cy(X) =
(2) Recall that, following Calkin [1], if X is a separable Hilbert space, then

is the unique proper nonzero closed two-sided ideal of -£?(X). This result also holds
true for the spaces lp, 1 < p < oo and c0 [8]. Hence if X is one of these spaces, then
J^iX) = ^"(X), and therefore A Jf(X) is largest class of operators which permits to
derive the results stated above.
(3) A Banach space X is an h-space if each closed infinite dimensional subspace of X

contains a complemented subspace isomorphic to X. Any Banach space isomorphic to
an h-space is an h-space; c, c0 and lp (1 < p < oo) are h-spaces. Let X be an h-space,
according to [29, Theorem 6.2], y(X) is the greatest proper ideal of S£(X). Hence,
since S*(X) c &(X) we conclude that y(X) = &{X). Next, let A e ^(X), then
it follows from Definition 1.3 and Remark 1.3 that A^(X) = A^(X) . Accordingly,
for h-spaces, A5^{X) is the largest family of operators for which the results of this
section are valid.

3. Proofs

To establish the results stated above we will make use of the following perturbation
lemma which is fundamental to our purpose. It generalizes many known perturbation
results in the literature.

LEMMA 3.1. Let A e ^(X) and let J be an operator on X. Assume that
J e A&{X).

(i) If A e <t>(X), then A + J 6 <I>(X) and i(A + J) = i(A).
Moreover,

(ii) if A 6 <t>+(X) and J e A&+(X), then A + J e 4>+(X);
(iii) if A e <t>_(X) and J g A JT_(X) or J* € A&+(X*), then A + J e <t>_(X);
(iv) if A e <D±(X) and J 6 A&+(X) n A&-(X), then A + Je <t>±(X).

REMARK 3.1. During the last decades, perturbation theory has experienced great
developments motivated by concrete problems arising in different branches of physics
and biology see, for example, the works [7, 8, 10, 12, 13, 20, 22, 23, 24, 27, 30].
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When dealing with A-bounded perturbations, where A e ^(X), many results in
the spirit of the assertions of Lemma 3.1 concerning special classes of operators
and particular Banach spaces may be encountered in the literature. In fact, the first
result in the spirit of Lemma 3.1 (i) for A-compact operators was established by
Nagy [20]. Using Nagy's idea, Gohberg and Krein have obtained items (ii) and (iii)
(and consequently (iv)) stated above for the same class of operators [8]. In [12]
Kato proved assertion (ii) for A-strictly singular operators. If X has the property DP
and J e AW(X), then Lemma 3.1 (i) and (iii) hold true (see [15]). Recently, it is
proved that if X is an Lp space (1 < p < oo) and J e AJT'(X), then statements (i)
and (ii) are valid (see [16]). Note that in our case, Vladimirskii's result (see [27,
Corollary 1]) writes ACy(X) c Aif_(Ar), and therefore (i) and (iii) hold true for
A-strictly cosingular perturbations.

PROOF OF LEMMA 3.1. Since A e ^(X) and J e A&{X), hence as mentioned

above we can regard A and J as operators from XA into X. They will be denoted by
A and J respectively. These belong to Jif(XA, X) and we have

(3.1)

Observe that assertion (ii), the first part of (iii) and (iv) are immediate. To prove
the second part of (iii) we proceed as follows. Let A 6 <J>_(X). Applying [13,
Theorem 5.13, page 234] we infer that A* e <&+(X*). Moreover, J* e
implies that A * + / * e <t>+(X*). This together with the fact that a (A *+J*) =
(use again [13, Theorem 5.13, page 234]) gives the result.

(i) Assume that A e <J>(X). Then using (3.1) we infer that A € <S>b(XA, X). Hence,
it follows from [24, Theorem 1.4, page 108] that there exist Ao e 3?(X, XA) and
K e X(X) such that

(3.2) AA0 = / - K, on X.

This leads to

(3.3) (A + J)A0 = / - K + JA0 = I - £ on X.

Next, it follows from (3.2) that AA0 € <t>b(X) and i(AA0) = 0. Hence, the use of
[24, Theorem 3.4, page 117] together with the Atkinson theorem [24, Theorem 2.3,
page 111] implies that Ao e <t>b(X, XA) and

(3.4) /(A) = -i(Ao).

a(A)=a(A), p{A) = p(A), R(A) = R(A),

a(A + J) =a(A + J),

+ J) = /3(A + J) and R(A + J) = R(A + J).
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On the other hand, since J € A#(X) and Ao e .if (X, XA), applying Proposition 1.1
we get JA0 e &b(X). Using the fact that &b{X) is a closed two-sided ideal of
Sf(X) containing J f (X) [8] we infer that £1 e &b{X). Therefore applying [17,
Proposition p:3.1 (i)] to (3.3) we get (A + J)A0 e <$>b(X) and i[(A + J)A0) = 0.
Since Ao e 4>b(X, XA), it follows from [24, Theorem 3.4, page 117] and the Atkinson
theorem that A + J e <S>b(XA, X) and

(3.5) i(A + j) = -/(Ao).

Now using (3.4), (3.5) and (3.1) we find that i(A + J) = i(A) which completes the
proof. •

PROOF OF THEOREM 2.1. The proofs of items (ii), (iii), (iv) and the first part of (i)
for i = 4 use Lemma 3.1 and are immediate. So, they are omitted.

Next, we prove (i) for i = 5. If A ^ oe5(A), then A e ps(A) that is k e OA and
i(k - A) = 0. Since J e A^(X) , applying Lemma 3.1 (i) we infer that k e <&A+J

and i(k - A - J) = 0, and therefore k $ cre5(A + J). Thus ae5(A + J) c ae5{A).
Similarly, if k £ <res{A + J), then using Lemma 3.1 (i) and arguing as above we derive
the opposite inclusion cfes(A) c ^ f A + J ) ,

To prove the statement for i = 6, we first observe that the preceding step implies that
CaeS(A-\-J) = Coes(A). This set contains points of p(A) and p(A +7) . Accordingly,
since a(A. — A) and fi(k — A) (respectively <x(k — A — J) and fi{k — A — J)) are
constant on any component of <t>A (respectively Q>A+j) except possibly on a discrete
set of points at which they have larger values (see [7, Theorem 3.3]), it cannot contain
points of ae6(A) or o^A + J). This together with the inclusions ae5(A) c o^A)
and ae5(A + J) C CT^(A + J) leads to aeS(A) = a^(A) and oei(A + J) = a^A + J)
and the result follows. •

PROOF OF THEOREM 2.2. Set 6 := r\jej(x)a(A + J)-
Clearly, (2.1) and (2.3) show that 6 c oe5(A). So, we have only to prove that

CrfW c G. If Ao i &, then there exists J e J (X) such that k0 e p(A + J). Let
x e X and put y = {k0 — A — J)~lx. It follows from the estimate

= ||y|| + ||(A + J)y\\ = \\y\\ + ||JC - Aoy||

= ||(Ao - A - J r ' x l l + \\x - A0(A0 - A -

+ (1 + |A0|)||(A0 - A - y)-

that (Ao - A" - / ) - ' € ^(X,XA+J). Moreover, since J e J?(X) c
applying Proposition 1.1 we conclude that (Ao — A - J)'1 J e &b(XA,XA+J). Let
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denote the imbedding operator which maps every x 6 XA onto the same element
x 6 XA+J. Clearly we have N(J) = {0} and R{J) — XA+J. So, the estimate

A., = \ \ X \ \ X A + J < \\x\\x + \\Ax\\x + \\Jx\\x

leads to J e <&b(XA, XA+J) and i(J) = 0.
Next, remembering that (A.o—A — J)~l J e ^b(XA, XA+j) and using Lemma 3.1 (i)

we get

(3.6) J + (k0 - A - J)'lJ e <t>b(XA, XA+J) and i(S + (A.o - A - y)~'y) = 0.

On the other hand, since Ao e p(/4 + J), it follows from (3.1) that

(3.7) (ko-A-J)e<Pb(XA+J,X) and i(ko-A-J) = O.

Thus, writing A.o — A in the form

A o - A = (k0 - A - J){S + (k0 - A - 7 ) - ' y )

and using (3.6), (3.7) and the Atkinson theorem we get k0 — A e <$>b(XA, X) and
i(k0 - A) = 0. Now using (3.1) we infer that (k0 - A) e #(X) and f(A.o - A) = 0,
that is, ae5(A) C <?. •

4. Application to singular transport equations

The aim of this section is to apply Proposition 2.1 to study the essential spectra of
the following singular neutron transport operator (see [2, 18, 19])

, v)-a(v)\}r(x,v)+ f K(v,v')f(x,v')dfj,(v'),
J

where (x, v) e D x K", D is an open bounded subset of W, dfj,(-) is a bounded
positive Radon measure on RN and K denotes the integral part of A. This operator
describes the transport of particles (neutrons, photons, molecules of gas, etc.) in the
domain D. The function \ff(x,v) represents the number (or probability) density of
gas particles having the position x and the velocity v. The functions <r() and K (•, •)
are called, respectively, the collision frequency and the scattering kernel.

The main feature is that the collision frequency cr(-) and the collision operator K
are unbounded. Actually, an unbounded collision frequency a(-) acts as a strong
absorption which allows the unboundedness of K. We assume that the scattering
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kernel K(-, •) is nonnegative and there exist a closed subset G c IR" with zero dpi
measure and a constant a0 > 0 such that

(4.1)

and

cr(-) 6 , or(u) > a0 a.e.

where qr denotes the conjugate exponent of p.
We denote by K the following collision operator

K :

where LP(W) := LP(K", d(j.(v)) and we introduce the following weighted space

:= LP

It follows from the assumption (4.2) that K e &(Ln(W); LP(R")) and

1/9

We also define the space Xa := LP(D x K", o{v)dxdii{y)). Using the boundedness
of D we find that K e t£(Xa\Xp) with

1/4

where Xp := LP(D xRn\dx dn(v)).
Before going further we first recall the relevant functional setting of the problem.

Let Wp = {f e Xp such that v.Vxf e Xp) and define the set T_ by T_ = {(JC, v) 6
3D x W, v.vx < 0), where v* stands for the outer unit normal vector at x 6 3D.

Next we introduce the following subspace of Wp

W°p := [f e Wp such that ^ r _ = 0}.

Now we are in a position to define the streaming operator T

f 7>(JC, v) = -V.VXTKX, V) - a(v)xjs(x, v), ir 6 D(T);
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Note that a simple calculation using the assumption (4.1) shows that Xp is a subset of
Xp and the embedding Xp «-»• Xp is continuous.

Let A e C and consider the following boundary value problem

\X\//(x, V) + v.yx\j/(x, v) + a(v)ir(x, v) = (p(x, v),

i
where <p is an assigned function in Xp, and the unknown function \jf must be sought
inD(7) .

For Re A + a0 > 0, (4.3) can be solved formally to give

1r(x, v) = \lr(x - r (x, v)v, „)<.-<*+»<»»'•<*•»>
r-f~(jc,u)

+ I ' e-(k+ams(p(x - sv, v) ds,
Jo

where/ (x, v) = sup{f > 0, x — sv e D, 0 < s < t}. Since \j/ must belong to D( T),
then it follows that \j/(x — t~(x, v)v, v) = 0 for any (x, v) e D x R". Accordingly,
the solution of (4.3) is given by

f(x,v)= / e-a+l7(v))s<p(x - sv, v) ds.

An immediate consequence of these facts is that cr(T) c {X e C : ReX < —a0}.
Since a(-) is bounded below by CT0, a similar reasoning to [11, Corollary 12.11,
page 272] shows that o{T) = [X e C : Re A < — CT0}. In fact, we can easily check
that a (T) is reduced to a C( 7) (the continuous spectrum of 7), that is, a (7) = CT C(7)
(see [11, Chapter 12]). Since all essential spectra are enlargement of the continuous
spectrum we infer that

(4.4) ati{T) = {X e C such that ReA < -cr0), i = 1 , . . . , 6.

From now on, we will assume that the measure d^i satisfies

I the hyperplanes have zero da-measure, that is, for each e e S"~\

d{ 6 R", v.e = 0} = 0.

where S"~l denotes the unit sphere of R". Note that condition (4.5) is not restrictive.
It is, in particular, satisfied by the usual continuous, multigroup and discrete models.

Now we are in position to state the main result of this section.

THEOREM 4.1. Let D be a bounded subset ofW and 1 < p < oo. If hypotheses
(4.1), (4.2) and (4.5) are satisfied and the collision operator K : L"p(R") -> Lp(\R

n)
is compact, then,

aei(A) = {X e C such that ReA < -cr0), ' = 1 , . . . , 5.

https://doi.org/10.1017/S1446788700010168 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010168


[15] Relatively compact-like perturbations 87

To establish Theorem 4.1 the following result is required.

PROPOSITION 4.1. Assume that the hypotheses of Theorem 4.1 are satisfied. Then,
for any X satisfying Re A > — ao> the operator K(X — T)~x is compact on Xp,
1 < p < oo.

REMARK 4.1. (i) Note that the statement of Proposition 4.1 excludes the case
p = 1. This is due to the fact that our proof uses an averaging result [19, The-
orem 3.2 (ii)], which is valid only for 1 < p < oo. However, in the case where
K : L"(Rn) -> Li(K") is positive and weakly compact, and d/x satisfies the follow-
ing geometrical property

/ dyL{x) fXA(tx)dt^O as |A| -> 0

for every <*i < a2 < oo and a3 < oo, where \A\ is the Lebesgue measure of A and
XA(-) denotes the characteristic function of A, Lods [18, Corollary 2.1] proved that
K(X - T)~lK : X° -> X, is weakly compact.

(ii) It should be noticed that Proposition 4.1 contains also information concerning
the asymptotic spectrum of A. In particular, it tells us that

a(A)C\{X e C :ReX > -a0]

consists of at most a countable set of isolated eigenvalues with finite algebraic multi-
plicity. This follows from [26, Theorem II].

PROOF OF PROPOSITION 4.1. Since K is compact from L"p{W) into LP(R"), by
using linearity and approximation arguments we may restrict ourselves to the case
when the scattering kernel has the form K(V, V') — f (v)g(v'), where/ (•) € LP(R"),
g(-)<7(-)l/<? e Lq(R") and q denotes the exponent conjugate of p. Again, the use
of a density argument allows us to assume that/ (•) e %(W), g(-)^(-)1/l7 e K(K")
(continuous functions with compact support). In these conditions, operator K(X—T)~l

maps Xn into itself for all r? e [1, +oo]. Using interpolation arguments (see [14,
Theorem 3.10, pager 57]) we can restrict ourselves to the case p =2.

Let srfg be the averaging operator

*/g : <p e XI - • j tp(x, w')g(wVM(w') e L2(D).

It suffices to show that ^(X — TH)~l is a compact operator from X2 into L2(D). This
amounts to sii : D(T) = ^ n X J - > L2(D) is compact.

Note that D(T) equipped with the norm
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where HTAIIW* = IIV ÎIx;. + Ik-ViV'ilx, is aBanach space.
If U is a bounded subset of D(T), then there exists p > 0 such that ||TAIIz>t7"> < P

for every ij/ e U. This implies, in particular, that U is bounded as a set of W%. Now
applying [19, Theorem 3.2 (ii)] one sees that &/gU is relatively compact in L2(D).
This shows the compactness of j2/g which ends the proof. D

PROOF OF THEOREM 4.1. Let k e p(T). Since the collision operator K is T-
defined, by the closed graph theorem we have K(k — T)~l e J^(XP). On the other
hand, in [18, Proposition 3.3], it is proved that D(T) is continuously embedded in X"
and, for any A > 0, we have \\(k - T)-x\\^Xp,x,p) < (l/kqy'i(l/p)l'P. So, since X;
is continuously embedded in Xp, we infer that lim^_0O \\K(k — T)~l\\^(Xl,) = 0.
Therefore, there exists k e p(T) such that ra(K(k - T)~l) < 1. Next, using
Proposition 4.1 one sees that K(k - T)~l e X(XP) C y{Xp). Since &+{Xp) =
&-{Xp) = S^iXp) = y{Xp) (see, for example, [16, (2.9)]), the result follows
from (4.4) and Proposition 2.1. •
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