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0. Introduction. In [2] I described the deformation of bending a hyperbolic
manifold along an embedded totally geodesic hypersurface. As I remarked there, the
deformation is particularly interesting in the case of a surface, because a surface contains
many embedded totally geodesic hypersurfaces, namely simple closed curves, along which
it is possible to bend. Furthermore, for a surface it is possible to extend the definition of
bending to the case of a geodesic lamination, by using the fact that the set of simple
closed geodesies is dense in the space of geodesic laminations. This direction has been
developed by Epstein and Marden in [1].

In the present article I want to look into another generalization of the idea of
bending, which again is possible only in dimension 2, namely that of bending a
quasi-Fuchsian structure.

It is possible to define bending with reference only to the boundary of the universal
cover of the n-manifold, and in particular to the (n — 2)-spheres which form the boundary
of the components of the lift of the hypersurface. In general, a quasi-conformal
homeomorphism would deform such a sphere into a non spherical Jordan hypersurface in
M"~\ which would not be invariant by any one-parameter group of Mobius transforma-
tions of W~l. However, if n = 2 the deformed 0-spheres still define geodesies. Hence it is
possible to define bending starting from any quasi-Fuchsian structure. In this case we do
not obtain an explicit bending embedding of H2 into H3; because of this I follow [1] in
using cocycles to define the deformation. There is however a naturally defined bending
map of a pleated surface representing the bending lamination, which is a local isometry.
There is also an embedding of the spheres at infinity.

In a subsequent article this deformation will be used to study the geometry of the
space of quasi-Fuchsian structures.

1. Preliminaries. A. I shall use the upper half-plane H2 = {z e C, Im z > 0} and the
upper half-space H3 = {(x, y, z) e R3, z > 0}, with their respective Poincare metrics; c will
denote the point i e H2 or the point (0,0,1) e H3 and y the geodesic {ti, ( > 0 } c H 2 or
{(0, 0, 0, t > 0} c H3. H2 and H3 will denote the closure of H2 and H3 inside C U {°o} and
IR3 U {°°} respectively. Elements of PSL(2, C) will be identified with the corresponding
isometries of H3.

Let S be a closed surface. The space Q(S) of quasi-Fuchsian structures on 5 is a
quotient of the space of injective homomorphisms p:jr,(S) —*PSL{2, C) such that
F = im p is discrete and S x / s H3/r. Two homomorphisms plt p2 define the same point
in Q(S) if there is an inner automorphism ad A of PSL(2, C) such that p, = adA°p2.

A Fuchsian point in Q(S) is the class of a homomorphism with image in PSL(2, IR).
The Fuchsian points of Q(S) form the Teichmiiller space T(S). A point p e T(S)
determines a hyperbolic structure on 5: there is a homeomorphism S—»H2/r inducing
p : j r , ( S H r .

We shall fix a Fuchsian point represented by p : JT,(S)—»r c PSL(2, U) and shall
identify ;r,(S) with F under p. We shall consider 5 with the hyperbolic structure defined
by p.
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For every poeQ(S), there is an embedding <p:(H]2—•H3, extending to the boundary
by an embedding dcp: dH2^ dH3, such that p0: F-* To is given by

B. Let 5 be a surface with a hyperbolic structure. A geodesic lamination A on 5 is a
foliation of a closed subset of 5 such that the leaves are geodesies. The leaves of A
together with the components of 5 — A will be called strata of A. A geodesic lamination is
finite if it has only finitely many leaves; it is discrete if every compact subset of 5 intersects
finitely many leaves of A. A geodesic lamination is maximal if every component of 5 - A
is an ideal triangle. ?»

PROPOSITION 1.1 [5]. Any geodesic lamination on a closed hyperbolic surface is
contained in a maximal lamination.

If (p: Sx —» 52 is a homeomorphism of closed hyperbolic surfaces and A is a geodesic
lamination on Sx, define q>*(A) to be the unique geodesic lamination whose leaves are in
the isotopy class of the curves <p(f), for/a leaf of A. In particular, if S, and 52 are distinct
hyperbolic structures on a closed surface 5, a geodesic lamination on 5, determines a
unique geodesic lamination on S2.

If <p:U2—>H3 is an embedding and A a geodesic lamination on H2, <p*(A) is the set
of geodesies in H3 asymptotic with the curves cp(f) for / a leaf of A.

A pleated surface in a hyperbolic 3-manifold N is a complete hyperbolic surface 5
together with a continuous map xj>:S—> N which satisfies:

(a) xp is isometric, in the sense that every geodesic segment in 5 is taken to a
rectifiable arc in N which has the same length;

(b) for each point Jte5, there is at least one open geodesic segment ax through x
which is mapped to a geodesic segment in N.

The set of points with a unique segment ax satisfying (b) is the pleating locus of xj>.
The pleating locus is a geodesic lamination on 5.

The hyperbolic convex hull H(B) of a closed set ficfil3 is the intersection of all
closed hyperbolic half spaces containing B. For a quasi-Fuchsian point poeQ(S), the
convex hull Ho - H(dq>(dM2)) is invariant by the group r0, and the convex hull manifold
of Fo is the quotient space HJYQ.

PROPOSITION 1.2. [5]. Let S be a closed hyperbolic surface, T a quasi-Fuchsian group
isomorphic to Jti(S), and M the convex hull manifold of V. For every maximal geodesic
lamination A on S there is a unique hyperbolic structure SA, and a pleated surface
ip:SA—>M such that the pleating locus of ip is contained in A.

Let As be a lamination in a hyperbolic surface 5. Then As lifts to a lamination A in
H2.

A transverse measure (i for A is a finite complex valued Borel measure pLa on each
compact non trivial geodesic segment a in H2, such that:

(a) if a is contained entirely in a stratum of A, then fia(a) = 0;
(b) if a and j3 are geodesic segments and their respective endpoints lie in the same

strata of A, then na(a) = fip(fi).
If a and /3 are geodesic segments, U is a set with more than one point and U c orD/J,
then fia(U) = tip(U) and we shall denote it by n(U). If x is contained in a leaf/of A,
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fi({x}) will denote the ^-measure of the set {x}, where or is a geodesic segment
containing x and not contained in /.

A measured lamination (A, n) is a geodesic lamination with a transverse measure. If
A is finite with leaves/,, . . . ,fk and Jt,-e/j, ^({JT,-}) = z,-, we shall denote the measured
lamination (A, n) by {/, z,}.

If A is the lift to H2 of a geodesic lamination As on 5, and the transverse measure [i
of A is invariant by the action of the fundamental group of 5 on H2, it defines a transverse
measure ns for As.

C. The following definition generalizes the definition of a cocycle in [1, Definition
3.5.2]. Let p e T(S), poe Q(S), be as in subsection A.

A (r, p^-cocyde on H2 is a mapping Z:H 2 xH 2 -» PSL(2, C) such that
(a) Z(x, x) = I for all x e H2;
(b) Z(x, z) = Z(x, y)Z(y, z) for x, y, z e H2;
(c) Z(Ax, Ay) = p()(A)Z(x, y)PM~x) for x, y e H2, A e F.
A (F, p0)-cocycle determines a cocycle for F in the usual sense (i.e. a crossed

homomorphism). Fix a point x e H2 and define

ZA = Z(x, Ax) for A e F.

Then ZAB = Z(x, ABx) = Z(x, Ax)Z(Ax, ABx), and using (c) we have

ZAB = ZAPO(A)ZBPO(A-[). (1)

This in turn determines a representation of F in PSL(2, C) and hence a quasi-Fuchsian
structure

pz(A) = ZApt(A).

By (1), pz is a homomorphism.

2. Construction of the cocycle. A. For every measured geodesic lamination
(As, Us) on 5 we shall define a (F, p,,)-cocycle on H2 which will give rise to a deformation
of p0. To begin with assume that As is a finite lamination. Then A is a discrete lamination
in H2.

Let x, y e H2. If x and y lie in the same stratum of A define Z(x, y) = I. Otherwise let
[x, y] be the closed geodesic segment from x to y, oriented from x to y. Number the
leaves of A which intersect [x, y] starting from x:fn,fu . . . , fk. Give/ the orientation so
that it crosses the segment [x, y] from right to left, and let z, = ;u(/ D [x, y]).

If / is a geodesic in H2, with endpoints u, v and orientation from u to v, and z a
complex number, define C(f, z) to be the element of PSL(2, C) determined as follows.
C(f, z) is conjugate to

lezt2 0 \

. *>-('„ eL)
and has repulsive fixed point u'= dcp{u) and attractive fixed point v' = d(p(v), where
<p:H2—»H3 is the embedding defined in section 1(A). C(f, z) is given by the matrix

-zl2-ezl2)' _ , , - , / " ' e 2 / 2 -« 'e~ z / 2 u'v'{e-zl2-ezl2)\
U U> [ t*ri_e-zn V'e-

z'2-u'ez'2 )
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Define C, = C(fh z,) for i = 0,. . . , k - 1 by

fC(/o,zb) if **/„ r = rC(/* ,2 t ) if y*fk
C o lC(/|zo if *e/0 °* lC(A,izt) if ye/*.

Then define Z(x, y) = C0. . . Ck.

LEMMA 2.1. Z is a (r, p0)-cocycle on H2.

Proo/. (a) By definition, Z(*, X) = I.
(b) First assume that y lies on the geodesic segment [x, z] and not on a leaf of A. Let

fo, • • • ,fm be the leaves of A which intersect [x, y], fm+u . . . ,fk those which intersect
[y, z). Then

Z(x, y)Z(y, 2) = Co . . . CmCm+l ...Ck = Z(x, z).

lfyefmn[x,z], then

Z(x, y)Z(y, z) = (Co . . . Cm_,C(/m, £zm))(C(/m, lzm)Cm + 1 . . . Ck)

= C0...Ck = Z(x,z).

The same calculation holds if the stratum containing y intersects the segment [x, z\.
Otherwise there are points tx, t2, t3 on [y, z], [x, z], [x, y] such that t{ separates the leaves
which intersect [x, y] and [y, z] from those which intersect [y, z] and [x, z], and similarly
for t2, t3. Then Z(x, t2) = Z(x, t3), Z(t3, y) = Z(tu y) and Z(t2, z) = Z(tu z). Hence

Z{x, z) = Z(x, t2)Z{t2, z) = Z(x, h)Z(tu z)

= Z(x,t3)Z(t3)y)Z(y,tl)Z(tl,z)

= Z(x,y)Z(y,z).

(c) (A, fi) is invariant by F, hence if A e F the leaves which intersect [Ax, Ay]
are A(f0), . . . , A(fk), and for X/sfi, n({A(Xi)}) = fA.({xi}) = zh If u, v are the end-
points of fit C(A(fi), z,) has fixed points dq>{Au), 3<p{Av). Let B € PSL(2, C) be
such that B(d(p(u)) = 0 and B(d<p(v)) = «>. Then BpQ(A^)(d(p{Au)) = 0 and

O ) ^ 0 0 - Therefore

This completes the construction of the (F, p0)-cocycle for a finite lamination.

B. If the lamination As is not finite, we shall approximate the value of the cocycle at
(x, y) by grouping together nearby leaves of As, to obtain a finite lamination.

A solid cylinder over a disc D in H3 is the union of all geodesies orthogonal to a two
dimensional hyperbolic disc in H3. The endpoints of these geodesies lie in two discs Dx

and D2 in H3; we shall say that the cylinder is supported by D, and D2. The cylinder is
uniquely determined by the disc D. The radius of the cylinder is the hyperbolic radius of
the disc D.

LEMMA 2.2. Given e and r] positive numbers, there is 8>0 such that if D, and D2 are
two discs in U.2 cz 3H3, with euclidean diameter <8 and the distance between £), and D2 is
>f], then the cylinder supported by D, and D2 has radius r<e.
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Proof. It is clear that the radius of the cylinder increases with an increase in the
diameter of the supporting discs and decreases with an increase in the distance between
the discs. It is therefore enough to calculate the radius r of the cylinder supported by two
discs of diameter 8 and distance rj apart. This is given by

We can therefore take 6 = 2V(e2e ~ !)•

Let (A5, Us) be an arbitrary measured lamination on 5, and (A, ju) its lift to H2. Let
[x, y] be a closed oriented geodesic segment in H2. There are two disjoint closed intervals
/ and J on 3H2 such that each leaf of A which intersects [x, y] has one endpoint in / and
one in J. Assume that dtp: dH2—* dH3 maps / and J into IR2. Let T] = ini{\dq>(u)-
d<p(v)\, ueI,veJ}, e = 1/n and Sn the number given by Lemma 2.2.

Since / and J are compact there exist partitions Ft = {M0, . . . , uq] of / and
H = {va,...,vs} of J such that 9<p([u;_i, «,•]), i = l,...,q and 3<p([uy_,, v,]), j =
1, . . . , s are each contained in a disc of diameter 6n. Using II and Z, we can construct a
partition Pn = {x0, . . . , xp}, x = x0, y = xp, such that /x({*,•}) = 0 for 0 < i <p and all the
leaves of A which intersect [x,_i> */] have their endpoints in the same subinterval of / or /.
This condition implies that the set of geodesies in (p*(A) which correspond to leaves of A
which intersect [JC,_,, *,] all lie in a hyperbolic cylinder of radius 1/n in H3.

Given any partition P = {x0, . . . , xp} of [x, y] with /x({x,}) = 0 for 0 < i < p , define a
finite approximation of (A, p) subordinate to P to be a finite lamination {/, z,}
constructed in the following way. If there are leaves of A intersecting [*,_,, JC,] choose one
of them and label it /)_,. If there is a leaf of A through x0 or through xp choose that leaf
for/;, or/p_!. Relabel the geodesies f0, . . . ,fr to avoid repetitions and subintervals with
empty intersection with A. Now define a finite measured lamination {/, z,} where z, is the
sum of the measures under /i of the (one or two) subintervals of P associated with fi. We

r

have E z, = iw([*> >"])• Define

ZP = C(f{),z0)...C(fr,zr)

where z0 is replaced by ^z() if x lies on A and zr is replaced by \zr if y lies on A.
C. Let Zn = ZPn for the partition Pn constructed above. In the remainder of this

section I shall show that {Zn} converges to a limit in PSL(2, C) and that the limit is
independent of the choices made in the definition of Zn.

Because we shall have to act by elements of PSL(2, C) on the right as well as on the
left, it is not convenient to use the geometrically defined left invariant metric on
PSL(2, C). Instead we shall work with a norm in the space of 2 x 2 complex matrices.

In the vector space C2 introduce the norm ||(z,, z2)|| = max{|Z[|, |z2|}. A complex

matrix A — I I acts on C2 and has norm
\c dl

LEMMA 2.3 [1, Lemma 3.3.1]. Let X be a set of matrices in SL(2, C) and
c = (0, 0, 1) e H3. Then the following are equivalent.
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(a) The closure of X is compact.
(b) There is a constant M such that if AeX then \\A || =£ M.
(c) There is a constant M such that if A e X then \\A\\ =£ M and \\A~l\\ =£ M.
(d) There is a constant R such that if A eX then d(c, A(c)) =e R.

The following elementary lemma is proved by analyticity. Recall that

eza 0

LEMMA 2.4 [1, Lemma 3.4.1]. If K is a compact subset ofSL(2, C) and M>0, there is
a constant N such that for any A, B e K and z e C with \z\ *£ M, we have

\\A C(y, z)A~' - B C(y, z) B~l\\ **N\\A-B\\ \z\.

We need to know that the approximations Zn all remain within a compact subset of
SL(2, C). To obtain this I look at the pleated surface ty: S —» H3/r,, representing a
maximal lamination containing A5. Let ii>:H2—>H3 be the lift of i/;.

LEMMA 2.5. Let K be a compact disc of radius R about c in H3, and M >0. There is a
number N>0 with the following property. If [x, y] is a geodesic segment in H2 such that
tj)([x, y]) c K and {fh z,}, i = 0, . . . , k, is a finite measured lamination with support
contained in the support of A, whose leaves all intersect [x, y] and are numbered in order

k

from x to y, and such that E |Re z,| < M, then
l = O

\\C(fo,zo)...C(fk,zk)\\^N.

Proof. Since {/} is a sublamination of A, V>(/) are geodesies in H3. Let
Xi=fn[x, y]. Then ^([*,_,, JC,]) is a rectifiable path in H3 of length d(jc,_,, *,). For
i = l,...,k define r, :[*,_„ *,•]-+H3 by T, = C(/0) z0). . . C(/,_,, z,_0°^|(,,_,.,,i. Each
ri([xi-\> *i]) is a rectifiable path of length d(xi^1, xt).

Define a rectifiable path from rp(xn) to C(/o, z0). . . C(fk, zk)°\p(xk) by joining the
geodesic segments and the rectifiable paths [tp(x0), T,(XO)], TI([^0, JC,]), [T,(X0),
x2(xl)], . . . , Tk([xk-U xk]), [rk(xk), C(/0) z0). . . C(fk, zk)°y(xk)]. This path has length
less than d(xOj xk) + M ^2R + M. Therefore d(iK*o), C(f0, z0). . . C{fk, zk)°ip(xk))^
2R + M. But rp(x0) and ij>{xk) both lie in a disc of radius R from c, hence

d(c, C(f0, z0). • . C{fk, zk)(c)) ^4R + M.

By Lemma 2.3, there is N such that ||C(/0, z0). . . C(fk, zk)\\^N.

In the following two lemmas we obtain the basic estimates that will be used in the
proof of the convergence.

LEMMA 2.6. Let K be a compact set in H3. There exists a constant M with the following
property. If D is a disc of radius r contained in K, and a, ft two geodesies contained in the
cylinder over D, then there is an element AeSL(2,C) such that A(a) = fi and
\\A-I\\^Mr.

Proof. It is enough to prove the result for a the geodesic orthogonal to D through its
centre because

\\AB -I\\^\\A-I\\\\B\\ + \\B-I\\.
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Since K is compact, we can further assume that a= y, D n a = c and b = /? n D is the
point (a, 0, V(l - a2)), because

If S = d(c, b), # is the angle between /S and the perpendicular to D through b and cp the
angle between the projection of /3 onto the plane of D and the geodesic (t, 0, V(l — t2))
we can take A to be

/cosh|<5 sinh|<5\ . /cos |# sinl#\ .

Lnh** ooshiJ^'^Usini* cos* J C ( y ' " ^
/cosh|<5 sinh|<5\

L * * o o s h i J U s i n i * cos*
Then

||y4 - /| | « |1 - cosh |<5 cos i# | + |cosh |<5 sin \$\
+ |sinh |<5 cos | # | + |sinh | 6 sin |#) | .

Since /3 is contained in the cylinder, we have 6^r and |sin #\ ̂ tanhr. For
r < diam(AT), there is M such that ||,4 - /|| *£ Mr.

LEMMA 2.7. Let K be a compact subset of H3 and M > 0. Then there is a constant N
with the following property. Let D be a disc in K of radius r and F the hyperbolic cylinder
over D. Let fa,...,fk be geodesies in F and z{), . . . , zk complex numbers with
k

Ti | Re z,| < M. Iff is any geodesic in F then

ea , 2b) • • • C(fk, zk) - c(f, t z)\ \z,\.

Proof. It is clearly sufficient to prove the result for / the geodesic orthogonal to D
through its centre, and since K is compact we can assume that / = y and y n D = c. Let At

be the matrix given by Lemma 2.5, mapping/to/ . Then

\\C(fh z,) - C(f, z,)|| = WAiCif, z,)Arl ~ C(f, z,)||.

By Lemma 2.4, there is /V, depending only on K and M such that

| |C(/,z<)-C(/,zl-)| | 'S N,\\A;-l\\\z\

and, by Lemma 2.6, there exists a constant N2 depending only on K such that

Write C, for C(fh z,). We have

Co ... Ck - ctf, i z He,,. . . C, - Co . . . Ck-Mf, zk)\\

, zk) - C ( ) . . . Ck_2C(f, z ,_ ,

,=o

C ( ) . . . Ck. ,|| || Ck-C(f, zk) ||
DC,,. . . Q_2| | ||C,_, - C(f z*_,
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By Lemma 2.5 there is N3 such that

II / * \ II *
C o ...Ck- C[f, 2J 2/) ^ ^ 3 Z IIQ - C ( / , z,) | | *£ A ^

II \ <=o 'W i=o

The following lemma implies that {Zn} converges and that the limit is independent of
the choice of the sequence of finite approximations.

LEMMA 2.8. Let e > 0. There exists N > 0 with the following property. For n> N, let
Pn be a partition of [JC, v] defined as in Section 2.B, {f, z,}, / = 0, . . . , p, a finite
approximation to (A, ;u) subordinate to Pn, and Zn = C(/o, z0). . . C(fp, zp). If Q is a
refinement of Pn with no interior points of[x, y] of positive measure, {hh u,}, j: = 0, . . . , q,
a finite approximation of (A, (i) subordinate to Q, and ZQ = C(h0, v0). . . C{hq, vq), then

\\Zn-ZQ\\<e.

Proof. Let /, c [x, y] be the subsegment associated with the leaf/ (/, consists of one
or two of the subsegments of Pn), and similarly 7y c [JC, y] the subsegment associated with
the leaf hj. Let htl, . . . him be the leaves of {hj, u,} which intersect /, and put
vik = n(Jik n /,). Define Z?, = C(hh, u,,). . . C(him, 0,-J. The only cases where vik =£ vik occur
when hikD[x, y]cPn. Since no interior points of Pn have positive measure we have
ZQ = Bo. . . Bp.

\\ZH-ZQ\\ = \\CO...CP-BO...BP\\

^\\C0...Cp-C0...Cp_lBp\\

+ . . . + \\C0 . . . CkBk+x... B p — C o . . . Ck-XBk . . . Bp\\

+ . . . + \\C0Bl...Bp-B0...Bp\\

« | |C 0 . . .Cp_ 1 | | | |C p -Bp | |

By Lemma 2.5 there is a constant Nu and by Lemma 2.7 there is a constant N2 such
that

2N| | n Q | | f t 2 2
It is therefore enough to take

THEOREM 2.9. Given a closed hyperbolic surface S—»IH]2/r, a measured lamination
(As, ns) on S and a quasi-Fuchsian structure p 0 : F—» r0, for any pair of points x, y e H2,
the sequence {Zn} constructed in Section 2.B, converges in PSL(2, C) to Z(x, y), the limit
is independent of the choice of the sequence and defines a (r, p0)-cocycle Z on H2.

Proof. The convergence of Zn and the independence of Z(x, y) from the choice of
the sequence of finite approximations are immediate consequences of Lemma 2.8.
Condition (a) for a cocycle holds obviously. Condition (b) is proved by constructing finite
approximations for the sublamination of A consisting of the leaves intersecting [JC, y] and
[y, z] and then applying Lemma 2.1. Condition (c) is proved similarly.
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The (F, p0)-cocycle 2 determined by the measured lamination (As, fis) defines a
section homomorphism as in l . C ,

= Z(c,Ac)p0(A).

Let t/»:H2—*M3 be the lift of the pleated surface representing a maximal lamination
containing Ai ; as in Lemma 2.5. Then the (F, p,,)-cocycle Z determines a mapping
^ : H 2 ^ H 3 b y

%(x) = Z(c,x)xp(x).

The restriction of i//M to each stratum of A is an isometry. The mapping •ij)ll is continuous
except at points x e H2 for which Re n({x}) > 0.

For t e C, let tfi denote the measure fi multiplied by t, and define a deformation of p0

by t •-> p,M. The space of quasi-Fuchsian structures is open in the space of discrete faithful
representations of F (see [4]). Hence there is an open neighbourhood U of 0 such that if
tell, pm gives a quasi-Fuchsian structure in Q(S). In [2], I determined a lower bound for
the size of U when A5 is a finite lamination and p0 is Fuchsian: if (A5, fis) = {f,, z,}, and a
is the injectivity radius of the lamination {fi} in H2/r0, then plfl is quasi-Fuchsian
provided that |Im(rz,)| < n and cos |(Im(rz,)) > 1/cosh a. In [2,3] I give examples where
this estimate is the best possible.
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