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Abstract. In this paper we generalise a result of Izuchi and Suárez (K. Izuchi
and D. Suárez, Norm-closed invariant subspaces in L∞ and H∞, Glasgow Math. J. 46
(2004), 399–404) on the shift invariant subspaces of L∞(�) to the non-commutative
setting. Considering these subspaces as C(�)-modules contained in L∞(�), we show
that under some restrictions, a similar description can be given for the B-submodules
of A, where A is a C∗-algebra and B is a commutative C∗-subalgebra of A. We use this
to give a description of the �n(B)-submodules of �n(A).

2010 Mathematics Subject Classification. 46L99, 47A15, 47L30.

1. Introduction. Let � denote the unit circle {z ∈ � : |z| = 1}. A subspace S of
Lp(�) is said to be shift invariant if for every f ∈ S we have that the function z �→ zf (z)
is also in S. As is usual, particular importance over the years has been placed on the
cases p = 2 and p = ∞. These subspaces, as well as arising naturally in an abundance
of purely operator theoretic contexts, have proved important in the study of linear
time invariant systems in control theory. A very lucid account of this is given in
[7, Chap. 3].

Shift invariant subspaces come in two forms. If S is shift invariant and, in
addition, we have that the function z �→ z̄f (z) is in S whenever f ∈ S, then S is called
doubly invariant or 2-invariant, otherwise it is called simply invariant or 1-invariant.
Equivalently, simply invariant subspaces are the shift invariant subspaces S such that
zS �= S and doubly invariant subspaces are those with zS = S.

When p < ∞, the classification of the closed doubly invariant subspaces is given by
Wiener’s theorem [7, Theorem 3.1.1]. The classification of the closed simply invariant
subspaces is slightly more difficult and is the content of the Beurling–Helson theorem
[7, Theorem 3.1.2]. These theorems were then used to derive analogous results for the
weak-∗ closed shift invariant subspaces of L∞(�). Although this provided a satisfactory
classification of these subspaces, much less is know in general about the norm closed
shift invariant subspaces of L∞(�). The most significant progress made so far are
the results of Izuchi and Suárez in [5]. In their paper the authors characterised the
maximal norm closed simply invariant subspaces of L∞(�) and all norm closed doubly
invariant subspaces of L∞(�). In this paper, we will only be considering the latter.
For completeness, we will present this result of Izuchi and Suárez [5], but first some
definitions will be required.

As usual �(L∞(�)) is the spectrum of L∞(�) and f̂ ∈ C(�(L∞(�))) is the Gelfand
transform of f ∈ L∞(�). We regard each bounded Borel measure μ on �(L∞(�)) as a
linear functional on L∞(�) and so we write ker μ for the collection of all f ∈ L∞(�)
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such that ∫
�(L∞(�))

f̂ dμ = 0.

Let z denote the identity function on �. Then for each λ ∈ � we define Fλ ⊆ �(L∞(�))
to be the set of all characters ϕ ∈ �(L∞(�)) such that ẑ(ϕ) = λ. Then �(L∞(�)) =
∪λ∈�Fλ. Define � to be the set of all bounded Borel measures μ on �(L∞(�)) such
that suppμ ⊆ Fλ for some λ ∈ �. We are now in a position to state the theorem.

THEOREM 1. ([5]). A closed subspace S of L∞(�) is doubly invariant if and only if
there is some collection of measures � ⊆ � such that

S =
⋂
μ∈�

ker μ.

We aim to show that this result is, in fact, a special case of more general
results describing some of the modules of certain commutative C∗-algebras. Before
proceeding, we will first fix some notation that will be adopted throughout, most of
which is standard.

1.1. Notation. Let H be a Hilbert space. I will denote the identity in B(H).
For a subalgebra A ⊆ B(H), we denote by (A)1 its closed unit ball, A

w
its weak

closure, Z(A) its centre and A′ its commutant in B(H) – that is A′ = {T ∈ B(H) :
TA = AT for every A ∈ A}. Given ψ ∈ A∗ and A ∈ A, we will write Aψ to denote
the functional B �→ ψ(AB) on A. �n(A) will denote the algebra of all n × n matrices
with entries in A, although we will simply write �n rather than �n(�). Eij denotes the
element of �n with i, jth entry equal to 1 and all other entries 0.

2. A non-commutative generalisation. It is easily observed that the problem of
determining the closed doubly invariant subspaces of L∞(�) can be thought of as
one of determining the closed C(�)-modules contained in L∞(�). It is then natural to
ask, if rather than C(�) and L∞(�) we have two C∗-algebras B and A with B ⊆ A,
whether we can still give a description of the closed left B-submodules of A. We show
that under some restrictions on the algebras, a similar description can be given which
generalises the result of Izuchi and Suárez [5]. In particular, we will always require B

to be commutative. In stating and proving the main results, we use many aspects from
the non-commutative theory of antisymmetric algebras developed many years ago by
Szymanski in [8, 9]. We begin by recalling a basic definition from this theory.

LetH be a Hilbert space and let A ⊆ B(H) be an operator algebra. A projection P ∈
A′ is called A-antisymmetric if for every A ∈ A such that PA = PA∗, there exists some
r ∈ � such that PA = rP. An A-antisymmetric projection P is maximal if whenever
Q is an A-antisymmetric projection such that Q ≥ P, with the standard ordering of
projections, we have Q = P. It is a straightforward application of Zorn’s Lemma to
show that every A-antisymmetric projection is dominated by a maximal one. We denote
by M(A) the set of all maximal A-antisymmetric projections. It was shown in [9] that
if A acts non-degenerately on H, M(A) is contained in the centre of A

w
and that the

elements of M(A) are all orthogonal. For a general operator algebra, indeed even for

https://doi.org/10.1017/S0017089513000402 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000402


SUBMODULES OF COMMUTATIVE C∗-ALGEBRAS 473

a C∗-algebra A ⊆ B(H), there need not be any A-antisymmetric projections (consider,
for example, A = B(H) = �2).

We say that M(A) is full or that A has a full set of antisymmetric projections if
M(A) is non-empty and

∑
P∈M(A)

P = I,

where the sum converges in the strong operator topology. It is easily verified that
a necessary (but not sufficient) condition for A to have a full set of antisymmetric
projections is that A is commutative.

Throughout the remainder of this section, we fix a Hilbert space H and two C∗

-subalgebras A and B of B(H) with B ⊆ A. We shall also assume the following:

(1) B is commutative with a full set of antisymmetric projections.
(2) B (and hence A) acts non-degenerately on H.

We will say that a functional ψ ∈ A∗ is antisymmetrically supported if for each P ∈
M(B) either Pψ = ψ or Pψ = 0. We say that a set � ⊆ A∗ is antisymmetrically
supported if every ψ ∈ � is antisymmetrically supported.

We can now give a generalisation of Theorem 1.

THEOREM 2. If every norm continuous linear functional on A is ultraweakly
continuous, then M ⊆ A is a closed left B-module if and only if there exists an
antisymmetrically supported set � ⊆ A∗ such that

M =
⋂
ψ∈�

ker ψ.

In order to prove Theorem 2 we will require the following lemma. This is a non-
commutative analogue of a result in the commutative theory of uniform algebras, a
detailed account of which can be found in [2].

LEMMA 3. Assume that every norm continuous linear functional on A is ultraweakly
continuous and let M ⊆ A be a closed left B-module.

(a) For every ψ ∈ A∗ we have that if ψ ∈ M⊥ then ψ ∈ (PM)⊥ for each P ∈ M(B).
(b) If A ∈ A and PA ∈ PM for every P ∈ M(B) then A ∈ M.

Proof. (a) Fix ψ ∈ M⊥ and P ∈ M(B). Since P ∈ B
w
, there exists a net (Bλ) ⊆ B

with Bλ → P in the ultraweak topology. As every ψ ∈ A∗ is ultraweakly continuous,
for each A ∈ M we have ψ(PA) = limλ ψ(BλA) = 0.

(b) Fix ψ ∈ M⊥, A ∈ (A)1 and suppose that PA ∈ PM for every P ∈ M(B). The
requirement that M(B) is full then ensures that the sum

∑
P∈M(B)

PA

converges in the strong operator topology (and hence in the weak operator
topology) to A. Since ψ is ultraweakly continuous, it is weakly continuous on (A)1
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[6, Proposition 7.4.5], and so

ψ(A) =
∑

P∈M(B)

ψ(PA).

It then follows from part (a) that ψ(A) = 0. �
We can now proceed to prove Theorem 2.

Proof of Theorem 2. Let M ⊆ A be a closed left B-module. Define � ⊆ M⊥ to
be the set of all ψ ∈ M⊥, which are antisymmetrically supported. Firstly, we have the
trivial inclusion

M ⊆
⋂
ψ∈�

ker ψ.

We also see that if ψ ∈ (PM)⊥ for some P ∈ M(B) then Pψ ∈ M⊥. Since P is a
projection, we also clearly have that Pψ is antisymmetrically supported and so Pψ ∈ �.
So if ψ(A) = 0 for every ψ ∈ �, then ψ(PA) = 0 for every ψ ∈ (PM)⊥. It then follows
from Lemma 3(b) that A ∈ M, and therefore

M =
⋂
ψ∈�

ker ψ.

Conversely, fix ψ ∈ A∗ and P ∈ M(A) such that Pψ = ψ . Then for each B ∈ ker ψ

and A ∈ A,

ψ(AB) = ψ(PAB) = λψ(B) = 0

for some λ ∈ �. So ker ψ is a left B-module, and hence an intersection of such things
will also be a left B-module. �

EXAMPLE 4. Let H be a separable Hilbert space with orthonormal basis (en). We
denote by K(H) and D0(H) the algebras of compact operators and compact diagonal
operators (with respect to the basis (en)) respectively. It is straightforward to verify that
theD0(H)-antisymmetric projections are rank 1 projections onto subspaces spanned by
the basis vectors and that these are in fact maximal so that M(D0(H)) = {Pn : n ∈ �},
where Pn is the projection onto the subspace spanned by en. Since every continuous
linear functional on K(H) is induced by a trace class operator, it has an extension
to B(H), which is ultraweakly continuous ([11, p. 96]). Fix S ∈ S1(H), where S1(H)
denotes the trace class operators on H. We will use Ŝ to denote the functional T �→
trST . An elementary calculation shows that PnŜ = Ŝ if and only if ek ∈ ker S for every
k �= n. Equivalently, PnŜ = Ŝ if and only if the matrix for S only has non-zero entries in
the nth column. Then T ∈ ker S if and only if the n, nth entry of ST is 0. Consequently,
every D0(H)-submodule of K(H) can be constructed by starting with some collection
{Sλ} ⊆ S1(H), each member of which will only have non-zero entries in one column,
the nλth column say, and then taking all T ∈ K(H) such that the nλ, nλth entry of SλT
vanishes for all λ.

COROLLARY 5. Let X be a closed subalgebra of A containing B. If every norm
continuous linear functional on A is ultraweakly continuous, then M is a closed left B-
submodule of X if and only if there exists an antisymmetrically supported set � ⊆ A∗
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such that

M =
⋂
ψ∈�

ker ψ ∩ X.

Proof. Fix P ∈ M(B) and suppose that we have ψ ∈ A∗ with Pψ = ψ . For every
B ∈ B and A ∈ X we have that BA − λA ∈ ker ψ , where λ ∈ � is such that PB = λP.
If we also have that A ∈ ker ψ , then we must have that BA ∈ ker ψ . Hence, ker ψ ∩ X
is a closed left B-submodule of X . Conversely, every closed left B-submodule of X is
trivially a closed left B-submodule of A, and so the result follows from Theorem 2. �

EXAMPLE 6. Let X be a closed subalgebra of L∞(�) which contains H∞(�).
Such algebras are called Douglas algebras and a detailed account of these is given in
[3, Chap. 9]. If we further suppose that X strictly contains H∞(�), then by Theorems
1.4 and 2.2 of [3] we have that X contains C(�). Corollary 5 then implies that the
closed shift invariant subspaces of X are all of the form S ∩ X , where S is a closed shift
invariant subspace of L∞(�).

We now wish to extend Theorem 2 to give a description of the �n(B)-submodules
of �n(A). However, we will first consider An = A ⊕ · · · ⊕ A acting on Hn. We can
regard B as a subalgebra of An by identifying B ∈ B with (B, . . . , B) ∈ An. It is clear
that if every bounded linear functional on A is ultraweakly continuous then the same
is true for An. The definition of antisymmetrically supported elements and subsets
of A∗ extends to A∗n without change, but noting that if ψ = (ψ1, . . . , ψn) ∈ A∗n then
Pψ = (Pψ1, . . . , Pψn). We are now left with the task of determining the maximal
B-antisymmetric projections in B(Hn). It should be noted that despite considering
B acting on Hn we will reserve M(B) exclusively for denoting the maximal B-
antisymmetric projections in B(H). Let Q ∈ B(Hn) be any maximal B-antisymmetric
projection. Since Q is contained in the weak closure of An, we can write Q =
(Q1, . . . , Qn), where each Qj acts onH. Then it is easy to check that each Qj is a maximal
B-antisymmetric projection in B(H). Suppose there are indices j and k with Qj �= Qk.
Then there is some B ∈ B and distinct complex numbers λj and λk with BQj = λjBj and
BQk = λkQk. Then B(Qj, Qk) = (BQj, BQk) = (λjQj, λkQk) �= λ(Qj, Qk) for any λ ∈ �.
It follows that any projection in B(Hn) having a subprojection equivalent to (Qj, Qk)
cannot be B-antisymmetric. So in particular Q is not B-antisymmetric. We conclude
from this that all the Qj are equal and hence Q = (P, . . . , P) for some P ∈ M(B).

We will now turn our attention to the left �n(B)-submodules of �n(A). We
occasionally identify �n(A) and �n(B) with A ⊗ �n and B ⊗ �n, respectively, when
it is convenient to do so. Before continuing, let us agree on a useful convention. We will
regard elements of A∗n as column vectors and if A = (Aij) ∈ �n(A), λ = (λij) ∈ �n and
ψ ∈ A∗n then the ‘products’ Aψ and λA are the usual ones; however, in this instance we
interpret terms, such as Aijψk, to mean ψk(Aij). With this understood, we define for each
ψ ∈ A∗n a linear map Rψ : �n(A) → �n by setting RψA = Aψ for every A ∈ �n(A).

THEOREM 7. If every norm continuous linear functional on A is ultraweakly
continuous then M ⊆ �n(A) is a closed left �n(B)-module if and only if there is an
antisymmetrically supported set � ⊆ A∗n such that

M =
⋂
ψ∈�

ker Rψ.
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Proof. Assume that M ⊆ �n(A) is a closed left �n(B)-module. For i = 1, . . . , n,
let Mi be the set of all (Ai1, . . . , Ain) ∈ An such that A = (Aij) ∈ M. It is clear that
each Mi is a closed left B-module and so there exist antisymmetrically supported sets
�1, . . . , �n ⊆ A∗n such that

Mi =
⋂

ψ∈�i

ker ψ.

We claim that all the �i are equal. Fix i and j with 1 ≤ i, j ≤ n. Since M is a left �n(B)-
module, we have in particular that for every B ∈ B and every A ∈ M, (B ⊗ Eji)A ∈ M.
The jth row of (B ⊗ Eji)A is (BAi1, . . . , BAin). It follows that BMi ⊆ Mj. Suppose there
is some A ∈ Mi \ Mj. Then there is some ψ ∈ �j and P ∈ M(B) such that Pψ = ψ

and ψ(A) �= 0. However, if we choose a net (Bλ) ⊆ B with Bλ → P in the ultraweak
topology (which we can always do as P ∈ B

w
), then we see that

ψ(A) = ψ(PA) = lim
λ

ψ(BλA) = 0.

This proves that such an A cannot exist and hence Mi ⊆ Mj. Swapping i and j in the
previous analysis gives Mi = Mj. Once we set � = �i for some (and hence all) i, the
inclusion

M ⊆
⋂
ψ∈�

ker Rψ

follows immediately.
Given any A ∈ ∩ ker Rψ there must exist A(1), . . . , A(n) ∈ M such that for each

j = 1, . . . , n, EjjA(j) = EjjA. Again, using that M is a left �n(B)-module, we have
that (B ⊗ Ejj)A(j) ∈ M for every B ∈ B. Since M is ultraweakly closed, it follows that
P ⊗ EjjA(j) ∈ M for every P ∈ M(B). As M(B) is full, the sum

∑
P∈M(B)

P ⊗ EjjA(j)

converges in the strong operator topology to EjjA(j), and since all the partial sums are
bounded, it also converges in the ultraweak topology. So EjjA(j) ∈ M. Writing

A =
n∑

j=1

EjjA(j),

we see that

M =
⋂
ψ∈�

ker Rψ.

The converse is straightforward. Fix ψ ∈ A∗n with Pψ = ψ for some P ∈ M(B).
If A ∈ ker Rψ and B ∈ �n(B) then there is a matrix λ = (λij) ∈ �n such that

BAψ = λAψ = 0.
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It follows that for any antisymmetrically supported set � ⊆ A∗n,⋂
ψ∈�

ker Rψ

is a left �n(B)-module. �

3. The case where B ⊆ Z(A). In the following we fix two unital C∗-algebras A

and B, as before with B ⊆ A, but here we insist that B ⊆ Z(A) and that B contains
the identity in A. As usual, Â will denote the spectrum of A (i.e. the set of equivalence
classes of irreducible representations of A) equipped with the usual topology. Let � be
the reduced atomic representation of A. That is,

� =
⊕

[π ]∈Â

π,

where each π : A → Hπ is a representative of the equivalence class [π ] ∈ Â. From
now on we work only with this set of representatives and make no reference to the
equivalence classes. We will show that this representation ensures that B has a full set
of antisymmetric projections and each P ∈ M(B) has a particularly simple form.

For π ∈ Â, let Eπ denote the projection in �(A)′ defined by setting

ρ(Eπ ) =
{

I if ρ = π

0 if ρ �= π

for every ρ ∈ Â. Since B is contained in the centre of A, we have that for any irreducible
representation π of A, π (B) = �I . Since every irreducible representation of B extends
to an irreducible representation of A (on a necessarily larger Hilbert space), we see
that the map π �→ πB, where πB(A) = (π (A)ξ |ξ ) for any unit vector ξ ∈ Hπ , defines
a continuous surjection of Â onto �(B). Following the ideas of Izuchi and Suárez [5]
we will define for each ϕ ∈ �(B), the fibre above ϕ to be the set

Fϕ = {π ∈ Â : πB = ϕ}.

Set

Pϕ =
∑
π∈Fϕ

Eπ

with the sum converging in the strong operator topology. Since for each B ∈ B there
is some λ ∈ � with π (B) = λI for every π ∈ Fϕ , it is clear that the projection Pϕ is
B-antisymmetric. The fact that ∑

ϕ∈�(B)

Pϕ = I

follows from the surjectivity of the map π �→ πB. So to show that each Pϕ is maximal
it is only necessary to show that for any two distinct characters ϕ, χ ∈ �(B) there
exists some B ∈ B and distinct complex numbers λ1 and λ2 such that �(B)Pϕ = λ1Pϕ

and �(B)Pχ = λ2Pχ . This follows easily since by the Gelfand representation there
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must exist B ∈ B with ϕ(B) = 1 and χ (B) = 0, and so �(B)Pϕ = ϕ(B)Pϕ = Pϕ and
�(B)Pχ = χ (B)Pχ = 0.

We are still not in a position to apply Theorem 2 because we have not shown that
each ψ ∈ A∗ is ultraweakly continuous on �(A), and indeed this is in general not the
case. Despite this, we will show, using the idea of Glicksberg in [4] for the commutative
case, that the conclusions of Lemma 3 still hold. Before doing this, however, we must
start by fixing some terminology. If ψ ∈ A∗, the null space of ψ is the ideal N (ψ) ⊆ A

consisting of all A ∈ A such that ψ(BAC) = 0 for every B, C ∈ A and the support of ψ

is the projection

Sψ =
∑

N (ψ)⊆ker π

Eπ .

So a functional ψ ∈ A∗ is antisymmetrically supported if and only if Sψ ≤ Pϕ for some
ϕ ∈ �(B). Since for every A ∈ A and π ∈ Â with N (ψ) ⊆ ker π , π ((I − Sψ )A) = 0, it
follows from [1, Proposition 2.11.2] that the norm of (I − Sψ )A in A/N (ψ) is 0 and so
Sψψ = ψ .

LEMMA 8. Assume B ⊆ Z(A) and let M ⊆ A be a closed left B-module. If A ∈ A

and PϕA ∈ PϕM for every ϕ ∈ �(B) then A ∈ M.

Proof. Let ψ ∈ (A∗)1 be an extreme point of (M⊥)1. We will show that Sψ is a
B-antisymmetric projection.

Let us first note that a projection P ∈ �(A)′ is B-antisymmetric if and only if the
ideal B ∩ (I − P)B is maximal in B. This is because if P is B-antisymmetric then for
each B ∈ B there is some λ(B) ∈ � such that P�(B) = λ(B)P, so the map B �→ λ(B)
is character on B with kernel B ∩ (I − P)B. Conversely, if B ∩ (I − P)B is maximal,
then PB � B/(B ∩ (I − P)B) � � and so PB = �P.

Let τ : B → B/(B ∩ (I − Sψ )B) be the quotient map. Choose a positive element
B ∈ (B)1 such that τ (B) �= 0 and τ (B) is not invertible. Then by [1, Proposition 2.11.2]
and the Gelfand–Naimark theorem, there must exist some π ∈ Â with N (ψ) ⊆ ker π

and π (B) = 0. This implies that ψ and Bψ are linearly independent, otherwise there
would be some non-zero λ ∈ � with (B − λI)ψ = 0, and since B ∈ Z(A), B − λI ∈
N (ψ) ⊆ ker π . We also have for any A, C ∈ (A)1,

|Bψ(A) + (I − B)ψ(C)| = |ψ(BA + (I − B)C)|
≤ ‖Sψ (BA + (I − B)C)‖
= sup

Eπ ≤Sψ

‖π (BA + (I − B)C)‖

≤ sup
Eπ ≤Sψ

(πB(B)‖A‖ + (1 − πB(B))‖C‖) ≤ 1.

Consequently, we have 1 = ‖ψ‖ ≤ ‖Bψ‖ + ‖(I − B)ψ‖ ≤ 1. Writing

ψ = ‖Bψ‖
(

Bψ

‖Bψ‖
)

+ ‖(I − B)ψ‖
(

(I − B)ψ
‖(I − B)ψ‖

)

we have expressed ψ as a nontrivial convex sum of elements in A∗ ∩ M⊥, which is
a contradiction. We conclude that every non-zero positive element of B/(B ∩ (I −
Sψ )B) is invertible. It follows from the Gelfand–Mazur theorem that B/(B ∩ (I −
Sψ )B) has co-dimension 1, which completes the proof. �
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From this we can state versions of Theorems 2 and 7 for this setting.

THEOREM 9. If B ⊆ Z(A) then M ⊆ A is a closed left B-module if and only if there
exists an antisymmetrically supported set � ⊆ A∗ such that

M =
⋂
ψ∈�

ker ψ.

THEOREM 10. If B ⊆ Z(A) then M ⊆ �n(A) is a closed left �n(B)-module if and
only if there is an antisymmetrically supported set � ⊆ A∗n such that

M =
⋂
ψ∈�

ker Rψ.

The proofs of Theorems 9 and 10 are almost identical to those of Theorems 2 and
7 and so we omit them. There is however one difference that should be pointed out:
The appeal to the ultraweak continuity of bounded linear functionals in the proof of
Theorem 7 is not necessary for Theorem 10 because B contains the identity.
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