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Using a physics-based approach, we infer the impact of the coherence of atmospheric
turbulence on the power fluctuations of wind farms. Application of the random-
sweeping hypothesis reveals correlations characterized by advection and turbulent
diffusion of coherent motions. Those contribute to local peaks and troughs in the
power spectrum of the combined units at frequencies corresponding to the advection
time between turbines, which diminish in magnitude at high frequencies. Experimental
inspection supports the results from the random-sweeping hypothesis in predicting
spectral characteristics, although the magnitude of the coherence spectrum appears to
be over-predicted. This deviation is attributed to the presence of turbine wakes, and
appears to be a function of the turbulence approaching the first turbine in a pair.

Key words: turbulent boundary layers, turbulent flows

1. Introduction
Wind-power variability occurs across a range of spatial and temporal scales due

to several physical processes. Over very large scales, the summed power output of
several geographically distant wind farms is smoothed due to individual wind farms
being relatively uncorrelated. Whereas the power spectral density of the power output
of a single turbine, or a small wind farm, has been shown to follow a power law of
ω−5/3 (Apt 2007), where ω is angular frequency, Katzenstein, Fertig & Apt (2010)
observed a behaviour of ω−2.56 when considering the aggregated power of 20 wind
farms. Bandi (2017) later deduced a limit to the smoothing that can be achieved with
wide geographic separation, corresponding to a power-law behaviour of ω−7/3, arguing
that the power fluctuations from many aggregate wind farms are dominated by the
immutable variability of individual wind farms.

The ω−5/3 power law observed by Apt (2007) has been explained as stemming
from the Kolmogorov −5/3 law for isotropic turbulence (Kolmogorov 1941), as the
power spectrum of a turbulent signal raised to any power will exhibit the same ω−5/3

behaviour (Milan, Wächter & Peinke 2013; Tabar et al. 2014; Bandi 2017; Bossuyt,
Meneveau & Meyers 2017). This is relevant to the power spectra of wind turbines
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Turbulence coherence and its impact on wind-farm power fluctuations 1117

since P ∝ u3, where P is power and u is the wind speed. However, deviations from
ω−5/3 scaling have been observed at time scales typically smaller than tens of seconds
for both wind farms and individual turbines, corresponding to the response time of a
wind turbine (Apt 2007; Milan et al. 2013; Chamorro et al. 2015; Bandi 2017). Tobin,
Zhu & Chamorro (2015) sought to analytically explain deviation from Kolmogorov
scaling due to rotor inertia, and arrived at a ω−11/3 power law. A trend consistent with
this is seen in the spectra of Anvari et al. (2016). However, other processes have been
shown to play a role in short-term power fluctuations. For instance, Anvari, Wächter &
Peinke (2017) observed high-frequency wind-farm fluctuations being affected on short
time scales by the phase locking of the fluctuations of pairs of turbines.

Further, it has been observed (Stevens & Meneveau 2014) that the spectra of
aggregate wind-farm power exhibit characteristic peaks at integer multiples of
the advective frequency ωa = 2π/ta, where ta is the time it takes for a passive
tracer particle to travel between turbines. In attempting to explain this behaviour,
formulations by Liu et al. (2017) and Bossuyt et al. (2017) linked the power-
production spectrum to the velocity spectrum, and incorporated the Kraichnan–
Tennekes random-sweeping hypothesis (RSH) (Kraichnan 1964; Tennekes 1975) to
match with experimental wind-tunnel data. However, their approaches differed slightly;
Bossuyt et al. treated the problem as a discrete sampling of the boundary layer,
whereas Liu et al. focused on formulations for the two-point cross-spectrum. The
RSH assumes that the turbulent velocity field is randomly advected by a large-scale
sweeping velocity, and has been shown to be useful in modelling spatio-temporal
spectra in turbulent boundary layers (Wilczek, Stevens & Meneveau 2015).

We attempt to explain the advection phenomenon by expanding on the work
from Liu et al. (2017) to derive analytical expressions for the cross-spectrum, and
related coherence, of the power output of wind-turbine pairs using the RSH. We
further test the ability of the RSH to predict the spectral correlation characteristics
between turbine pairs with experimental wind-tunnel data across a range of flow
characteristics, and evaluate the simplifying assumption used in both works that
turbines act as passive probes of the turbulence.

2. Cross-spectra of wind-turbine pairs
2.1. Coherence spectrum

Consider the power spectrum Φ(ω) of a signal X(t), which is defined as the Fourier
transform of the signal’s autocovariance function γ (τ)= 〈X(t)X(t+ τ)〉, as follows

ΦX(ω)=

∫
∞

−∞

〈X(t)X(t+ τ)〉e−iωτ dτ . (2.1)

Here, 〈·〉 denotes the expected value. For a combined signal X(t)=X1(T)+X2(t), the
autocovariance includes covariance terms, namely γ1,2 and γ2,1, i.e.

γX = 〈[X1(t)+ X2(t)][X1(t+ τ)+ X2(t+ τ)]〉 = γ1 + γ2 + γ1,2 + γ2,1, (2.2)

where γ1,2(τ )= γ2,1(−τ). This can be generalized to any number of combined signals
Xi for i= 1, 2, . . . ,N as:

γN =

N∑
i=1

γi +

N−1∑
i=1

N∑
j=i+1

[γi,j + γj,i]. (2.3)
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1118 N. Tobin and L. P. Chamorro

Because γ1,2 and γ2,1 are mirrored about τ = 0, their Fourier transforms are complex
conjugates. Therefore, the combined power spectrum of the N signals is given by:

ΦN =

N∑
i=1

Φi + 2
N−1∑
i=1

N∑
j=i+1

Re(Φi,j), (2.4)

where Φi,j is the cross-spectrum of the signals Xi and Xj, and Re(·) is the real-part
operator. When the two signals are perfectly correlated, |Φi,j| = (ΦiΦj)

1/2. It is
therefore natural to define the coherence spectrum Ci,j as

Ci,j(ω)=
Φi,j(ω)√
Φi(ω)Φj(ω)

, (2.5)

although other related definitions exist.

2.2. The random-sweeping hypothesis
To predict the coherence of wind-turbine pairs, we use the Kraichnan–Tennekes
random-sweeping hypothesis (Kraichnan 1964; Tennekes 1975). In order to apply
the RSH to turbine power production, it is convenient to treat wind turbines as
passive probes of the turbulence so that the flow is laterally homogeneous. This is
clearly not true, as turbine wakes are an important flow characteristic in wind farms.
This assumption will be evaluated by the data. The RSH assumes that the turbulent
velocity u′ does not evolve temporally, but is advected by a large-scale sweeping
velocity v, i.e.

∂u′

∂t
+ v ·

∂u′

∂x
= 0. (2.6)

The assumption that the small-scale turbulent field and the large-scale sweeping
velocity do not nonlinearly interact cannot be strictly true, though it is attractive for
its ability to make analytical expressions for turbulence spectra. Moreover, the RSH
has been shown to make good predictions for spatio-temporal spectra in turbulent
boundary layers (Wilczek et al. 2015). The terms u′ and v in (2.6) are both vectorial.
However, if the coordinate axes are defined such that u1 is aligned with the mean wind
and the yaw of the wind turbines, the other components can be ignored in estimating
power fluctuations. Furthermore, since 〈u′21 〉 is typically much larger than 〈u′22 〉 and
〈u′23 〉 in a turbulent boundary layer, equation (2.6) reduces to:

∂u′1
∂t
+ (V1 + v

′

1)
∂u′1
∂x1
= 0, (2.7)

where u′1 is the turbulent streamwise velocity fluctuation, V1 is the mean sweeping
velocity, taken as the hub-height velocity of the approaching boundary layer, and v′1
is the fluctuating streamwise sweeping velocity.

The Fourier transform (denoted with the symbol ô) of (2.7) with respect to t
conveniently converts the expression to an ordinary differential equation in x1 for
û(x1, ω), as follows:

∂ û(x1, ω)

∂x
=−

iω
V + v′

û(x1, ω). (2.8)
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Turbulence coherence and its impact on wind-farm power fluctuations 1119

If v′ and u′ are statistically independent, the cross-spectrum of the turbulent
fluctuations at two points separated by a distance 1x in the streamwise direction
can then be expressed as:

Φ0,1x = 〈û(1x, ω)û(0,−ω)〉 = 〈û(0, ω)û(0,−ω)〉
〈

exp
(
−iω1x
V + v′

)〉
. (2.9)

Here, we have assumed that the spectra at points 0 and 1x are statistically identical.
If v′1 is further assumed small compared to V1, and to have a Gaussian probability
distribution with zero mean and variance σ 2

v , equation (2.9) can be integrated over
the probability distribution of v′:

Φ0,1x '
〈û(0, ω)û(0,−ω)〉√

2πσ 2
v

∫
∞

−∞

exp
(
−iω1x

V
+

iω1xv′

V2

)
exp

(
−
v′2

2σ 2
v

)
dv′. (2.10)

The evaluation of the integral in (2.10) leads to:

Φ0,1x = 〈û(0, ω)û(0,−ω)〉 × exp
(
−

iω1x
V

)
exp

(
−
ω21x2σ 2

v

2V4

)
. (2.11)

Making the further assumption that the lateral behaviour of the covariance function
〈u′(x, y, t)u′(0, 0, 0)〉 is separable, and takes the form of an exponential decay with a
length parameter Ly (Lukassen et al. 2018), the final expression for the cross-spectrum
is:

Φ0,1x =Φ(0, 0, ω)× exp
(
−

iω1x
V

)
exp

(
−
ω21x2σ 2

v

2V4

)
exp

(
1y2

L2
y

)
. (2.12)

So far, we have shown only the correlation behaviour between two points (0, 0)
and (1x, 1y) that have statistically identical spectra, with all the turbulence kinetic
energy at the downwind point having simply advected downwind. However, this does
not describe the two points immediately upwind of two wind turbines, since the
wake from the upwind unit adds turbulence scales to the downwind counterpart and,
therefore, statistically different turbulent characteristics. Nevertheless, we proceed with
this assumption as a limiting estimate in the case where wake motions are dominated
by atmospheric boundary layer (ABL) motions, and test this estimate when far from
the limiting behaviour. Then, a closed-form expression for the coherence can be taken
as

Ci,j(ω)= exp
(
−

iω1x
V

)
× exp

(
−
ω21x2σ 2

v

2V4

)
exp

(
1y2

L2
y

)
. (2.13)

The interpretation of this result is that large-scale atmospheric motions impart their
signature on an upwind turbine, are distorted as they are advected downstream, and
impart a similar signature on a downwind turbine, with higher frequency scales being
the more distorted. This high-frequency distortion is consistent with the findings of
Vigueras-Rodríguez et al. (2010), who observed velocity correlations to be the highest
for low frequencies within a wind farm. This is conceptually shown in figure 1. The
proposed model is similar in construction to existing empirical formulations used
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1120 N. Tobin and L. P. Chamorro

FIGURE 1. (Colour online) Conceptual schematic illustrating the factors impacting
turbine–turbine coherence. Atmospheric motions of length scale λABL are advected and
partially distorted by large-scale sweeping. Wake motions of length scale λwake� λABL are
introduced by turbines, and do not contribute to coherence.

throughout the literature broadly stemming from the Panofsky & Dutton (1984)
model of longitudinal velocity coherence,

CPD = exp
(
−

Asω
V

)
, (2.14)

where s is the separation between two points and A is an empirical constant, which
changes depending on whether the separation is lateral or longitudinal, as well as the
local turbulence characteristics. Interestingly, Panofsky & Dutton (1984) suggested
A ≈ σv/V for streamwise separations based only on heuristic arguments, showing a
close relation to the present formulation. However, that coherence spectrum differs
from that proposed here, with Φi,j in (2.5) being replaced by |Φi,j|, eliminating phase
information. To avoid confusion, we refer to this alternative definition as the absolute
coherence. The Panofsky–Dutton model is based on an observation by Davenport
(1961) that the absolute coherence is well approximated by a simple exponential
decay with a fitted decay rate; it was used by Jimenez et al. (2008) to model the
absolute coherence of two points with small separation in a boundary layer, both
with and without turbine wakes. They found the coherence from both a set of
experiments and large-eddy simulations to be well estimated, though these results
were only for the velocity components, and not power from turbine pairs. Sørensen
et al. (2008), however, modelled the power coherence between turbine pairs in the
Nysted and Horns Rev wind farms in Denmark, using the modified Panofsky–Dutton
coherence model of Schlez & Infield (1998), and showed good agreement with their
experimental data.

3. Experiments
A set of experiments was performed with model wind-turbine arrays operated in the

wind tunnel of the Renewable Energy and Turbulent Environment Group (RE-TE-G)
at the University of Illinois to test the coherence predictions of the RSH. The wind
tunnel has a test section 6 m long, 0.46 m high and 0.9 m wide. Details of the
facility can be found in Adrian, Meinhart & Tomkins (2000). To assess the impact

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

71
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.713


Turbulence coherence and its impact on wind-farm power fluctuations 1121

of both turbulence intensity Iu = σu/U0 (where σu and U0 are the standard deviation
and mean of the incoming velocity at hub height), and integral time scales Tu =∫
∞

0 〈u
′(t)u′(t + τ)〉 dτ , power fluctuations of wind turbines within various wind-farm

layouts were acquired for a range of turbulence characteristics.
Four flow regimes were examined; two consisted of uniform incoming flows with

very low (Iu = 0.3 %) and high (Iu = 3.0 %) turbulence levels. The other two cases
consisted of turbulent boundary layers. One was developed over a nearly smooth wall
with a roughness height z0 of 0.019 mm, and Iu = 8.0 % at hub height; the other
developed over a rough wall with z0= 0.52 mm, and Iu= 10 % at hub height. For all
cases, except the laminar free-stream flow, an active turbulence generator was placed
at the inlet to lead to the formation of large-scale turbulent motions; see Tobin, Hamed
& Chamorro (2017) for details.

The model turbines had a rotor diameter dT = 0.12 m, and were based on a model
hydrokinetic turbine from Sandia National Labs (Shiu et al. 2012; Johnson et al.
2013). The rotors were attached to a Precision Microdrives 112-001 Micro Core
12 mm motor which acted as the loading system and a method to measure the power
output, where rated power resulted P0≈ 1 W. The tip-speed ratio λ was kept constant
at λ = 5.0 by adjusting the resistance across the generator. The power output was
sampled at a rate of 100 kHz for a duration of 480 s. Power was calculated from the
applied resistance, and the voltage across the terminals of the generators as measured
with a data acquisition system individually for each turbine. The turbines were
identical to those used in Tobin et al. (2017), and have power and thrust coefficients
of 0.45 and 0.79, respectively. The power coefficient was inferred from the mean
measured power, making adjustments based on the efficiency curve of the generator.
The thrust coefficient is based on wake deficit measurements.

The experiments were conducted with an incoming hub-height velocity of
U0 = 9.0 m s−1, which varied by ±5 % between flow cases; this resulted in a
Reynolds number Re = U0dT/ν ≈ 7.2 × 104. Flow was also measured in the upwind
vicinity of each turbine that had power measurements taken to characterize the local
incoming flow. Velocity measurements were done via hot-wire, and were sampled at a
rate of 10 kHz for a duration of 60 s. For all flow cases, three streamwise columns of
turbines were used, spaced Sy= 2.5 rotor diameters apart, and the power was sampled
only from the central column. The uniform flow cases used three rows of turbines,
with streamwise spacings of Sx = 5, 7 and 10 rotor diameters. The boundary-layer
cases used four rows of turbines, with streamwise spacings of Sx = 7 and 10 rotor
diameters and hub height zh = 0.125 m. Conceptual schematics are shown for the
uniform flow in figure 2(a), and for the boundary-layer flow in figure 2(b). In all
experiments, the last row was laterally displaced from the preceding rows, with a
displacement of 0, 0.5, or 1.0 rotor diameters to investigate the effect of lateral
displacement.

4. Evaluation of the model

Each set of data was split into ten equally sized non-overlapping windows. The
estimated coherence C̃ of each turbine pair was found by averaging the coherence
of each subset of data. This was used to verify the fidelity of the RSH predictions on
the two characteristic frequencies related to advection (ωa) and turbulent decoherence
(ωc). However, the prediction from the RSH that coherence reaches unity at zero
frequency was not supported by the data, and the magnitude of the coherence was
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Hot-wire

Anemometer

Uniform flow

and

and

Turbulent boundary layer

(a)

(b)

FIGURE 2. Basic schematics of the experimental set-ups; wind farms in (a) uniform flow,
and (b) turbulent boundary layer.

lower than predicted. We model this reduced magnitude with a multiplicative constant
a, and calculate a for each turbine pair via least-squares fit as:

a= argmin
a

n∑
j=1

∣∣∣∣∣C̃j − a exp
(
−iωj1x

U0

)
exp

(
−
ω2

j1x2σ 2
u

2U4
0

)∣∣∣∣∣
2

, (4.1)

where n is the number of frequencies at which the coherence is calculated. Some
coherence measurements were unreliable, as not enough data were taken to estimate a
clear spectrum. This was particularly common for turbine pairs separated by more than
2 rows, or when the flow approaching the first turbine in a pair had low turbulence.
As such, data are reported only when the modelled power spectrum fits the data with
R2 > 0.2.

The advection frequency was measured from the data based on the angle of
the coherence spectrum θ = 6 C̃. The RSH predicts that this quantity changes with
frequency as follows:

dθ
dω
=−

1x
U0
=−

2π

ωa
. (4.2)

Then, for each turbine–turbine pair, θ was modelled as:

θ =−

(
2πω

ωa
mod 2π

)
+π; (4.3)

the ωa values which minimize the squared error with the experimental values of 6 C̃
are reported as ω̃a, where ◦̃ denotes a value fitted from the data. Examples of the
modelled and measured coherence angle are shown in figure 3. Finally, the measured
decoherence frequency ω̃c is reported as the result of a final least-squares fit of the
coherence spectrum.
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Turbulence coherence and its impact on wind-farm power fluctuations 1123

∠C¡

FIGURE 3. (Colour online) Modelled and measured coherence phase angle 6 C̃.

Two phenomena may contribute to the parameter a in (4.1). The first is lateral
displacement, in which case a = exp(1y2/L2

y). However, there may also be a
contribution from the perturbed incoming flow by the turbine wake, such that a 6= 1
when 1y= 0. Because turbines act approximately as probes of the turbulence, power
coherence can be taken as roughly equal to the coherence of two points immediately
upwind of each turbine in the pair. Without either turbine present, the coherence of
these two points should be closely approximated by the RSH (Wilczek et al. 2015).
However, the correlation between these two points is affected by wake motions
induced by the upwind turbine in the pair, which we model with the multiplicative
constant a.

The least-squares estimates of the characteristic frequencies ωa and ωc are compared
to their theoretical counterparts as predicted earlier. Namely, we should expect that

ωa =
2πU0

1x
, (4.4)

and

ωc =
U2

0

1xσv
. (4.5)

The particular exponential behaviour of the power spectrum is quite consistent with
the data; an example is illustrated in figure 4. The least-squares estimates for ωa and
ωc closely fit the predictions, with R2

=0.85 and 0.87, respectively, suggesting a strong
predictive ability for these two quantities. Measured values of the two characteristic
frequencies are compared with their predictions in figures 5 and 6.

The data suggest that the zero-frequency coherence magnitude a is dependent
primarily on the turbulence intensity Iu of the flow approaching the most upwind
turbine in a pair. A wide range of Iu is achieved by considering the flow approaching
each individual upwind turbine, which may be impacted by the presence of upwind
wakes. This is evident with a linear regression between a and Iu, such that
a=α0+α1Iu. The characteristic constant α1 is found to have a 95 % confidence bound
between 1.29 and 2.47, clearly suggesting that higher approaching Iu leads to higher
coherence. A similar regression test between a and the integral time scale Tu shows
that no statistically significant trend exists between them. This is an interesting result,
since an assumption of the RSH is a wide separation of scales between the sweeping
velocity and the process of interest. It would therefore be useful to assess the impact
of atmospheric stability on power coherence, since lower Iu is generally associated
with the clear-night stable boundary layer; furthermore, interaction between turbine
wakes and the boundary layer is modulated by atmospheric stability. For instance,
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FIGURE 4. (Colour online) Sample coherence data from the rough-wall boundary layer
experiment considering a wind farm with Sx = 10.
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FIGURE 5. (Colour online) Comparison of the measured and theoretical characteristic
advection frequency (ωa) for various flow conditions.
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FIGURE 6. (Colour online) Comparison of the measured and theoretical characteristic
frequency of the turbulence decoherence (ωc) for various flow conditions.

Abkar & Porté-Agel (2015) found major differences in wake growth characteristics
between different atmospheric stability states, and both Lu & Porté-Agel (2011) and
Cortina, Calaf & Cal (2016) found significant impacts on vertical and horizontal
mixing of momentum for different stability regimes.
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We argue that the deviation of the turbulence coherence trend from the RSH is
a result of the induced motions from turbine wakes, which are significantly weakly
correlated with the incoming turbulence (Espana et al. 2012). Since wake-added
motions are comparatively small (Chamorro et al. 2012; Tian, Ozbay & Hu 2018),
they may evolve sufficiently between rows of turbines to contribute to power
fluctuations in the downwind turbine that are not correlated with the upwind
counterpart. This is consistent with the findings of Tian, Ozbay & Hu (2014),
who noted faster dissipation and earlier breakdown of the wake vortices under high
turbulence inflow, as well as the findings of Lignarolo et al. (2015), who argue
that wake motions are dominated by tip-vortex breakdown. We proceed to test this
hypothesis, at least in its limiting behaviour, as follows.

Consider wake-added velocity fluctuations u′w added to the upwind velocity
fluctuations u′u, which determines the total velocity fluctuations approaching the
downwind turbine in a pair u′tot, as follows:

u′tot = Lδtu′u + u′w, (4.6)

where Lδt is the lag operator with lag time δt, so that upwind velocity fluctuations
are advected without evolving. With the previous assumption that the coherence of the
turbine power is the same as the coherence of the velocity fluctuations immediately
upwind of each turbine, the absolute coherence takes the form

|C| =
|ûu(L̂δtuu + ûw)

∗
|

(ûuû∗uûtotû∗tot)
1/2

, (4.7)

where ( )∗ denotes the complex conjugate. In the limiting case where u′w is
uncorrelated with u′u, the numerator of (4.7) is the power spectrum of the upwind
point. This estimate for |C| is then an upper bound in the case where wake
motions are uncorrelated with the turbine from which they are shed, and reduces to
|C| =

√
Φu/Φtot. A coherence estimate greater than this upper bound would lead us to

reject the hypothesis that a turbine’s power output is uncorrelated with its wake-added
turbulence. No turbine–turbine pair was found to have a coherence value higher than
this bound with statistical significance for frequencies below 2πU/dT . A more
thorough investigation of this hypothesis should include simultaneous measurements
of power as well as upstream and downstream velocity fluctuations.

In general, smaller values of a are found for turbine pairs spanning more than
two rows. Representative examples of coherence spectra for turbines separated
by one, two, and three rows for the case with Sx = 7 and Sy = 0 in the nearly
smooth-wall boundary layer are shown in figure 7; there, coherence clearly decreased
with increased number of rows separating the turbines in a pair. The general trend
towards lower a with greater numbers of rows separating the turbines is evident in all
four flow cases, as illustrated in figure 8(a). This figure shows the average a measured
for all turbine–turbine pairs in a given flow case with a given number of rows
separating them and, therefore, shows bulk behaviour. This trend is consistent with
the interpretation that wake-added motions detract from turbine–turbine coherence,
since a greater fraction of the turbulence impacting turbines deep within a wind farm
is from wake-added motions. Figure 8(a) additionally suggests a clear trend toward
higher coherence values with greater ambient turbulence intensity.

Larger inter-turbine spacing also led to lower coherence, with a trend towards
lower a with greater spacing, as shown in figure 8(b). The interpretation of this

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

71
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.713


1126 N. Tobin and L. P. Chamorro

0.5

0

–0.5

–1.0

1.0
One-row separation
Two-row separation
Three-row separation

Re
(C¡

)

FIGURE 7. (Colour online) Example of coherence spectra in the case of the smooth-wall
boundary layer, with streamwise separation Sx = 7 and Sy = 0.
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FIGURE 8. Trends of average coherence magnitude for each flow case with (a) number
of rows separating turbines, and (b) inter-turbine spacing.

result in the argument that wake-added motions detract from coherence is unclear. If
atmospheric motions are expected to dominate turbine–turbine correlations, it might
be expected that coherence would increase with greater inter-turbine spacing as wakes
would be given more distance to dissipate. Conversely, greater inter-turbine spacing
would provide more time for wake motions to nonlinearly interact with and distort
atmospheric motions.

The effect of lateral displacement is not conclusive from the data; no significant
trend is found to occur in the cases considered. However, this may be expected,
since lateral separation leads to two competing results. The first is that correlation is
simply reduced as a result of greater separation distance, and a reduction similar to
the separable behaviour posited in (2.13) is expected. In addition, lateral separation
implies that the downwind turbine in a pair is exposed to fewer uncorrelated wake
motions, and coherence might be expected to increase. A clearer trend might therefore
be observed when considering lateral separations larger than one rotor diameter.

The data also allow testing the modelling assumption that v′1 is comparatively
small and Gaussian. The model coherence from (2.9) is evaluated by averaging
exp(−iω1x/(V + v′)) for a range of frequencies using the time-series velocity data
from the last row of the Sx = 7 wind farm in the rough-wall scenario, as shown in
figure 9. This particular velocity time series was chosen because it had the largest
turbulence intensity, Iu = 13.3 %, which stresses the assumption of small v′ the
greatest. The application of the Kolmogorov–Smirnov test indicates that the velocity
approaching this turbine is non-Gaussian. Nonetheless, the difference between the
empirical coherence model and the Gaussian model is minor, even in the limiting case.
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FIGURE 9. (Colour online) Model coherence spectrum given velocity time series
approaching the last row of turbines in the case of rough-wall boundary layer, with
streamwise separation Sx = 7. The difference between the Gaussian estimate and the
empirical model is negligible.

5. Conclusion

The RSH does well in predicting the general behaviour of the coherence of
wind-turbine pairs. The complex exponential structure predicted is observed in the
experimental data, with strong agreement with the characteristic frequency scales
predicted by the RSH. However, the turbine wakes appear to diminish the magnitude
of the coherence by a multiplicative constant a ∈ (0, 1), which depends strongly
on the structure of the flow approaching the first turbine in a pair. Namely, for
flows with high-energy, large motions have the largest values of a. The data suggest
that this may be explained by the assumption that turbine-added wake motions are
uncorrelated with the turbine from which they are shed. Though similarities exist
between the Panofsky–Dutton model and the current model, the final expressions
differ, as well as the method employed in arriving to them, with the current model
being less empirical. Furthermore, the current experimental results suggest that the
magnitude of the coherence predicted either with the Panofsky–Dutton model or the
RSH is too high, so that aggregate wind-farm power fluctuations may be improperly
estimated without modification to the coherence models to account for wake-added
motions, either of the type proposed or similar.

It is still not clear how the turbulence induced in the turbine wake impacts the
coherence. A physical framework which accounts for the described observations is
therefore desirable. It should also be noted that similar results in arrays of vertical-axis
wind turbines may prove distinctly different, due to the differing momentum flux and
wake growth characteristics in these types of wind farms (Kinzel, Araya & Dabiri
2015; Abkar & Dabiri 2017).
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