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Summary

Cities are becoming increasingly important to biodiversity conservation, conservation that
could also benefit urban people given the importance of nature to human well-being. Urban
conservation is challenging, however, given cities’ primary role as human habitats and the need
to simultaneously support heterogeneous human and wild species communities in similarly
heterogeneous environments. We demonstrate a framework for identifying conservation zones
within cities and human and species habitat preferences within them, thereby identifying
habitat attributes that management could target to support human well-being and conservation
objectives. The framework first categorizes conservation zones within a city, then develops spe-
cies indicator communities for each zone. Habitat preferences are identified for each indicator
community using richness modelling, and human habitat preferences within zones are iden-
tified using one of several approaches. Lastly, habitat preferences are compared to identify
commonalities and differences within zones. We demonstrate our framework in Iowa City
(IA, USA) using songbirds, identifying similarities in human and bird habitat preferences
within conservation zones that management could target to support humanwell-being and spe-
cies conservation and differences in preferences that could be proactively managed to reduce
conflict. This framework can thus identify key habitat attributes and approaches to inform con-
servation planning targeted to specific settings within cities.

Introduction

Cities are becoming increasingly important sites of biodiversity conservation (Ellis 2013). While
urban species assemblages are generally depauperate (Aronson et al. 2014), cities provide
enhanced habitats for some species (Shochat et al. 2010, Bateman & Fleming 2012). Given
unique urban biotic communities (Aronson et al. 2016) and the proportion of species cities sup-
port, urban conservation could enhance biodiversity. Urban conservation, by increasing urban
biodiversity and human–nature interactions, could also benefit humans given the benefits to
human health and well-being associated with biodiversity exposure (Luck et al. 2011, Bell
et al. 2018, Liddicoat et al. 2018) and the potential to mitigate extinction of experience with
nature whereby limited opportunities to interact with nature lead to disconnection from it,
reduced quality of life and loss of understanding and concern for nature (Miller 2005, Soga
& Gaston 2016). Enhancing urban biodiversity could also build support for conservation given
that frequent nature interaction is linked to higher likelihood of participation in conservation
efforts (Prévot et al. 2018). Despite this potential to benefit both humans and biodiversity, urban
areas remain underexplored as conservation sites, making urban conservation an area of
research need (Aronson et al. 2017).

Urban conservationmust consider the requirements and preferences of diverse urban species
and human residents (Aronson et al. 2017, Turo & Gardiner 2020) across similarly diverse
urban environments. Urban humans are highly heterogeneous in their environmental
preferences (Cho et al. 2008, 2009, Sander & Zhao 2015) and respond differently to various con-
servation actions (Turo & Gardiner 2020). Urban species’ habitat requirements are also hetero-
geneous, leading to the assembly of different communities in different urban settings (Aronson
et al. 2016). The high spatial heterogeneity of urban landscapes (Pickett et al. 2001) also com-
plicates urban conservation, making management actions that are suitable for some urban set-
tings inappropriate in others. Failure to recognize this heterogeneity could produce
management that fails to support humans, biodiversity or both. Additionally, the importance
of engaging local residents throughout conservation activities is well-established (Turo &
Gardiner 2020) but requires researchers and policymakers to come to the table with knowledge
of both human preferences and conservation requirements to ensure the productivity of stake-
holder activities, information that is often lacking early in conservation planning.

How, then, can urban environmental management be structured and informed to support
biodiversity conservation and human quality of life, recognizing environmental variation within
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cities and diversity in their human and non-human inhabitants?
Past work suggests efforts should target particular species in differ-
ent urban ‘habitat zones’ (Goddard et al. 2010, 2017). The spatial
locations of these habitat zones could be clearly delineated within
cities (e.g., based on land cover). The resulting zones could then be
used as formal ‘conservation zones’ to which conservation objec-
tives, targets and management activities appropriate for the habi-
tats and limitations of specific urban settings could be designed and
applied. Urban humans, in making choices regarding housing,
select living environments based on their preferences in a way
that resembles species habitat selection, balancing their preferences
with the costs associated with particular housing attributes, includ-
ing local environmental attributes, to select residences that
represent their perceptions of human habitat quality. Conservation
zones might thus be extended to represent not just urban species hab-
itat types and preferences, but also human habitat types and prefer-
ences in different urban settings.

We present a framework for informing urban conservation
planning in existing urbanized settings that identifies urban con-
servation zones and corresponding species targets and assesses and
integrates human and species habitat preferences in these zones
using techniques from ecology, geography and economics. We
hypothesize that human and wild species habitat preferences will
vary among zones, reflecting key attributes of these settings for
both groups given that species assemblages vary within cities based
on habitat requirements and that humans select different neigh-
bourhood settings based on their preferences. In so doing, we rec-
ognize that the habitat preferences identified using this framework
will not accurately reflect the requirements of species that humans
actively and successfully seek to maintain or exclude (e.g., garden
plants, invertebrate pests), but will be more accurate for species
that experience less direct human management. We further
hypothesize that humans and species occupying a given zone will
have similar habitat preferences. We demonstrate our approach in
Iowa City (IA, USA) and discuss how zone-specific comparisons in
human and species habitat preferences could inform conservation
planning efforts within cities to simultaneously support biodiver-
sity and human well-being.

Methods

Framework overview

Our framework (Fig. 1) begins with conservation-zone delineation.
This process could be subjective (e.g., based on neighbourhood
boundaries or input from local planners) or could identify environ-
ments based on attributes such as land cover using techniques such
as k-means (MacQueen 1967), hierarchical (Rokach & Maimon
2005) or spatially constrained multivariate (Duque et al. 2007)
clustering. Clustering approaches could delineate zones that better
represent environmental conditions while subjective approaches
could produce zones that are easier to administer in practice.
Approach selection should be based on social–ecological condi-
tions or conservation programme objectives. The resulting conser-
vation zones should reflect particular habitat conditions and will be
the focus of tailored management efforts focused on local conser-
vation objectives.

Our second framework step identifies indicator communities
for each zone while our third framework step identifies their hab-
itat requirements. Indicator communities aremulti-species conser-
vation surrogates that consist of species with close links to zones
whose habitat requirements indicate zone attributes that affect

their biotic communities. Conservation surrogates are often
required when time and funding limitations constrain projects
(Caro et al. 2010), and different surrogates are typically needed
for different conservation zones (Goddard et al. 2010). We suggest
that indicator communities, rather than single indicator species,
may better represent broader communities and support their con-
servation (Roberge & Angelstam 2004). The focus of these com-
munities (e.g., taxonomic, rare species, common species) should
reflect conservation programme objectives and should be selected
in collaboration with local experts and stakeholders to ensure their
fit with those objectives. As noted above, human-maintained spe-
cies such as garden plants and pest species against which humans
mount active control measures should be avoided in constructing
indicator communities as their abundance may reflect human
management more than local habitat conditions.

Indicator-community development uses georeferenced, species
abundance data for a taxon or multiple taxa, depending on conser-
vation goals. Data could be collected by experts or citizen-scientists
via field surveys or from existing sources (e.g., Sullivan et al. 2014).
Observations are classified by zone, and species closely associated
with a zone are identified using indicator-community analysis (e.g.,
Dufrêne & Legendre 1997) and comprise its indicator community.
Community abundance or richness modelling techniques are then
employed to assess each indicator community’s relationships with
habitat attributes. Coefficients for covariates from these models
identify key habitat attributes and relationships for each manage-
ment in a conservation zone.

Our fourth framework step identifies human habitat prefer-
ences within conservation zones. Surveys, participatory mapping
or focus groups could be used to identify preferences for the
habitat attributes used in indicator-community habitat modelling.
Preference assessment could also use revealed-preference economic
valuation techniques (e.g., contingent valuation, hedonic pricing)
that identify habitat preferences based on surveys or the values of
marketed goods to which they contribute (Freeman 2003).

The final framework step identifies similarities and differences
between indicator-community and human habitat preferences by
comparing human and indicator-community habitat preferences
by conservation zone. Attributes with similar relationships for
humans and indicator communities could be managed to support
both species conservation and human well-being in each zone.
Management of attributes with different relationships could cause
conflict. Management should avoid these attributes if possible or
proactively address potential conflict prior to implementation.
Conservation zones and their identified human and species habitat
relationships could thus provide preliminary data to guide conser-
vation planning activities including stakeholder discussions and
management plan development, providing a foundation for con-
servation planning.

Case study

We demonstrate our framework in Iowa City, a city of 75,000 res-
idents, which consists predominantly of suburban environments
over an area of 65 km2 (US Census 2018) and includes grass
(43%), impervious (27%), forest (17%), agriculture (10%) and
water and wetland (3%) cover. Most wetland and contiguous forest
cover occurs in parks. Surrounding landscapes consist largely of
corn and soybean agriculture (IDNR 2012). Iowa City encourages
urban infill and most new construction within the city occurs on
urban renewal sites and agricultural land (City of Iowa City, 2013),
while most development in the surrounding area occurs on
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agricultural land (Johnson County, 2020). We identified conserva-
tion zones, human habitat preferences and indicator communities
and their habitat requirements for this study area to illustrate our
framework (Fig. 1).

In the first step in our framework, we used k-means clustering
to identify conservation zones (Fig. 1a). This process began by
overlaying a 50-m grid on the study area, then identifying propor-
tional built (e.g., pavement, buildings), canopy and grass cover in
each grid cell using 1-m resolution 2009 High-Resolution Land
Cover (HRLC; IDNR 2012) updated to represent development
since 2009 (see Zhao & Sander 2018) and a lidar-derived urban for-
est dataset (Zhao & Sander 2018) in ArcGIS v10.6 (ESRI 2018). We
then used the resulting dataset to implement k-means clustering in
the R v3.4.1 (‘Single Candle’) package stats (R Core Team 2017) to
delineate different conservation zone classification schemes for our
study area based on proportional built, canopy and grass cover in
each 50-m grid cell. We constructed and examined a series of clas-
sification schemes that grouped grid cells into 4–12 zones and
selected the scheme that produced conservation zones that were
neither too general (i.e., covering large areas of heterogeneous
landscapes) nor too specific (i.e., covering small, fragmented areas

or including very few grid cells); in this case, this meant selecting a
scheme that included five zones. Each grid cell in our 50-m grid
was thus classified into one of five conservation zones.

In our second framework step (Fig. 1b), we used point-count
data to construct songbird indicator communities for conservation
zones. Using stratified random sampling, we selected 259 survey
plots (hereafter, ‘plots’) to represent the proportional occurrence
of each conservation zone type in the study area. To do so, we used
conservation zones as strata and sampled a number of grid cells
proportionate to the occurrence of each zone type in the landscape.
We used the centroid of each selected grid cell as the centre of a 50-m
radius survey plot. Two experienced birders conducted 10-min point-
count surveys (Reynolds et al. 1980) on these plots from June to mid-
July (the peak breeding season in eastern Iowa) during 2014–2016 on
dry dayswithout strongwindswithin 4 h of sunrise (Bibby et al. 2000),
visiting each plot four times in total (Sander & McCurdy 2021). Half
of these plots were visited twice in 2014 and twice in 2015, 40% were
visited twice in 2015 and twice in 2016 and 10% were visited once in
2014 and three times in 2015 due to flooding that restricted access to
these plots in late June and early July of 2014.

We next constructed binomialN-mixture models – hierarchical
models that use repeated counts to predict true abundance adjust-
ing for imperfect detection probability (Kéry et al. 2005) using the
R package unmarked (Fiske & Chandler 2011) for species detected
on 5% or more of plots given the lower effectiveness of this
approach for less commonly detected species. Excluding these spe-
cies assumes that the conservation of more common species is the
focus of this application; in cases where conservation targets rarer
species, alternativemodelling approaches such as multispecies beta
N-mixture modelling (Gomez et al. 2018) or approaches that use
rarefaction could be employed. These models include detection
(i.e., likelihood of observing a species that is present) and abun-
dance (i.e., true abundance given imperfect detection) sub-models.
We included minutes since sunrise, plot forest cover from the
HRLC and categorical covariates for survey year and surveyor in
our detection sub-model and agricultural, grass and built cover
from the HRLC and canopy cover from an urban forest dataset
as abundance covariates (Supplementary Table S1, available
online). We first fitted detection models with all abundance cova-
riates using all combinations of detection covariates and Poisson
distributions and selected the best-fitting model based on the min-
imum Akaike information criterion (AIC), then we fit abundance
sub-models in the same manner. We refitted top models with zero-
inflated Poisson andnegative-binomial distributions, selectingmodels
that minimized AIC, and calculated goodness-of-fit statistics follow-
ing MacKenzie and Bailey (2004). We assessed residual spatial auto-
correlation for each model using Moran’s I statistic and, when results
were significant, calculated spatial autocovariates in the R package
spdep (Bivand & Yu 2022) using the autocov_dist function and added
them to the top models to address this autocorrelation. We used the
resultingmodels to predict the true abundance of each species on each
plot, then we used themultipatt function of theR package indicspecies
(De Cáceres & Legendre 2009) to implement Dufrêne–Legendre indi-
cator species analysis to identify species with significant, positive rela-
tionships between abundance and each conservation zone. These
species comprised the indicator community for that zone.

In our next framework step, we modelled relationships between
indicator-community species richness and habitat attributes to
identify indicator-community habitat attributes (Fig. 1c). We first
pooled counts of species in each indicator community to create
indicator-community richness datasets for each visit to each plot.
We calculated habitat covariates for plots and 250-m radius areas

1. Goal: Identify conservation zones in a study area landscape 
2. Case Study

a. Identi�ed land-cover attributes
i. Overlayed land-cover raster with 50-m grid in GIS
ii. Calculated % tree canopy, grass, and impervious cover for each cell

b. K-means clustering
i. Inputs: Grid cell % cover of tree canopy, grass, and impervious cover
ii. Constructed and compared schemes of 4-12 conservation zones

3. Output: Grid of study area with cells classi�ed into conservation zones

A. Step 1: Conservation zone delineation

1. Goal: Identify indicator community for each conservation zone from (A)
2. Case Study

a. Identi�ed 50-m survey plots in each zone from (A) using strati�ed, random 
sampling the grid from (A)

b. Conducted point-count surveys on identi�ed plots
c. Predicted true abundance of each species using binomial N-mixture models
d. Identi�ed indicator species for each conservation zone using Dufrene-Legendre 

indicator species analysis
3. Output: Indicator communities (groups of indicator species) for each

B. Step 2: Indicator community development

1. Goal: Identify habitat preferences of indicator communities for each zone from (B)
2. Case Study

a. Identi�ed indicator community species richness for each visit to each plot
b. Calculated habitat covariates for each plot and neighbourhood (250-m buffer)

i. GIS: Land-cover and vegetation covariates (Table S1) 
ii. Fragstats: Landscape metrics (Table S1)

c. Construct binomial N-mixture models for richness of each indicator community
3. Output: Habitat preferences of each indicator community

C. Step 3: Indicator community habitat preference identi�cation

1. Goal: Identify habitat preferences of human residents of each zone
2. Case Study

a. Assemble dataset:
i. Identi�ed sample: Single-family residences (parcels) sold 2011-2015
ii. Identi�ed structure and neighbourhood attributes for each parcel
iii. Calculated habitat covariates for each parcel and neighbourhood as in (C.2.b)

b. Hedonic price modelling using geographically weighted regression (GWR)
i. Ran GWR with data from (2a) to identify relationships between sale price and 

structural, neighbourhood, and habitat attributes
ii. Calculated mean coef�cient value for covariate in each conservation zone 

3. Output: Habitat preferences of human residents of each conservation zone

D. Step 4: Human habitat preference identi�cation

1. Goal: Identify similarities and differences in human and bird habitat preferences in 
each zone

2. Case Study Output: Comparison of coef�cients for each conservation zone from (C) 
and (D) to identify similarities and differences

E. Step 5: Comparison of human and bird habitat preferences

Fig. 1. Flowchart that depicts the five framework steps, their goals and the steps
used in their implementation in the case study example.
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surrounding them (hereafter, ‘neighbourhoods’) from the above
datasets (Table S1) in ArcGIS to identify habitat attributes on
and surrounding each plot including built, agricultural, grass, wet-
land and water cover; mean canopy cover and tree height; and ver-
tical structure and tree height standard deviation (Table S1). We
calculated attributes at both local (plot) and neighbourhood
(250-m) levels given that birds respond to their environments
at local and landscape levels in choosing breeding sites
(Pennington & Blair 2011, Rega-Brodsky & Nilon 2017), sug-
gesting that habitat management should focus on both extents.
Other applications of this approach could include variables mea-
sured over either one or both of these extents to match with the
extents over which conservation actions will be targeted. Lastly,
to measure landscape structure on and surrounding each plot,
we calculated landscape metrics, including the patch cohesion
index (a metric that identifies the degree to which patches of the
same land-cover type are aggregated such that values of 0 indicate
isolation while increasing values indicate increasing aggregation;
i.e., spatial connectivity) to indicate forest, built and grass connec-
tivity and Simpson’s diversity index to identify land-cover hetero-
geneity using Fragstats v4 (McGarigal et al. 2012) and the HRLC.
We used this dataset and the detection covariates employed in spe-
cies abundancemodelling to construct binomialN-mixturemodels
in order to identify the relationships between the species richness
of each indicator community (i.e., count of species observed on a
site) and mean-centred and scaled habitat covariates using the
process outlined above. We used coefficients for habitat covariates
from the final richness models for each indicator community to
identify habitat relationships for its conservation zone.

In our next framework step, we identified human habitat pref-
erences using a local hedonic pricing model (HPM), an economic
valuation technique that can utilize readily available tax-assessor
data (Fig. 1d). HPM is a statistical modelling approach under
which the sale price, P, of a marketed good (e.g., residential parcel),
i, is seen as a function of its structural (Si), neighbourhood (Ni) and
environmental (habitat) attributes (Qi; Freeman 2003), such that:

Pi ¼ β0 þ β1Si þ β2Ni þ β3Qi þ "i (1)

Estimated coefficients identify the direction and magnitude of the
relationships between parcel price and covariates, and, under
assumptions that the geographical area in question represents a
single, perfectly competitive market in equilibrium and that buyers
are well-informed, the covariates also identify how much home-
owners are willing to pay for those attributes (Freeman 2003),
thereby indicating homeowner preferences for those attributes,
including preferences for habitat attributes. While HPMs typically
use global regression, fitting one regression equation for a study
area with one coefficient for each covariate, they can be imple-
mented using a local regression technique, such as geographically
weighted regression (GWR). GWR can capture variation in home-
owner preferences by estimating coefficients for each covariate for
each parcel in a sample, such that:

Pij ¼ βj0 þ β1Sij þ β2Nij þ β3Qij þ "ij (2)

where j represents specific parcels (Fotheringham et al. 2002). We
used GWR to estimate HPMs using the attributes of 2316 single-
family residences and the land (i.e., cadastral parcel) associated
with them (hereafter, ‘parcels’) that sold in the area during
2011–2015 identified from data from the Iowa City Tax
Assessor. The single-family parcels used in this case study occurred

solely in existing residential areas (i.e., they were not in newly
developed locations) within the City of Iowa City’s municipal
boundary, which is in alignment with the intent of the framework
to support conservation in existing urbanized settings and not to
identify or plan building in undeveloped locations. In implement-
ing GWR, we used the natural logarithm of the sale price in 2015
US$ as our dependent variable and included structural covariates
from tax-assessor data (lot area in acres; building and garage area
in ft2; numbers of rooms, bathrooms and fireplaces; age in years;
presence of air conditioning; location in a flood zone) and binary
covariates for the presences of a neighbourhood elementary school
to indicate neighbourhood attributes. We calculated habitat cova-
riates for parcels (all land within the ownership boundary for each
parcel) and surrounding neighbourhoods (Table S1) as described
above for bird modelling. We utilized a spatially adaptive kernel
and followed a cross-validation approach that used predicted val-
ues to minimize the residual sum of squares and an adaptive band-
width of c. 85 neighbours in implementing GWR. We identified
parcels with significant relationships between each covariate and
sale price in each zone, then we calculated the mean coefficient
for that covariate for those parcels and used the resulting values
to identify human habitat preferences in each zone.

In our last framework step, we compared mean coefficients for
each zone with indicator-community habitat relationships to iden-
tify commonalities and differences in the habitat preferences of
humans and indicator communities within conservation
zones (Fig. 1e).

Case study results

The k-means analysis from our first framework step (Fig. 1a) iden-
tified five conservation zones in the study area (Fig. S1). Zones
included a higher-intensity (HI) zone with high built and minimal
grass and canopy cover and amoderate-intensity grass (MIG) zone
with moderate built and grass cover and low canopy cover. Lower-
intensity zones with low built cover included a mixed vegetation
(LIM) zone with similar canopy and grass cover; a grass-domi-
nated (LIG) zone with high grass and low canopy cover; and a can-
opy zone (LIC) with high mean canopy and minimal grass cover.
Our sample of parcels included 119 HI, 636 MIG, 798 LIM, 346
LIG and 417 LIC parcels, while our songbird survey plots included
60 HI, 37 MIG, 65 LIM, 35 LIG and 62 LIC plots.

In the point-count surveys from our second framework step
(Fig. 1b), surveyors recorded 65 bird species with highest richness
on LIM plots (mean= 12.06, S D= 3.75) and lowest richness
(mean= 6.73, SD= 2.79) on HI plots. We constructed abundance
models for 40 species detected on 5% or more of plots given that
binomial N-mixture models are less effective for less commonly
observed species (Fig. 1b & c). Two models failed to converge,
resulting in 38 models with which we predicted true species abun-
dance for use in Dufrêne–Legendre indicator species analysis.
Based on this analysis, we identified indicator communities that
included 6–11 species with predicted abundances that were posi-
tively correlated with each conservation zone (Box 1). The LIC
indicator community included 11 predominantly cavity- and
tree-nesting, forest and open woodland species. The LIG indicator
community included nine tree- and cavity-nesting species, approx-
imately half of them typical of scrub or grassland and approxi-
mately half of them typical of forest or open woodland,
suggesting edge habitat with mixed vegetation. The LIM indicator
community included six mainly open-woodland species: three
shrub, two tree and one secondary cavity-nesting species. The
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MIG indicator community included six largely open-woodland,
tree-nesting species typical of suburban yards and parks. Four
out of six HI indicator-community species were exotics common
in intensely urban settings.

Best-fitting richness models from our third framework step
(Fig. 1c) used a Poisson distribution and goodness-of-fit tests indi-
cated reasonable fit. Two models (HI, MIG) exhibited significant
residual spatial autocorrelation (p< 0.05). We estimated and
added spatial autocovariates to these models, reducing spatial
autocorrelation. Models included two to three detection covariates
(Table S4). Abundance sub-model covariates and coefficient signs
and magnitudes varied among zones (Fig. 2 & Table S4). HI indi-
cator community richness exhibited a weak negative relationship
with plot agricultural cover, stronger negative relationships with
plot grass cover, cohesive forest and neighbourhood canopy cover
and variation in tree height and positive relationships with plot
grass cohesion and tree height. MIG indicator community richness
was negatively related to plot grass, built, wetland and water cover
and neighbourhood built, agricultural and water cover and tree
height, with strong relationships for built and grass cover and
weaker relationships for water cover. MIG richness was positively
related to plot built cohesion and plot and neighbourhood
Simpson’s land-cover diversity. LIM indicator-community rich-
ness increased with decreasing neighbourhood water, grass and
built cover, plot-level agricultural cover and neighbourhood tree
height. LIM indicator-community richness also increased with
increasing plot water and neighbourhood canopy cover and plot
and neighbourhood land-cover diversity, with the strongest rela-
tionship being with neighbourhood built cover. LIG indicator-
community richness increased with decreasing variation in tree
height and built cohesion at the plot level and with decreasing built
cover and increasing grass cohesion in neighbourhoods. LIC indi-
cator-community richness exhibited strong negative relationships
with plot grass and built cover, moderate negative relationships

with plot water, wetland and agricultural cover and neighbourhood
variation in tree height, moderate positive relationships with
neighbourhood canopy cover, tree height and grass cohesion
and a strong positive relationship with neighbourhood forest cohe-
sion. These diverse relationships between indicator-community
richness and covariates among zones support the need to tailor
approaches to bird conservation among urban settings.

Our results from our fourth framework step (Fig. 1d) indicate
some similarities and many differences in human habitat prefer-
ences among zones (Figs 3–5 & Tables S2 & S3). The mean coef-
ficients for many parcel-level covariates were in the same direction
but of different magnitudes across zones (Figs 3 & 4 & Table S3).
Parcel grass cover exhibited negative, weak mean relationships
with parcel sale price across zones (Fig. 3). Parcel-level built cover
exhibited positive relationships with sale price in all zones, with the
strongest positive relationships being in the HI zone and the weak-
est relationships being in the LIC zone (Fig. 3).Water cover on par-
cels was negatively related to sale price across zones, with strong
negative relationships on HI, LIM and LIC parcels and weak rela-
tionships and high variation on LIG and MIG parcels (Fig. 3).
Relationships with parcel wetland cover were negative in HI,
LIG and MIG zones and positive in LIM and LIC zones, with high
within-zone variation in HI and LIM zones (Fig. 3). Parcel-level
canopy cover and mean tree height exhibited weak, positive rela-
tionships with sale price across zones (Fig. 3). Parcel-level variation
in tree height was negatively and similarly related to sale price
across zones, with a slightly stronger relationship on LIG parcels
(Fig. 4b). Negative relationships of equal magnitude occurred
between parcel price and parcel-level grass cohesion across conser-
vation zones (Fig. 3). Relationships between parcel-level built
cohesion and parcel price varied, with mean negative relationships
on LIG and MIG parcels and mean positive relationships on LIM,
HI and LIC parcels (Fig. 3). Parcel-level forest cohesion exhibited
similar, weak negative mean relationships with sale price across

Box 1. Bird species included as indicator communities for each conservation zone as identified using
Dufrêne–Legendre indicator species analysis.

High-intensity (HI) Low-intensity grass (LIG)
Common grackle (Quiscalus quiscul) American goldfinch (Spinus tristis)
European starling (Sturnus vulgari) Cerulean warbler (Setophaga cerulean)
House finch (Haemorhous mexicanus) Common yellowthroat (Geothlypis trichas)
House sparrow (Passer domesticus) Eastern towhee (Pipilo erythrophthalmus)
Song sparrow (Melospiza melodia) Eastern wood-peewee (Contopus virens)
Rock pigeon (Columba livia) Mourning dove (Zenaida macroura)

Rose-breasted grossbeak (Pheucticus ludovicianus)
Moderate-intensity grass (MIG) Red-bellied woodpecker (Melanerpes carolinus)
American crow (Corvus brachyrhynchos) Red-winged blackbird (Agelaius phoeniceus)
American robin (Turdus migratorius)
Brown-headed cowbird (Molothrus ater) Low-intensity canopy (LIC)
Black-capped chickadee (Poecile atricapillus) Blue jay (Cyanocitta cristata)
Cedar waxwing (Bombycilla cedrorum) Carolina wren (Thryothorus ludovicianus)
Chipping sparrow (Spizella passerina) Downy woodpecker (Picoides pubescens)

Eastern bluebird (Sialia sialis)
Low-intensity mixed vegetation (LIM) Eastern phoebe (Sayornis phoebe)
American redstart (Setophaga ruticilla) Great-crested flycatcher (Myiarchus crinitus)
Baltimore oriole (Icterus galbula) Hairy woodpecker (Picoides villosus)
Gray catbird (Dumetella carolinensis) Red-eyed vireo (Vireo olivaceus)
House wren (Troglodytes aedon) Ruby-throated hummingbird (Archilochus colubris)
Indigo bunting (Passerina cyanea) Tufted titmouse (Baeolophus bicolor)
Northern cardinal (Cardinalis cardinalis) White-breasted nuthatch (Sitta carolinensis)
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zones (Fig. 3). Lastly, parcel-level Simpson’s land-cover diversity
exhibited mean positive relationships with sale price across zones,
with the strongest relationships being on LIM, LIG and HI parcels
and weakest relationships being on MIG parcels (Fig. 4a).

Human preferences for neighbourhood covariates also varied
among zones (Figs 4 & 5 & Table S3). Neighbourhood agricultural
cover exhibited a weak negative relationship with sale price in
the LIM zone and weak positive relationships in the HI, MIG,
LIG and LIC zones, with high within-zone variation (Fig. 5).
Neighbourhood grass cover was negatively related to sale price
in the HI, LIM and LIC zones but positively related to sale price
in the MIG and LIG zones, again with weak relationships and
high within-zone variation (Fig. 5). Relationships with built cover
were positive but weaker than parcel-level relationships (Fig. 5).
Neighbourhood water cover was negatively related to sale price
across zones, with the strongest relationship being in the LIM
zone and weakest relationship being in the LIG zone (Fig. 5).
Relationships with neighbourhood wetland cover were positive,
with a strong relationship in the LIC zone, a weak relationship
in the LIG zone and high within-zone variation in the LIG,
MIG and LIM zones (Fig. 5). Mean relationships with neighbour-
hood urban forest attributes exhibited similarities and differences
with parcel-level relationships (Fig. 4b). As at the parcel level, mean
relationships between sale price and neighbourhood canopy cover
were positive and similar across zones (Fig. 5). Mean relationships
with neighbourhood tree height were negative in theMIG, LIG and
LIM zones and positive in the HI and LIC zones but exhibited high
within-zone variation (Fig. 4b). Neighbourhood tree height varia-
tion differed in its mean relationship with sale price among zones,
with positive relationships in the HI, MIG and LIG zones and neg-
ative relationships in the LIM and LIC zones, as well as high varia-
tion in all zones except the LIC zone (Fig. 4b). Neighbourhood
grass and built cohesion were negatively related to sale price on
average, with much stronger relationships for built cover andmod-
erate to high within-zone variation (Fig. 5). The LIG zone exhibited
the strongest mean negative relationship with neighbourhood

grass cohesion with low variation, while the HI zone exhibited
the weakest relationship with neighbourhood grass cohesion with
high variation (Fig. 5). Relationships with neighbourhood forest
cohesion were positive for the MIG and LIG zones and negative
for the HI, LIM and LIC zones, with high variation within zones
(Fig. 5). Neighbourhood Simpson’s land-cover diversity exhibited
strong, positive relationships with sale price across zones, with the
strongest relationship being in the LIM zones and the weakest rela-
tionship being in MIG zones (Fig. 4a).

Commonalities and differences existed in urban bird and
human habitat preferences within conservation zones (Fig. 6).
While the directions of many relationships were similar, the mag-
nitudes were usually different, especially for stronger relationships.
HI birds and humans exhibited similar preferences for plot-level
grass and forest cohesion and neighbourhood tree height but
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Fig. 2. Coefficients for survey plot and neigh-
bourhood (250-m) covariates included in the
top models of indicator-community richness.
Positive coefficients indicate a positive relation-
ship between a given covariate and indicator-
community species richness, while negative
coefficients indicate a negative relationship.
Error bars are standard deviations. For covariate
definitions, see Table S1. (Full models are given
in Table S4.)

Fig. 3. Mean significant coefficients for parcel-level land cover and cohesion from the
local hedonic pricing model by zone. Positive coefficients indicate a positive relation-
ship between a given covariate and home sale price, while negative coefficients indi-
cate a negative relationship. Error bars are standard deviations. For covariate
definitions, see Table S1. (Full model specification is given in Table S2; mean coefficient
values by zone are given in Table S3.)
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differed strongly in their preferences for plot grass cohesion,
neighbourhood canopy cover and variation in tree height, with
negative relationships for the bird indicator communities and
positive relationships for homeowners. The MIG zone exhibited
seven preference commonalities and four disagreements, indi-
cating common preferences for low grass, water and wetland
cover and high land-cover diversity at the parcel/plot level
and low water cover, smaller trees and high land-cover diversity
in surrounding neighbourhoods. MIG birds preferred plots with
little and less cohesive built cover and low neighbourhood agri-
cultural and built cover, while humans preferred the opposite.

Low-intensity zones varied in the degree to which human and
bird preferences coincided. The LIM zone exhibited high agree-
ment with six commonalities (higher parcel/plot and neighbour-
hood land-cover diversity and lower neighbourhood grass and
water cover, smaller trees and higher canopy cover) and two
differences, with birds preferring high plot water and low neigh-
bourhood built cover, but with humans exhibiting opposite pref-
erences. LIG zone homeowners and birds both preferred low plot/
parcel tree height variation and built cohesion, but homeowners
preferred high neighbourhood built cover and low neighbourhood
grass cohesion, while birds preferred the reverse. LIC indicator
communities and human residents exhibited similarities for five
covariates (low plot/parcel grass and water cover, high neighbour-
hood canopy cover and tall neighbourhood trees with little varia-
tion in height) and differences for three covariates: plot/parcel built
and wetland cover, with humans preferring more and birds prefer-
ring less, and neighbourhood forest and grass cohesion, with
human preferring lower levels and birds preferring higher levels.
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Fig. 4. Mean significant coefficients for parcel and neighbourhood-level (250-m)
(a) Simpson’s land-cover diversity and (b) tree height and tree height standard
deviation (SD) from the local hedonic pricing model by zone. Covariate ranges are:
(a) height 0–30, height SD 0–18; and (b) 0–1. Positive coefficients indicate a positive
relationship between a given covariate and home sale price, while negative coeffi-
cients indicate a negative relationship. Error bars are standard deviations. For cova-
riate definitions, see Table S1. (Full model specification is given in Table S2; mean
coefficient values by zone are given in Table S3.)
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tions. For covariate definitions, see Table S1. (Full model specification is given in Table
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Fig. 6. Human and indicator-community (Ind. comm.) habitat preferences by conser-
vation zone. Red boxes (solids in greyscale) indicate positive relationships between
bird species richness or home sale price and a given covariate, while blue boxes
(hashed in greyscale) indicate negative relationships. Values are coefficients. Darker
shading indicates increasing preference magnitude. Only covariates included in indi-
cator-community models are shown. For covariate definitions, see Table S1.
HI = high-intensity; LIC = low-intensity canopy; LIG = low-intensity grass;
LIM = low-intensity mixed vegetation; MIG = moderate-intensity grass.
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Discussion

The goal of integrating the needs of heterogeneous human
and non-human communities challenges urban conservation
(Aronson et al. 2017, Turo & Gardiner 2020), as does urban
environmental heterogeneity. The framework we designed
and demonstrated could help address these challenges by iden-
tifying commonalities and differences in the habitat preferences
of humans and biotic communities in specific urban settings.
We found that humans and birds in similar urban environments
exhibited at least some common habitat preferences that could
inform management to support both human well-being and
conservation, but we also found differences that could compli-
cate management. Such information could particularly support
conservation planning during its preliminary stages.

In accordance with past studies and our hypotheses, we found
that human environmental preferences (Cho et al. 2008, 2009,
Sander & Zhao 2015) and species habitat requirements (Aronson
et al. 2016) varied among urban environments. Our case study
identified few habitat attributes that could be managed to support
conservation and human well-being city-wide, and most attributes
varied in their relationships with parcel price, indicator-commu-
nity richness or both among zones, supporting the need to target
urban conservation to specific settings identified by past research
(Goddard et al. 2010). Our framework extends this idea by produc-
ing a means for identifying conservation zones, indicator com-
munities for them and habitat preferences for both their indicator
communities and human residents.

Our case study demonstrated the ability of our framework to
identify zone-specific human and bird habitat preferences that
conservation planners could target. For example, common prefer-
ences of human and indicator communities suggest that both
groups would benefit from policies that reduce lawn cover and pro-
vide tall trees and high canopy cover in the LIC zone and that min-
imize parcel/plot grass cover and provide patchy tree cover and tall
neighbourhood trees in the HI zone. Such management acknowl-
edges species and human habitat preferences and would provide
for both in specific urban settings. Human residents may also be
more receptive to conservation efforts that explicitly consider
human preferences in this way but require further exploration
through stakeholder-centred activities (e.g., focus groups, commu-
nity forums).

Our approach identifies dissimilarities in human preferences
and species–habitat relationships in conservation zones. LIG and
HI homeowner and indicator-community habitat preferences dif-
fered in direction for half of the significant covariates from the bird
models, suggesting that conservation will be more challenging in
these zones than others. Conflict may be particularly great
when human preferences for a key habitat attribute are strong.
Awareness of such differences could help managers design and
implement stakeholder engagement and management activities
to avoid attributes of high disagreement or provide outreach to
build understanding regarding the reasons behind actions that res-
idents are unlikely to support. For example, LIG residents pre-
ferred neighbourhoods with low built cover and high grass
cohesion, but indicator-community richness exhibited strong,
opposite relationships with these attributes. Conducting public
forums and educational programmes before undertaking manage-
ment aimed at reducing built cover and increasing grass cohesion
could build understanding regarding the benefits of such manage-
ment and so bolster public support. Our comparison of human and
bird indicator-community preferences also identified zones where

concurrently supporting species conservation and human well-
being is likely to be easier (e.g., LIC) or more challenging (e.g.,
LIG), helping identify ways in which conservation planning may
need to differ among settings.

The HI indicator community contained largely exotic species.
Management to support them could prove contentious, particu-
larly given the knowledge gap that exists in our understanding
of exotic and novel urban assemblages (Aronson et al. 2017),
but such management would ensure the presence of some biodi-
versity in these often hostile environments. Additionally, com-
monalities between human and indicator-community preferences
in less intense zones could inform management to enhance native
biodiversity in HI settings. For example, HI homeowners andMIG
indicator communities preferred high neighbourhood land-cover
diversity. Land-cover diversity was not significantly related to HI
indicator-community richness, suggesting that increasing HI-zone
land-cover diversity could support human well-being and bring in
MIG species without impacting HI species, although interactions
among these species require consideration.

Wild species and humans exhibit common preferences for
some attributes that cannot or should not be managed to reflect
identified preferences. For example, several human and bird com-
munities preferred low plot or neighbourhood water or wetland
cover. These features are difficult or illegal to alter and species
not represented in indicator communities rely on them. The rea-
sons for such negative preferences should be explored and
addressed when possible. Additionally, indicator-community
development could be improved by considering a broadly repre-
sentative species pool (e.g., including upland and wetland species
or explicitly including wetland and aquatic conservation zones)
and could also focus on rare species or species of particular concern
based on the objectives of an urban conservation programme.

Our framework could support conservation planning in many
metropolitan areas. Tax assessor and land-cover datasets are
broadly available in cities, and data to support indicator-commu-
nity development and habitat modelling are available for some taxa
(e.g., via eBird); citizen-scientists could also collect relevant data.
Some analyses from our case study require expertise but could
be implemented more simply using software that includes a
graphical user interface (e.g., the GWR tool in ArcGIS). Species
habitat modelling might benefit from collaboration with local uni-
versities, government agencies or consultants. Conservation plan-
ners could use our framework at the onset of conservation
planning to highlight preliminary conservation zones and targets
and provide understanding of human and species habitat preferences.
This information could be used to construct initialmanagement plans
and facilitate focus groups and stakeholder meetings to identify the
reasons behind relationships and preferences missed by the frame-
work and to refine conservation plans. Importantly, this framework
is meant to provide guidance for conservation planning focused on
existing urban environments and should not be used in designing
or identifying locations for new development.

Additional research and implementation in practice would
refine our framework. Firstly, we did not use a spatial constraint
in delineating conservation zones, allowing zones to be discontinu-
ous. Spatially constrained multivariate clustering (e.g., via ArcGIS)
would create contiguous zones. Secondly, our case study omitted
non-linear relationships fromHPM and richness modelling – rela-
tionships that warrant exploration. Additionally, our example
focused on songbirds, particularly more common songbirds.
Future studies should develop indicator communities with broader
suites of species to provide representative species pools or using
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rarer or particularly sensitive species to identify the habitat attrib-
utes of species of particular concern. Similarly, HPM focused on
single-family homes fails to represent the values of many urban
residents, including renters. HPM is also based on actual sales
transactions and thus estimated values are probably a function
of ability to pay and may thus miss the values of those less able to
pay. Implementing models with rental datasets or using stated-pref-
erence techniques with broader stakeholder groups could extend rep-
resentation in preference identification, increase stakeholder
involvement and provide educational and consensus-building oppor-
tunities that could enhance support for conservation actions.
Additionally, while conservation strategies focused on the habitat
characteristics of indicator species in specific zones could act to main-
tain heterogeneous communities city-wide, they could lead to homog-
enization within zones. This potential should be carefully assessed
(e.g., by modelling the effects of proposed management on commun-
ities within zones or through frequent monitoring of these commun-
ities as management occurs). Lastly, data quality could affect all
framework analyses, making rigorous data selection and processing
key to ensuring the reliability of identified relationships.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0376892922000248.
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